
CHI 90 f’mceednrxs Apill

WHAT YOU LOOK AT IS WHAT YOU GET:
EYE MOVEMENT-BASED INTERACTION TECHNIQUES

Robert J.K. Jacob

Human-Computer Interaction Lab
Naval Research Laboratory

Washington, D.C.

ABSTRACT
In seeking hitherto-unused methods by which users
and computers can communicate, we investigate
the usefulness of eye movements as a fast and con-
venient auxiliary user-to-computer communication
mode. The barrier to exploiting this medium has
not been eye-tracking technology but the study of
interaction techniques that incorporate eye move-
ments into the user-computer dialogue in a natural
and unobtrusive way. This paper discusses some
of the human factors and technical considerations
that arise in trying to use eye movements as an
input medium, describes our approach and the first
eye movement-based interaction techniques that we
have devised and implemented in our laboratory,
and reports our experiences and observations on
them.

KEYWORDS: Eye movements, eye tracking,
interaction techniques, human-computer interac-
tion, input.

INTRODUCTION
Current user-computer dialogues tend to be one-
sided, with the bandwidth from the computer to
the user far greater than that from user to com-
puter. A fast and effortless mode of communica-
tion from a user to a computer would help redress
this imbalance. We therefore investigate the possi-
bility of introducing the movements of a user’s
eyes as an additional input medium. While the
technology for measuring eye movements in real
time has been improving, what is needed is
appropriate interaction techniques that incorporate
eye movements into the user-computer dialogue in
a convenient and natural way. This paper

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish requires a fee and/or specific
permission.

discusses some of the human factors and technical
considerations that arise in trying to use eye move-
ments as an input medium, describes our approach
and the first eye movement-based interaction tech-
niques that we have devised and implemented in
our laboratory, and reports our experiences and
observations on them.

BACKGROUND

Methods for Measuring Eye Movements
Available techniques for measuring eye movements
range from the not-quite-sublime to the almost-
ridiculous. First, note that our goal is to measure
visual line of gaze, that is, the absolute position in
space at which the user’s eyes are pointed, rather
than, for example, the position of the eyeball in
space or the relative motion of the eye within the
head [14].
The simplest eye tracking technique is electronic
recording, using electrodes placed on the skin
around the eye to measure changes in the orienta-
tion of the potential difference that exists between
the cornea and the retina. However, this method
is more useful for measuring relative eye move-
ments than absolute position. Perhaps the least
user-friendly approach uses a contact lens that fits
precisely over the bulge at the front of the eyeball
and is held in place with a slight suction. This
method is extremely accurate, but suitable only for
laboratory studies. More practical methods use
remote imaging of a visible feature located on the
eyeball, such as the boundary between the sclera
and iris, the outline of the pupil, or the cornea1
reflection of a light shone at the eye. All these
require the head to be held absolutely stationary (a
bite board is customarily used), to be sure that any
measured movement represents movement of the
eye, not the head. However, by tracking two
features of the eye simultaneously, it is possible to
distinguish head movements (the two features
move together) from eye movements (the two
move with respect to one another), and the head

0 1990 ACM O-89791 -345O/90/0004-0011 1 SO 11

CHI 90 Prtxeaings

need not be rigidly fixed. This is currently the
most practical method for use in a conventional
computer-and-user setting, since the eye tracker
sits several feet from the user, nothing contacts
him or her, and the head need not be clamped. In
our laboratory, we use an Applied Science Labora-
tories (Waltham, Mass.) Model 325OR eye tracker
[9,14]. Figure 1 shows the components of this type
of eye tracker. It simultaneously tracks the cor-
neal reflection (from an infrared light shining on
eye) and the outline of the pupil (illuminated by
same light). Visual line of gaze is computed from
the relationship between the two tracked points.

qL3&&q
I Mirror

I

%%;5 ; \

mirror I

A
u Pupil camera

[Figure f. Illustration of components of a car-]
neal reflection-plus-pupil eye tracker. The pupil
camera and illuminator operate along the same
optical axis, via a half-silvered mirror. The
servo-controlled mirror is used to compensate
for the user’s head motions.

