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ABSTRACT 
In seeking hitherto-unused methods by which users 
and computers can communicate, we investigate 
the usefulness of eye movements as a fast and con- 
venient auxiliary user-to-computer communication 
mode. The barrier to exploiting this medium has 
not been eye-tracking technology but the study of 
interaction techniques that incorporate eye move- 
ments into the user-computer dialogue in a natural 
and unobtrusive way. This paper discusses some 
of the human factors and technical considerations 
that arise in trying to use eye movements as an 
input medium, describes our approach and the first 
eye movement-based interaction techniques that we 
have devised and implemented in our laboratory, 
and reports our experiences and observations on 
them. 
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interaction techniques, human-computer interac- 
tion, input. 

INTRODUCTION 
Current user-computer dialogues tend to be one- 
sided, with the bandwidth from the computer to 
the user far greater than that from user to com- 
puter. A fast and effortless mode of communica- 
tion from a user to a computer would help redress 
this imbalance. We therefore investigate the possi- 
bility of introducing the movements of a user’s 
eyes as an additional input medium. While the 
technology for measuring eye movements in real 
time has been improving, what is needed is 
appropriate interaction techniques that incorporate 
eye movements into the user-computer dialogue in 
a convenient and natural way. This paper 
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discusses some of the human factors and technical 
considerations that arise in trying to use eye move- 
ments as an input medium, describes our approach 
and the first eye movement-based interaction tech- 
niques that we have devised and implemented in 
our laboratory, and reports our experiences and 
observations on them. 

BACKGROUND 

Methods for Measuring Eye Movements 
Available techniques for measuring eye movements 
range from the not-quite-sublime to the almost- 
ridiculous. First, note that our goal is to measure 
visual line of gaze, that is, the absolute position in 
space at which the user’s eyes are pointed, rather 
than, for example, the position of the eyeball in 
space or the relative motion of the eye within the 
head [14]. 
The simplest eye tracking technique is electronic 
recording, using electrodes placed on the skin 
around the eye to measure changes in the orienta- 
tion of the potential difference that exists between 
the cornea and the retina. However, this method 
is more useful for measuring relative eye move- 
ments than absolute position. Perhaps the least 
user-friendly approach uses a contact lens that fits 
precisely over the bulge at the front of the eyeball 
and is held in place with a slight suction. This 
method is extremely accurate, but suitable only for 
laboratory studies. More practical methods use 
remote imaging of a visible feature located on the 
eyeball, such as the boundary between the sclera 
and iris, the outline of the pupil, or the cornea1 
reflection of a light shone at the eye. All these 
require the head to be held absolutely stationary (a 
bite board is customarily used), to be sure that any 
measured movement represents movement of the 
eye, not the head. However, by tracking two 
features of the eye simultaneously, it is possible to 
distinguish head movements (the two features 
move together) from eye movements (the two 
move with respect to one another), and the head 
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need not be rigidly fixed. This is currently the 
most practical method for use in a conventional 
computer-and-user setting, since the eye tracker 
sits several feet from the user, nothing contacts 
him or her, and the head need not be clamped. In 
our laboratory, we use an Applied Science Labora- 
tories (Waltham, Mass.) Model 325OR eye tracker 
[9,14]. Figure 1 shows the components of this type 
of eye tracker. It simultaneously tracks the cor- 
neal reflection (from an infrared light shining on 
eye) and the outline of the pupil (illuminated by 
same light). Visual line of gaze is computed from 
the relationship between the two tracked points. 
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[ Figure f. Illustration of components of a car- ] 
neal reflection-plus-pupil eye tracker. The pupil 
camera and illuminator operate along the same 
optical axis, via a half-silvered mirror. The 
servo-controlled mirror is used to compensate 
for the user’s head motions. 

