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ABSTRACT 
Functional Near-Infrared Spectroscopy (fNIRS) is a new 
brain imaging tool that shows potential for use in the field 
of human computer interaction (HCI) because of its 
lightweight, non-invasive qualities. fNIRS could become 
an additional input to interfaces, by recording the user’s 
mental state through the measure of blood flow in the 
brain. However, before we are able to use the tool at its 
full potential, we must test its feasibility in HCI, and 
develop methods to accurately analyze the output. This 
paper will introduce fNIRS, and briefly discuss a 
feasibility study conducted to explore the measurement of 
different levels of workload. Finally, we will present 
future research directions that follow from this work, such 
as evaluating new interaction styles according to the 
measured mental workload, adaptive interfaces with 
fNIRS, and combining fNIRS with EEG.  
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INTRODUCTION 
Acquiring measurements about the mental state of a 
computer user would be valuable in human-computer 
interaction (HCI), both for evaluation of interfaces and for 
real time input to computer systems. Although we can 
accurately measure task completion time and accuracy, 
factors such as mental workload, frustration and 
distraction are typically limited to qualitative observations 
or subjective surveys. These surveys are often taken after 
the completion of a task, potentially missing valuable 
insight into the user’s changing experience throughout the 
task. New evaluation techniques that monitor user 
experiences while working with computers are 
increasingly necessary. To address these evaluation 
issues, much current research focuses on developing 
objective techniques to measure user states such as 

workload, emotion, and fatigue in real time. Although this 
ongoing research has advanced user experience 
measurements in the HCI field, finding accurate, non-
invasive tools to measure computer users’ states in real 
working conditions remains a challenge. In addition to 
aiding in the evaluation of interfaces, fNIRS output has 
potential as an additional parallel, lightweight input 
channel for users. This additional information from the 
brain could be used to improve the efficiency or 
intuitiveness of the user’s interaction with the machine by 
adapting the interface accordingly. It also could provide 
new interaction methods for disabled users. 

We investigate functional near-infrared spectroscopy 
(fNIRS) [1], a relatively new technology for brain activity 
measurement, which we combine with the use of machine 
learning to analyze the resulting data. The emerging 
fNIRS tool is safe, portable, non-invasive, and can be 
implemented wirelessly, allowing for use in real world 
environments, making naturalistic HCI possible. 

This position paper briefly describes the new fNIRS 
technology, presents our first experiment with the fNIRS 
tool, and demonstrates its feasibility and potential for HCI 
settings. We then describe three avenues of research 
investigated at Tufts University: using fNIRS as a more 
objective measure for evaluating emerging interaction 
styles, as a non-invasive device for use with adaptable 
interfaces, and as a tool that can be combined with EEG, 
providing complementary measurements.  

FUNCTIONAL NEAR-INFRARED SPECTROSCOPY 

 
Figure 1: A schematic diagram of two detectors and their set 

of near-infrared light sources. 

A new non-invasive brain imaging technique, functional 
near infrared spectroscopy (fNIRS), has been introduced 
[5, 7] to complement, and in some cases overcome 
technical and practical limitations, of EEG and other brain 
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monitoring techniques. While EEG measures electrical 
activity, fNIRS measures blood oxygenation levels in the 
brain, providing a different, possibly complementary, 
source of information about brain functioning. 

To measure blood oxygenation levels, functional near-
infrared spectroscopy uses light sources placed on the 
scalp to send near-infrared light into the head. Biological 
tissues are relatively transparent to these wavelengths, so 
the light attenuation through tissues is sufficiently low to 
allow for tissue imaging at depths up to 2-3 centimeters. 
Deoxygenated and oxygenated hemoglobin are the main 
absorbers of near-infrared light in tissues, and they 
provide relevant markers of hemodynamic and metabolic 
changes associated with neural activity in the brain. 
Therefore, fNIRS researchers can estimate hemodynamic 
changes by using light detectors to monitor reflected light 
that has probed the brain cortex [3]. Figure 1 displays an 
example of the arrangement of detectors and light sources 
in an fNIRS device.  

WORKLOAD AND INTERACTION STYLE EXPERIMENT 
We have conducted a feasibility study using fNIRS. The 
goal of the study was to determine whether our approach 
could measure frontal lobe activity such as workload. We 
applied preprocessing and machine learning techniques to 
the brain data to classify this mental activity.  