Previous Work
While technology for measuring visual line of gaze
is adequate, there has been little research on using
this information in real time. There is a consider-
able body of research using eye tracking, but it has
concentrated on eye movement data as a tool for
studying motor and cognitive processes by record-
ing the eye movements and subsequently analyzing
them [7,10]. Real-time eye input has been used
most frequently for disabled (quadriplegic) users,
who can use only their eyes for input [4,8]. Our
interest is, instead, on dialogues that combine
real-time eye movement data with other, more con-
ventional modes of user-computer communication.
Richard Bolt did some of the earliest work in this
particular area and demonstrated several innova-
tive uses of eye movements [1,2]. Floyd Glenn [5]
used eye movements for several tracking tasks
involving moving targets. Ware and Mikaelian [13]
reported an experiment in which simple target
selection and cursor positioning operations were
performed substantially faster with an eye tracker
than with any of the more conventional cursor

positioning devices.

Characteristics of Eye Movements
To see an object clearly, it is necessary to move
the eyeball so that the object appears on the fovea,
a small area at the center of the retina. Because
of this, a person’s eye position provides a rather
good indication (to within the one-degree width of
the fovea) of what specific portion of the scene
before him he is examining. The most common
way of moving the eyes is a sudden, ballistic, and
nearly instantaneous saccade. It is typically fol-
lowed by a fixation, a 200-600 ms. period of rela-
tive stability during which an object can be viewed.
During a fixation, however, the eye still makes
small, jittery motions, generally covering less than
one degree. Smooth eye motions, less sudden
than saccades, occur only in response to a moving
object in the visual field. Other eye movements,
such as nystagmus, vergence, and torsional rota-
tion are relatively insignificant in a user-computer
dialogue.
The overall :picture of eye movements for a user
sitting in front of a computer is a collection of
steady (but slightly jittery) fixations connected by
sudden, rapid saccades. The eyes are rarely
entirely still. They move during a fixation, and
they seldom remain in one fixation for long. Fig-
ure 2 shows a trace of eye movements (with jitter
removed) for a user using a computer for 30
seconds. Compared to the slow and deliberate
way people operate a mouse or other manual input
device, eye movements careen madly about the
screen. During a fixation, a user generally thinks
he is looking steadily at a single object-he is not
consciously aware of the small, jittery motions.
This suggest:s that the human-computer dialogue
should be constructed so that it, too, ignores those
motions, since, ultimately, it should correspond to
what the user rhinks he is doing, rather than what
his eye muscles are actually doing.

“Midas Touch” Problem
The most naive approach to using eye position as
an input might be as a direct substitute for a
mouse: changes in the user’s line of gaze would
cause the mouse cursor to move. This is an
unworkable (and annoying) approach, because
people are not accustomed to operating devices
just by moving their eyes. They expect to be able
to look at an item without having the look “mean”
something. Normal visual perception requires that
the eyes move about, scanning the scene before
them. It is not desirable for each such move to
initiate a computer command.
At first, it is empowering simply to look at what
you want and have it happen. Before long,
though, it becomes like the Midas Touch. Every-
where you look, another command is activated;
you cannot look anywhere without issuing a com-
mand. The challenge in building a useful eye

12

CHI 90 Proceedings April 1990

Figure 2. A trace of a computer user’s eye
movements over approximately 30 seconds, while
performing normal work (i.e., no eye-operate in-
terfaces) using a windowed display. Jitter within
each fixation has been removed from this plot.

tracker interface is to avoid this Midas Touch
problem. Ideally, the interface should act on the
user’s eye input when he wants it to and let him
just look around when that’s what he wants, but
the two cases are impossible to distinguish in gen-
eral. Instead, we investigate interaction techniques
that address this problem in specific cases.

EXPERIENCE WITH EYE MOVEMENTS

Configuration
We use an Applied Science Laboratories cornea1
reflection eye tracker. The user sits at a conven-
tional (government-issue) desk, with a Sun com-
puter display, mouse, and keyboard, in a standard
chair and office. The eye tracker
camera/illuminator sits on the desk next to the
monitor. Other than the illuminator box with its
dim red glow, the overall setting is thus far just
like that for an ordinary office computer user. In
addition, the room lights are dimmed to keep the
user’s pupil from becoming too small. The eye
tracker transmits the x and y coordinates for the
user’s visual line of gaze every l/60 second, on a
serial port, to a Sun 4/260 computer. The Sun
performs all further processing, filtering, fixation
recognition, and some additional calibration and
also implements the user interfaces under study.
Observarion: The eye tracker is, strictly speaking,
non-intrusive and does not touch the user in any
way. Our setting is almost identical to that for a
user of a conventional office computer. Neverthe-

less, we find it is difficult to ignore the eye tracker.
It is noisy; the dimmed room lighting is unusual;
the dull red light, while not annoying, is a constant
reminder of the equipment ; and, most
significantly, the action of the servo-controlled mir-
ror, which results in the red light following the
slightest motions of user’s head gives one the eerie
feeling of being watched.