Previous Work 
While technology for measuring visual line of gaze 
is adequate, there has been little research on using 
this information in real time. There is a consider- 
able body of research using eye tracking, but it has 
concentrated on eye movement data as a tool for 
studying motor and cognitive processes by record- 
ing the eye movements and subsequently analyzing 
them [7,10]. Real-time eye input has been used 
most frequently for disabled (quadriplegic) users, 
who can use only their eyes for input [4,8]. Our 
interest is, instead, on dialogues that combine 
real-time eye movement data with other, more con- 
ventional modes of user-computer communication. 
Richard Bolt did some of the earliest work in this 
particular area and demonstrated several innova- 
tive uses of eye movements [1,2]. Floyd Glenn [5] 
used eye movements for several tracking tasks 
involving moving targets. Ware and Mikaelian [13] 
reported an experiment in which simple target 
selection and cursor positioning operations were 
performed substantially faster with an eye tracker 
than with any of the more conventional cursor 

positioning devices. 

Characteristics of Eye Movements 
To see an object clearly, it is necessary to move 
the eyeball so that the object appears on the fovea, 
a small area at the center of the retina. Because 
of this, a person’s eye position provides a rather 
good indication (to within the one-degree width of 
the fovea) of what specific portion of the scene 
before him he is examining. The most common 
way of moving the eyes is a sudden, ballistic, and 
nearly instantaneous saccade. It is typically fol- 
lowed by a fixation, a 200-600 ms. period of rela- 
tive stability during which an object can be viewed. 
During a fixation, however, the eye still makes 
small, jittery motions, generally covering less than 
one degree. Smooth eye motions, less sudden 
than saccades, occur only in response to a moving 
object in the visual field. Other eye movements, 
such as nystagmus, vergence, and torsional rota- 
tion are relatively insignificant in a user-computer 
dialogue. 
The overall :picture of eye movements for a user 
sitting in front of a computer is a collection of 
steady (but slightly jittery) fixations connected by 
sudden, rapid saccades. The eyes are rarely 
entirely still. They move during a fixation, and 
they seldom remain in one fixation for long. Fig- 
ure 2 shows a trace of eye movements (with jitter 
removed) for a user using a computer for 30 
seconds. Compared to the slow and deliberate 
way people operate a mouse or other manual input 
device, eye movements careen madly about the 
screen. During a fixation, a user generally thinks 
he is looking steadily at a single object-he is not 
consciously aware of the small, jittery motions. 
This suggest:s that the human-computer dialogue 
should be constructed so that it, too, ignores those 
motions, since, ultimately, it should correspond to 
what the user rhinks he is doing, rather than what 
his eye muscles are actually doing. 

“Midas Touch” Problem 
The most naive approach to using eye position as 
an input might be as a direct substitute for a 
mouse: changes in the user’s line of gaze would 
cause the mouse cursor to move. This is an 
unworkable (and annoying) approach, because 
people are not accustomed to operating devices 
just by moving their eyes. They expect to be able 
to look at an item without having the look “mean” 
something. Normal visual perception requires that 
the eyes move about, scanning the scene before 
them. It is not desirable for each such move to 
initiate a computer command. 
At first, it is empowering simply to look at what 
you want and have it happen. Before long, 
though, it becomes like the Midas Touch. Every- 
where you look, another command is activated; 
you cannot look anywhere without issuing a com- 
mand. The challenge in building a useful eye 
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Figure 2. A trace of a computer user’s eye 
movements over approximately 30 seconds, while 
performing normal work (i.e., no eye-operate in- 
terfaces) using a windowed display. Jitter within 
each fixation has been removed from this plot. 

tracker interface is to avoid this Midas Touch 
problem. Ideally, the interface should act on the 
user’s eye input when he wants it to and let him 
just look around when that’s what he wants, but 
the two cases are impossible to distinguish in gen- 
eral. Instead, we investigate interaction techniques 
that address this problem in specific cases. 