Four subjects completed thirty tasks in which they viewed 
the top and all sides of a rotating three dimensional shape 
comprised of eight small cubes. During each task, 
subjects counted the number of squares of each color 
displayed on the rotating shape in front of them. Figure 2 
illustrates an example of a rotating shape. In the 
experiment, cubes could be colored with two, three, or 
four different colors, which we hypothesized would lead 
to different workload levels. A blank screen represented 
the baseline state (no colors). 

 
Figure 2. A cube made up of eight smaller cubes. 

Experiment A: Graphical Blocks 
The main goal of this experiment was to decide whether 
fNIRS data is sufficient for determining the workload 
level of users as they perform tasks. To accomplish this, a 
graphical interface displayed the rotating shapes.  

Experiment B: Graphical versus Physical Blocks 
We also wanted to determine whether there is a difference 
in mental workload when a user completes a spatial 
reasoning task on a graphical display versus completing 
the task using a physical object, such as a tangible user 
interface. Therefore, we included a physical cube with 
three colors, and the same rotation time and size as the 
graphical cube.  

At the completion of each task, the subject was asked for 
his or her count of each color. He/she was then instructed 

to rest for thirty seconds, allowing his or her brain to 
return to a baseline state. After completing the tasks, the 
subject was presented with an additional example of each 
workload level and asked to fill out a NASA-Task Load 
Index [2], administered to compare our results with an 
established measure of workload. The NASA-Task Load 
Index results validated our hypothesis: an increased 
number of colors lead to a higher subjective workload 
level.  

Data Analysis and Results 
We preprocessed the data by normalizing it, applying a 
detrending algorithm and using a sliding window 
paradigm to generate average and slope features. Using a 
blocked cross-validation, we classified the data with a 
multilayer perceptron classifier. We tested distinguishing 
all five workload levels from each other, as well as 
distinguishing between two, three, and four different 
workload conditions (graphical). We also tried to classify 
between the graphical and physical tasks which had three 
colors. 

Analysis of Graphical Blocks 
We consider here one of the analyzed combinations of 
workloads. Comparing workload levels 0, 2, and 4 (no 
colors, 2 and 4 colors), classification accuracies ranged 
from 41.15% to 69.7%, depending on the subject. 
Considering that a random classifier would have 33.3% 
accuracy, the results are promising. It seems that we can 
predict, with relative confidence, whether the subject was 
experiencing no workload (level zero), low workload 
(level two), or high workload (level 4).  

Analysis of Graphical versus Physical Blocks 
We compared the results from the physical and the 
graphical workload level 3 (three colors). The average 
accuracy was 83%, with a range from 73% to 91%, 
depending on the subject (chance level 50%). These 
positive classification results are useful from a HCI 
perspective—there were distinguishable differences 
between displaying a cube in a graphical vs. physical user 
interface. Although we can accurately distinguish between 
the cognitive activities experienced in these two 
conditions, we cannot say for sure whether the difference 
is attributable to the workload of the interface, the 
workload of the task, or other variables affecting brain 
activity. However, these results encourage further 
exploration into cognitive workload associated with 
different interaction styles. 

FUTURE DIRECTIONS AT TUFTS UNIVERSITY 
We believe the results from these experiments are 
promising and demonstrate the feasibility of our 
approach. Current work is iterating on the machine 
learning and pre-processing algorithms in order to attain 
better classification results. The analysis and results 
described above demonstrated the need to explore data 
analysis techniques that are better suited to the fNIRs 
data.  We will discuss these new techniques at the 
workshop. Unlike many other brain-computer interaction 
studies, our initial goal is improved interaction for all 



 

 

users, rather than only disabled users, for whom brain 
input is a viable alternative to otherwise unavailable 
inputs. We see potential in the application of these 
objective workload measurements to research on 
evaluating user interfaces, especially post-WIMP 
interfaces and on the development of adaptable user 
interfaces. We also hypothesize that adding EEG to our 
experiments will complement the output. 

Evaluating emerging interfaces using fNIRS 
Current methods of evaluation (performance, speed of 
execution, etc.) may be insufficient for emerging interface 
or interaction styles. In a CHI 2006 workshop entitled 
“What is the Next Generation of Human-Computer 
Interaction?” [4] participants discussed the need for new 
evaluation metrics for new interactions style. When it 
comes to emerging interaction styles such as virtual 
reality, tangible user interfaces and context aware 
systems, evaluating “intuitiveness,” enjoyment, mental 
workload or fatigue may be valuable.  