Accuracy and Range
A user generally need not position his eye more
accurately than the width of the fovea (about one
degree) to see an object sharply. Finer accuracy
from an eye tracker might be needed for studying
the operation of the eye muscles but is not useful
for our purposes. The eye’s normal jittering
further limits the practical accuracy of eye track-
ing. It is possible to improve accuracy by averag-
ing over a fixation, but not in a real-time interface.
Observation: Despite the mechanisms for following
the user’s head, we find that the steadier the user
holds his head, the better the eye tracker works.
We find that we can generally get two degrees
accuracy quite easily, and sometimes can achieve
one degree. The eye tracker should thus be
viewed as having a resolution much coarser than
that of a mouse or other typical devices, perhaps
more like a touch screen. A further problem is
that the range over which the eye can be tracked
with this equipment is fairly limited. In our
configuration, it can barely cover the surface of a
19” monitor at a 24” viewing distance.

Using the Eye Tracker Data
Our approach to processing eye movement data is
to partition the problem into two stages. First we
process the raw eye tracker data in order to filter
noise, recognize fixations, compensate for local
calibration errors, and generally try to reconstruct
the user’s more conscious intentions from the
available information. This processing stage con-
verts the continuous, somewhat noisy stream of
raw eye position reports into tokens that are
claimed to approximate more closely the user’s
intentions in a higher-level user-computer dialogue.
Then, we design generic interaction techniques
based on these tokens as inputs.
Observation: Because eye movements are so
different from conventional computer in$uts, we
achieve success with a philosophy that tries, as
much as possible, to use natural eye movements as
an implicit input, rather than to train a user to
move the eyes in a particular way to operate the
system. We try to think of eye position more as a
piece of information available to the user-computer
dialogue involving a variety of input devices than
as the intentional actuation of an input device.

13

CHI 90 l’mceedngs Aptil1990

Local Calibration
The eye tracker calibration procedure produces a
mapping that is applied uniformly to the whole
screen, but we found small calibration errors
appear in portions of the screen, rather than sys-
tematically across it. We introduced an additional
layer of calibration into the chain, which allows
the user to make local modifications to the calibra-
tion dynamically. If the user feels the eye tracker
is not responding accurately in some area of the
screen, he can at any point move the mouse cursor
to that area, look at the cursor, and click a button.
Observarion: Surprisingly, this had the effect of
increasing the apparent response speed for object
selection and other interaction techniques. The
reason is that, if the calibration is slightly wrong in
a local region and the user stares at a target in that
region, the eye tracker will report the eye position
somewhere slightly outside the target. If he con-
tinues to stare at it, though, his eyes will in fact
jitter around to a spot that the eye tracker will
report as being on the target. The effect feels as
though the system is responding too slowly, but it
is a problem of local calibration.

Fixation Recognition
After improving the calibration, we still observed
erratic behavior in the user interface, even when
the user thought he was staring perfectly still. This
comes from both the normal jittery motions of the
eye during fixations and from artifacts introduced
when the eye tracker momentarily fails to obtain
an adequate video image of the eye.

Figure 3. Illustration of erratic nature of raw
data from the eye tracker. The plot shows one
coordinate of eye position vs. time, over a some-
what worse-than-typical three second period.

Figure 3 shows the type of data obtained from the
eye tracker. It plots the x coordinate of the eye
position output against time over a relatively jumpy

three-second period. Zero values on the ordinate
represent periods when the eye tracker could not
locate the line of gaze. This might be caused by
eye tracker artifacts, such as glare in the video
camera, lag in compensating for head motion, or
failure of the processing algorithm, or by actual
user actions, such as blinks or movements outside
the range of the eye tracker. During the period
represented by Figure 3, the subject thought he
was simply looking around at a few different points
on a CRT screen. The difference is attributable
not only to the eye tracker artifacts but to the fact
that much of the fine-grained behavior of the eye
muscles is not intentional. To make a reasonable
input to a user-computer dialogue from the eye
tracker data,, we must filter out that behavior to
recover the “intentional” component of the eye
motions.
We return to the picture of a computer user’s eye
movements as a collection of jittery fixations con-
nected by essentially instantaneous saccades. We
start with an a priori model of such saccades and
fixations and then attempt to recognize and quickly
report the start, approximate position, and end of
each recogn.ized fixation. Blinks of up to 200 ms.
may occur during a fixation without terminating it.
At first, blinks seemed to present a problem,
since, obviously, we cannot obtain eye position
data during a blink. However (equally obviously in
retrospect), the screen need not respond to the eye
during that blink period, since the user can’t see it
anyway. After applying this algorithm, the noisy
data shown in Figure 3 are found to comprise
about 6 fixations, which more accurately reflects
what the user thought he was doing (rather than
what his eye muscles plus the eye tracking equip-
ment actually did). Figure 4 shows the same data,
with a horizontal line marking each recognized
fixation at the time and location it would be
reported.
Observarion: Applying the fixation recognition
approach to the real-time data coming from the
eye tracker yielded a significant improvement in
the user-visible behavior of the interface. Filtering
the data based on an a priori model of eye motion
is an important step in transforming the raw eye
tracker output into a user-computer dialogue.