EXPERIENCE WITH EYE MOVEMENTS 

Configuration 
We use an Applied Science Laboratories cornea1 
reflection eye tracker. The user sits at a conven- 
tional (government-issue) desk, with a Sun com- 
puter display, mouse, and keyboard, in a standard 
chair and office. The eye tracker 
camera/illuminator sits on the desk next to the 
monitor. Other than the illuminator box with its 
dim red glow, the overall setting is thus far just 
like that for an ordinary office computer user. In 
addition, the room lights are dimmed to keep the 
user’s pupil from becoming too small. The eye 
tracker transmits the x and y coordinates for the 
user’s visual line of gaze every l/60 second, on a 
serial port, to a Sun 4/260 computer. The Sun 
performs all further processing, filtering, fixation 
recognition, and some additional calibration and 
also implements the user interfaces under study. 
Observarion: The eye tracker is, strictly speaking, 
non-intrusive and does not touch the user in any 
way. Our setting is almost identical to that for a 
user of a conventional office computer. Neverthe- 

less, we find it is difficult to ignore the eye tracker. 
It is noisy; the dimmed room lighting is unusual; 
the dull red light, while not annoying, is a constant 
reminder of the equipment ; and, most 
significantly, the action of the servo-controlled mir- 
ror, which results in the red light following the 
slightest motions of user’s head gives one the eerie 
feeling of being watched. 

Accuracy and Range 
A user generally need not position his eye more 
accurately than the width of the fovea (about one 
degree) to see an object sharply. Finer accuracy 
from an eye tracker might be needed for studying 
the operation of the eye muscles but is not useful 
for our purposes. The eye’s normal jittering 
further limits the practical accuracy of eye track- 
ing. It is possible to improve accuracy by averag- 
ing over a fixation, but not in a real-time interface. 
Observation: Despite the mechanisms for following 
the user’s head, we find that the steadier the user 
holds his head, the better the eye tracker works. 
We find that we can generally get two degrees 
accuracy quite easily, and sometimes can achieve 
one degree. The eye tracker should thus be 
viewed as having a resolution much coarser than 
that of a mouse or other typical devices, perhaps 
more like a touch screen. A further problem is 
that the range over which the eye can be tracked 
with this equipment is fairly limited. In our 
configuration, it can barely cover the surface of a 
19” monitor at a 24” viewing distance. 

Using the Eye Tracker Data 
Our approach to processing eye movement data is 
to partition the problem into two stages. First we 
process the raw eye tracker data in order to filter 
noise, recognize fixations, compensate for local 
calibration errors, and generally try to reconstruct 
the user’s more conscious intentions from the 
available information. This processing stage con- 
verts the continuous, somewhat noisy stream of 
raw eye position reports into tokens that are 
claimed to approximate more closely the user’s 
intentions in a higher-level user-computer dialogue. 
Then, we design generic interaction techniques 
based on these tokens as inputs. 
Observation: Because eye movements are so 
different from conventional computer in$uts, we 
achieve success with a philosophy that tries, as 
much as possible, to use natural eye movements as 
an implicit input, rather than to train a user to 
move the eyes in a particular way to operate the 
system. We try to think of eye position more as a 
piece of information available to the user-computer 
dialogue involving a variety of input devices than 
as the intentional actuation of an input device. 
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Local Calibration 
The eye tracker calibration procedure produces a 
mapping that is applied uniformly to the whole 
screen, but we found small calibration errors 
appear in portions of the screen, rather than sys- 
tematically across it. We introduced an additional 
layer of calibration into the chain, which allows 
the user to make local modifications to the calibra- 
tion dynamically. If the user feels the eye tracker 
is not responding accurately in some area of the 
screen, he can at any point move the mouse cursor 
to that area, look at the cursor, and click a button. 
Observarion: Surprisingly, this had the effect of 
increasing the apparent response speed for object 
selection and other interaction techniques. The 
reason is that, if the calibration is slightly wrong in 
a local region and the user stares at a target in that 
region, the eye tracker will report the eye position 
somewhere slightly outside the target. If he con- 
tinues to stare at it, though, his eyes will in fact 
jitter around to a spot that the eye tracker will 
report as being on the target. The effect feels as 
though the system is responding too slowly, but it 
is a problem of local calibration. 