Our feasibility study indicated promise in our ability to 
measure mental workload using fNIRS, and to classify the 
different workload levels using machine learning 
techniques. Given those results, it is possible to imagine 
using fNIRS to measure mental workload for different 
types of emerging interfaces while users accomplish a 
similar task, and to evaluate them according to their 
mental workload levels. Because a well designed interface 
should ‘melt away’, allowing the user to focus on the task 
at hand , an interface that causes lower mental workload 
would be preferable to its more difficult to use 
counterparts. 

While brain measurement in HCI has typically been used 
to investigate overall task difficulty, we propose to dig 
more deeply by separating the total mental workload into 
two components. Specifically, we hypothesize that the 
overall mental effort required to perform a task using an 
interactive computer system is composed of a portion 
attributable to the difficulty of the task itself plus a 
portion attributable to the difficulty of operating the user 
interface of the interactive tool. In this regard, we follow 
the concept of Shneiderman's theory of syntactic/semantic 
components of a user interface [6]. The syntactic 
component includes interpreting the feedback it presents 
and formulating and inputting commands to the interface. 
An important goal in interface design is to reduce the 
amount of mental effort devoted to the interface-related or 
syntactic aspects so that more mental capacity can be 
devoted to the underlying task or semantic aspects. 
Acquiring objective measures of mental workload in 
users’ real working conditions can advance research on 
evaluating emerging interaction styles.  

Adaptive interface using fNIRS 
Objective, non-invasive measurements of user workload 
would be valuable as real time inputs to interactive 
systems, which can then adapt their behavior to current 
information measured from the brain. For example, given 
that we could measure and classify mental workload 

accurately, we could use this 
data and create an interface that 
would adapt to the user’s mental 
workload. An overloaded user 
would have the interface’s 
difficulty level reduced, while 
an underloaded user would see 
an increase in difficulty. Both 
scenarios need an interface 
adjustment because overloaded 
users tend to make errors due to 
stress and failure to accomplish 
all tasks, while underloaded 
users have a drop in productivity 
as well due to boredom and 
under challenging [8, 9]. 

The goal, thus, is to design user interfaces that treat the 
brain activity as an additional input channel, rather than as 
the primary input. For example, the user would operate a 
conventional interface with a mouse or other interaction 
method, and the interface would respond not only to the 
explicit mouse inputs but also to the information we can 
measure from the brain. In this case the challenge is to 
design a user interface that makes judicious use of brain 
input. Instead of using the brain input to, for example, 
directly drive the cursor, we want to use it in a much more 
subtle way. 

The design challenges for such an unobtrusive, passive, 
real-time interface are considerable. There might be many 
different signals that can or could be measured by the 
fNIRS device. We intend to explore such possible signals: 
workload, emotions, fatigue, boredom, etc. Selecting the 
interface to be adapted and the adaptation method are 
another factor to take into account in our research. 
Finally, note that the difficulty level of the interface could 
be linked to multiple factors, such as the number or 
frequency of the tasks of the given interface, or the 
ergonomics of such an interface.  

Combining fNIRS and EEG 
Currently, we are studying the two directions mentioned 
above with the use of functional near-infrared 
spectroscopy. However, we plan on adding EEG to 
experiments, and combining the results from both tools to 
obtain an enhanced picture of the brain activity when the 
user is using a particular interface. The two types of 
sensors can be placed around the scalp in alternating 
patterns, with minimal interference. EEG measures 
surface electrical activity, and has poor spatial resolution 
because the measured brain activity can be attributed only 
to large region of the brain. fNIRS is complementary to 
EEG because while it has a lower spatial resolution 
compared to fMRI, its measurements are still more 
localized than in EEG. However, both tools have a high 
temporal resolution which allows for a good machine 
learning online analysis.  

 
Figure 3. Adaptive 

user interface system 
design using fNIRS 



 

 

CONCLUSION 
We presented fNIRS, a new noninvasive brain 
measurement tool that promises to be a useful input for 
research in HCI. We discussed a study testing the 
feasibility of the fNIRS device to detect levels of 
workload in HCI. Our experiment showed several 
workload comparisons with promising levels of 
classification accuracy. We developed classification 
techniques to interpret fNIRS data and demonstrated the 
use of fNIRS in HCI. Our next goals are to use this 
technology as a real time input to a user interface in a 
realistic setting as well as an evaluation technique for 
emerging interactions styles. We observe that our 
equipment places no unreasonable restrictions on a 
subject using an interactive system, and it can collect and 
transmit data in real time. This proves promising for the 
HCI community. 
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