User Interface Management System
We next turn the output of the recognition algo-
rithm into a stream of tokens for use as input to an
interactive user interface. We report tokens for
eye events considered meaningful to the dialogue,
much like tokens generated by mouse or keyboard
events. We then multiplex the eye tokens into the
same stream with those generated by the mouse
and keyboard and present the overall token stream
as input to our user interface management system.
The desired user interface is specified to the UIMS
as a collectibn of concurrently executing interac-
tion objects [6]. The operation of each such object

14

CHI 90 Pmceedrqs A$Nil1990

Figure 4. Result of applying the fixation recogni-
tion algorithm to the data of Figure 3. A hor-
izontal line beginning and ending with an o
marks each fixation at the time and coordinate
position it would be reported.

is described by a state transition diagram that
accepts the tokens as input. Each object can
accept any combination of eye, mouse, and key-
board tokens, as specified in its own syntax
diagram.

INTERACTION TECHNIQUES
An interaction technique is a way of using a physi-
cal input device to perform a generic task in a
human-computer dialogue [ll]. It represents an
abstraction of some common class of interactive
task, for example, choosing one of several objects
shown on a display screen. This section describes
the first few eye movement-based interaction tech-
niques that we have implemented and our initial
observations from using them.

Object Selection
The task here is to select one object from among
several displayed on the screen, for example, one
of several file icons on a desktop or, as shown in
Figure 5, one of several ships on a map in a
hypothetical “command and control” system. With
a mouse, this is usually done by pointing at the
object and then pressing a button. With the eye
tracker, there is no natural counterpart of the but-
ton press. We reject using a blink for a signal
because it detracts from the naturalness possible
with an eye movement-based dialogue by requiring
the user to think about when he or she blinks. We
tested two alternatives. In one, the user looks at
the desired object then presses a button on a
keypad to indicate that the looked-at object is his
choice. In Figure 5, the user has looked at ship
“EF151” and caused it to be selected (for attribute

Figure 5. Display from eye tracker testbed, illus-
trating object selection technique. Whenever the
user looks at a ship in the right window, the ship
is selected and information about it is displayed
in left window. The square eye icon at the right
is used to show where the user’s eye was pointing
in these illustrations; it does not normally appear
on the screen. The actual screen image uses
light figures on a dark background to keep the
pupil large.

display, described below). The second uses dwell
time-if the user continues to look at the object for
a sufficiently long time, it is selected without
further operations. The two techniques can be
implemented simultaneously, where the button
press is optional and can be used to avoid waiting
for the dwell time to expire, much as an optional
menu accelerator key is used to avoid traversing a
menu.
Observation: At first this seemed like a good com-
bination. In practice, however, the dwell time
approach is much more convenient. While a long
dweil time might be used to ensure that an inadver-
tent selection will not be made by simply “looking
around” on the display, this mitigates the speed
advantage of using eye movements for input and
also reduces the responsiveness of the interface.
To reduce dwell time, we make a further distinc-
tion. If the result of selecting the wrong object
can be undone trivially (selection of a wrong object
followed by a selection of the right object causes
no adverse effect-the second selection instantane-
ously overrides the first), then a very short dwell
time can be used. For example, if selecting an
object causes a display of information about that
object to appear and the information display can
be changed instantaneously, then the effect of
selecting wrong objects is immediately undone as
long as the user eventually reaches the right one.
This approach, using a 150-250 ms. dwell time
gives excellent results. The lag between eye move-
ment and system response (required to reach the
dwell time) is hardly detectable to the user, yet
long enough to accumulate sufficient data for our
fixation recognition and processing. The subjec-

15

CHI 90 Prwechqs ADfil1990

tive feeling is of a highly responsive system, almost
as though the system is executing the user’s inten-
tions before h.e expresses them. For situations
where selecting an object is more difficult to undo,
button confirmation is used. We found no case
where a long dwell time (over 3/4 second) alone
was useful, probably because it does not exploit
natural eye movements (people do not normally
fixate one spot for that long) and also creates the
suspicion that the system has crashed.