Fixation Recognition 
After improving the calibration, we still observed 
erratic behavior in the user interface, even when 
the user thought he was staring perfectly still. This 
comes from both the normal jittery motions of the 
eye during fixations and from artifacts introduced 
when the eye tracker momentarily fails to obtain 
an adequate video image of the eye. 

Figure 3. Illustration of erratic nature of raw 
data from the eye tracker. The plot shows one 
coordinate of eye position vs. time, over a some- 
what worse-than-typical three second period. 

Figure 3 shows the type of data obtained from the 
eye tracker. It plots the x coordinate of the eye 
position output against time over a relatively jumpy 

three-second period. Zero values on the ordinate 
represent periods when the eye tracker could not 
locate the line of gaze. This might be caused by 
eye tracker artifacts, such as glare in the video 
camera, lag in compensating for head motion, or 
failure of the processing algorithm, or by actual 
user actions, such as blinks or movements outside 
the range of the eye tracker. During the period 
represented by Figure 3, the subject thought he 
was simply looking around at a few different points 
on a CRT screen. The difference is attributable 
not only to the eye tracker artifacts but to the fact 
that much of the fine-grained behavior of the eye 
muscles is not intentional. To make a reasonable 
input to a user-computer dialogue from the eye 
tracker data,, we must filter out that behavior to 
recover the “intentional” component of the eye 
motions. 
We return to the picture of a computer user’s eye 
movements as a collection of jittery fixations con- 
nected by essentially instantaneous saccades. We 
start with an a priori model of such saccades and 
fixations and then attempt to recognize and quickly 
report the start, approximate position, and end of 
each recogn.ized fixation. Blinks of up to 200 ms. 
may occur during a fixation without terminating it. 
At first, blinks seemed to present a problem, 
since, obviously, we cannot obtain eye position 
data during a blink. However (equally obviously in 
retrospect), the screen need not respond to the eye 
during that blink period, since the user can’t see it 
anyway. After applying this algorithm, the noisy 
data shown in Figure 3 are found to comprise 
about 6 fixations, which more accurately reflects 
what the user thought he was doing (rather than 
what his eye muscles plus the eye tracking equip- 
ment actually did). Figure 4 shows the same data, 
with a horizontal line marking each recognized 
fixation at the time and location it would be 
reported. 
Observarion: Applying the fixation recognition 
approach to the real-time data coming from the 
eye tracker yielded a significant improvement in 
the user-visible behavior of the interface. Filtering 
the data based on an a priori model of eye motion 
is an important step in transforming the raw eye 
tracker output into a user-computer dialogue. 

User Interface Management System 
We next turn the output of the recognition algo- 
rithm into a stream of tokens for use as input to an 
interactive user interface. We report tokens for 
eye events considered meaningful to the dialogue, 
much like tokens generated by mouse or keyboard 
events. We then multiplex the eye tokens into the 
same stream with those generated by the mouse 
and keyboard and present the overall token stream 
as input to our user interface management system. 
The desired user interface is specified to the UIMS 
as a collectibn of concurrently executing interac- 
tion objects [6]. The operation of each such object 
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Figure 4. Result of applying the fixation recogni- 
tion algorithm to the data of Figure 3. A hor- 
izontal line beginning and ending with an o 
marks each fixation at the time and coordinate 
position it would be reported. 

is described by a state transition diagram that 
accepts the tokens as input. Each object can 
accept any combination of eye, mouse, and key- 
board tokens, as specified in its own syntax 
diagram. 

INTERACTION TECHNIQUES 
An interaction technique is a way of using a physi- 
cal input device to perform a generic task in a 
human-computer dialogue [ll]. It represents an 
abstraction of some common class of interactive 
task, for example, choosing one of several objects 
shown on a display screen. This section describes 
the first few eye movement-based interaction tech- 
niques that we have implemented and our initial 
observations from using them. 

Object Selection 
The task here is to select one object from among 
several displayed on the screen, for example, one 
of several file icons on a desktop or, as shown in 
Figure 5, one of several ships on a map in a 
hypothetical “command and control” system. With 
a mouse, this is usually done by pointing at the 
object and then pressing a button. With the eye 
tracker, there is no natural counterpart of the but- 
ton press. We reject using a blink for a signal 
because it detracts from the naturalness possible 
with an eye movement-based dialogue by requiring 
the user to think about when he or she blinks. We 
tested two alternatives. In one, the user looks at 
the desired object then presses a button on a 
keypad to indicate that the looked-at object is his 
choice. In Figure 5, the user has looked at ship 
“EF151” and caused it to be selected (for attribute 

Figure 5. Display from eye tracker testbed, illus- 
trating object selection technique. Whenever the 
user looks at a ship in the right window, the ship 
is selected and information about it is displayed 
in left window. The square eye icon at the right 
is used to show where the user’s eye was pointing 
in these illustrations; it does not normally appear 
on the screen. The actual screen image uses 
light figures on a dark background to keep the 
pupil large. 

display, described below). The second uses dwell 
time-if the user continues to look at the object for 
a sufficiently long time, it is selected without 
further operations. The two techniques can be 
implemented simultaneously, where the button 
press is optional and can be used to avoid waiting 
for the dwell time to expire, much as an optional 
menu accelerator key is used to avoid traversing a 
menu. 
Observation: At first this seemed like a good com- 
bination. In practice, however, the dwell time 
approach is much more convenient. While a long 
dweil time might be used to ensure that an inadver- 
tent selection will not be made by simply “looking 
around” on the display, this mitigates the speed 
advantage of using eye movements for input and 
also reduces the responsiveness of the interface. 
To reduce dwell time, we make a further distinc- 
tion. If the result of selecting the wrong object 
can be undone trivially (selection of a wrong object 
followed by a selection of the right object causes 
no adverse effect-the second selection instantane- 
ously overrides the first), then a very short dwell 
time can be used. For example, if selecting an 
object causes a display of information about that 
object to appear and the information display can 
be changed instantaneously, then the effect of 
selecting wrong objects is immediately undone as 
long as the user eventually reaches the right one. 
This approach, using a 150-250 ms. dwell time 
gives excellent results. The lag between eye move- 
ment and system response (required to reach the 
dwell time) is hardly detectable to the user, yet 
long enough to accumulate sufficient data for our 
fixation recognition and processing. The subjec- 
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tive feeling is of a highly responsive system, almost 
as though the system is executing the user’s inten- 
tions before h.e expresses them. For situations 
where selecting an object is more difficult to undo, 
button confirmation is used. We found no case 
where a long dwell time (over 3/4 second) alone 
was useful, probably because it does not exploit 
natural eye movements (people do not normally 
fixate one spot for that long) and also creates the 
suspicion that the system has crashed. 

Continuous Attribute Display 
A good use of this object selection interaction 
technique is for retrieving attributes of one of the 
objects on a display. Our approach is to provide a 
separate area of the display where such attributes 
are always shown. In Figure 5, the window on the 
right is a geographic display of ships, while the text 
window on the left shows some attributes of one of 
the ships, the one selected by the user’s eye move- 
ment. The idea behind this is that the user can 
look around the ship window as desired. When- 
ever he looks over to the text window, he will 
always find there the attribute display for the last 
ship looked at-presumably the one he is interested 
in. (The ship remains selected when he looks 
away from the ship window to the text window.) 
However, if he simply looks at the ship window 
and never looks at the text area, he need not be 
concerned that his eye movements are causing 
commands in the text window. The text window is 
double-buffered, so that changes in its contents 
could hardly be seen unless the user were looking 
directly at it at the time it changed (which, of 
course, he is not-he must be looking at the ship 
window to effect a change). 

Moving an Object 
We experimented with two methods for moving an 
object on the display. Our initial notion was that, 
in a direct manipulation system, a mouse is typi- 
cally used for two distinct operations-selecting an 
object to be manipulated and performing the mani- 
pulation. The two functions could be separated 
and each assigned to an appropriate input device. 
In particular, the selection could be performed by 
eye position, while the hand input device is 
devoted exclusively to the manipulations. We 
therefore implemented a technique whereby the 
eye selects an object (ship) to be manipulated 
(moved on the map, in this case) and then the 
mouse is used to move it. The eye selection is 
made as described above. Then, the user grabs 
the mouse, presses a button, drags the mouse in 
the direction the object is to be moved, and 
releases the button. There is no visible mouse cur- 
sor, and the mouse is used as a relative position 
device-it starts moving from wherever the eye- 
selected ship was. Our second approach used the 
eye to select and drag the ship, and a pushbutton 
to pick it up and put it down. The user selects a 
ship, then presses a button; while the button is 

depressed, tlhe ship drags along with the user’s eye. 
When it is released, the ship remains in its new 
position. Since the processing described previ- 
ously is performed on the eye movements, the ship 
actually jumps to each fixation after about 100 ms. 
and then remains steadily there-despite actual eye 
jitter-until the next fixation. 
Observa&~~: Our initial guess was that the second 
method wou.ld be difficult to use: eye movements 
are fine for selecting an object, but picking it up 
and having it jump around on the screen in 
response to eye movements would be annoying-a 
mouse would give more concrete control. Once 
again, our guess was not borne out. While the 
eye-to-select/mouse-to-drag method worked well, 
the user was quickly spoiled by the eye-only 
method. Once you begin to expect the system to 
know where you are looking, the mouse-to-drag 
operation seems awkward and slow. After looking 
at the desired ship and pressing the “pick up” but- 
ton, the natural thing to do is to look at where you 
are planning to move the ship. At this point, you 
feel, “I’m looking right at the destination I want, 
why do I now have to go get the mouse to drag the 
ship over here?’ With eye movements processed 
to suppress jitter and respond only to recognized 
fixations, the motion of the dragging ship is reason- 
ably smooth and predictable and yet appears sub- 
jectively instantaneous. It works best when the 
destination of the move is a recognizable feature 
on the screen (another ship, a harbor on a map); 
when the destination is an arbitrary blank spot, it 
is more difficult to make your eye look at it, as the 
eye is always drawn to features. 

Eye-controlled Scrolling Text 
A window of text is shown, but not all of the 
material to be displayed can fit. As shown at the 
bottom left of Figure 6, arrows appear below the 
last line of the text and above the first line, indicat- 
ing that there is additional material not shown. If 
the user looks at an arrow, the text itself starts to 
scroll. Note, though, that it never scrolls when the 
user is actually reading the text (rather than look- 
ing at the arrow). The assumption is that, as soon 
as the text starts scrolling, the user’s eye will be 
drawn to th.e moving display and away from the 
arrow, which will stop the scrolling. The user can 
thus read down to end of the window, then, after 
he finishes reading the last line, look slightly below 
it, at the arrow, in order to retrieve the next part 
of the text. The arrow is visible above and/or 
below text display only when there is additional 
scrollable material in that direction. 

Menu Commands 
Since pop-up menus inherently assume a button, 
we experimented with an eye-operated pull-down 
menu. In Figure 7, if the user looks at the header 
of a pull-down menu for a given dwell time (400 
ms.), the body of the menu will appear on the 
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Figure 6, Another display from the testbed, 
showing the scrolling text and other windows. 

screen, Next, he can look at the items shown on 
the menu. After a brief look at an item (100 ms.), 
it will be highlighted, but its command will not yet 
be executed. This allows the user time to examine 
the different items on the menu. If the user looks 
at one item for a much longer time (1 sec.), its 
command will be executed and the menu erased. 
Alternatively, once the item is highlighted, press- 
ing a button will execute it immediately and erase 
the menu. If the user looks outside the menu (for 
600 ms.), the menu is erased without any com- 
mand executed. 

Figure 7. Testbed display showing eye- 
controlled pull-down menu. 

Observation: Our initial experience with this 
interaction technique suggests that the button is 
more convenient than the long dwell time for exe- 
cuting a menu command. This is because the 
dwell time necessary before executing a command 
must be kept quite high, at least noticeably longer 
than the time required to read an unfamiliar item. 
This is fonger than people normally fixate on one 
spot, so selecting such an item requires an unna- 
tural sort of “stare.” Fulling the menu down and 
selecting an item to be highlighted are both done 
very effectively with short dwell times, as with 

object selection. 

Listener Window 
In a window system, the user must designate the 
active or “listener” window, that is, the one that 
receives keyboard inputs. Current systems use an 
explicit mouse command to designate the active 
window: simply pointing or else pointing and click- 
ing. Instead, we use eye position-the listener win- 
dow is simply the one the user is looking at. A 
delay is built into the system, so that user can look 
briefly at other windows without changing the 
listener window designation. Fine cursor motions 
within a window are still handled with the mouse, 
which gives an appropriate partition of tasks 
between eye tracker and mouse, analogous to that 
between speech and mouse used by Schmandt [12]. 
A possible extension to this approach is for each 
window to remember the location of the mouse 
cursor within it when the user last left that win- 
dow. When the window is reactivated (by looking 
at it), the mouse cursor is restored to that remem- 
bered position. 

EXPERIMENTAL PLANS 
The next step in this study is to perform more con- 
trolled observations on the new techniques. Our 
first experiment will compare object selection by 
dwell time with conventional selection by mouse 
pick. The extraneous details of the ship display 
are removed for this purpose, and a simple 
abstract display of circular targets is used, as 
shown in Figure 8. In the experiment, one of the 
targets will be designated, and the subject’s task is 
to find it and select it, either by eye with dwell 
time or mouse. Response time for the two 
methods will be compared. (Initial pilot runs of 
this procedure suggest a 30 per cent decrease in 
time for the eye over the mouse, although the eye 
trials show more variability.) 

Figure 8. Display for experimental study of the 
object selection interaction technique. Item 
“AC” near the upper right has just become 
highlighted, and the user must now select it (by 
eye or mouse). 
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CONCLUSIONS 
We present, in Brooks’ taxonomy [3], “observa- 
tions” rather than “findings” of our research: 
An eye tracker as an input device is far from “per- 
fect,” in the sense that a mouse or keyboard is, 
and that is caused both by the limitations of 
current equipment and, more importantly, by the 
nature of human eye movements. Accuracy 
obtainable is more similar to a touch screen than a 
mouse, and the range can barely cover a single 
CRT display. The equipment, while non-intrusive 
and non-contacting is still difficult to ignore. 
Nevertheless, it is perhaps amazing that this can be 
done at all; and, when the system is working well, 
it can give the powerful impression of responding 
to its user’s intentions rather than his explicit 
inputs. 
To achieve this, our overall approach in designing 
interaction techniques is, wherever possible, to 
obtain information from a user’s narural eye move- 
ments while viewing the screen rather than requir- 
ing the user to make specific eye movements to 
actuate the system. We also found it important to 
search for and recognize fixations in the raw eye 
tracker data stream and construct our dialogue 
around these higher-level events. 
In our initial interaction techniques, we observed 
the value of short dwell time eye-only object selec- 
tion for cases where a wrong pick immediately fol- 
lowed by a correct pick is acceptable. For moving 
an object we found filtered eye movements surpris- 
ingly effective, even though a mouse initially 
seemed more appropriate for this task. For menu 
commands,. we found the eye alone appropriate for 
popping up a menu or tentatively choosing an 
item, but executing an item requires a button for 
confirmation rather than a long dwell time. 
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