Continuous Attribute Display
A good use of this object selection interaction
technique is for retrieving attributes of one of the
objects on a display. Our approach is to provide a
separate area of the display where such attributes
are always shown. In Figure 5, the window on the
right is a geographic display of ships, while the text
window on the left shows some attributes of one of
the ships, the one selected by the user’s eye move-
ment. The idea behind this is that the user can
look around the ship window as desired. When-
ever he looks over to the text window, he will
always find there the attribute display for the last
ship looked at-presumably the one he is interested
in. (The ship remains selected when he looks
away from the ship window to the text window.)
However, if he simply looks at the ship window
and never looks at the text area, he need not be
concerned that his eye movements are causing
commands in the text window. The text window is
double-buffered, so that changes in its contents
could hardly be seen unless the user were looking
directly at it at the time it changed (which, of
course, he is not-he must be looking at the ship
window to effect a change).

Moving an Object
We experimented with two methods for moving an
object on the display. Our initial notion was that,
in a direct manipulation system, a mouse is typi-
cally used for two distinct operations-selecting an
object to be manipulated and performing the mani-
pulation. The two functions could be separated
and each assigned to an appropriate input device.
In particular, the selection could be performed by
eye position, while the hand input device is
devoted exclusively to the manipulations. We
therefore implemented a technique whereby the
eye selects an object (ship) to be manipulated
(moved on the map, in this case) and then the
mouse is used to move it. The eye selection is
made as described above. Then, the user grabs
the mouse, presses a button, drags the mouse in
the direction the object is to be moved, and
releases the button. There is no visible mouse cur-
sor, and the mouse is used as a relative position
device-it starts moving from wherever the eye-
selected ship was. Our second approach used the
eye to select and drag the ship, and a pushbutton
to pick it up and put it down. The user selects a
ship, then presses a button; while the button is

depressed, tlhe ship drags along with the user’s eye.
When it is released, the ship remains in its new
position. Since the processing described previ-
ously is performed on the eye movements, the ship
actually jumps to each fixation after about 100 ms.
and then remains steadily there-despite actual eye
jitter-until the next fixation.
Observa&~~: Our initial guess was that the second
method wou.ld be difficult to use: eye movements
are fine for selecting an object, but picking it up
and having it jump around on the screen in
response to eye movements would be annoying-a
mouse would give more concrete control. Once
again, our guess was not borne out. While the
eye-to-select/mouse-to-drag method worked well,
the user was quickly spoiled by the eye-only
method. Once you begin to expect the system to
know where you are looking, the mouse-to-drag
operation seems awkward and slow. After looking
at the desired ship and pressing the “pick up” but-
ton, the natural thing to do is to look at where you
are planning to move the ship. At this point, you
feel, “I’m looking right at the destination I want,
why do I now have to go get the mouse to drag the
ship over here?’ With eye movements processed
to suppress jitter and respond only to recognized
fixations, the motion of the dragging ship is reason-
ably smooth and predictable and yet appears sub-
jectively instantaneous. It works best when the
destination of the move is a recognizable feature
on the screen (another ship, a harbor on a map);
when the destination is an arbitrary blank spot, it
is more difficult to make your eye look at it, as the
eye is always drawn to features.

Eye-controlled Scrolling Text
A window of text is shown, but not all of the
material to be displayed can fit. As shown at the
bottom left of Figure 6, arrows appear below the
last line of the text and above the first line, indicat-
ing that there is additional material not shown. If
the user looks at an arrow, the text itself starts to
scroll. Note, though, that it never scrolls when the
user is actually reading the text (rather than look-
ing at the arrow). The assumption is that, as soon
as the text starts scrolling, the user’s eye will be
drawn to th.e moving display and away from the
arrow, which will stop the scrolling. The user can
thus read down to end of the window, then, after
he finishes reading the last line, look slightly below
it, at the arrow, in order to retrieve the next part
of the text. The arrow is visible above and/or
below text display only when there is additional
scrollable material in that direction.

Menu Commands
Since pop-up menus inherently assume a button,
we experimented with an eye-operated pull-down
menu. In Figure 7, if the user looks at the header
of a pull-down menu for a given dwell time (400
ms.), the body of the menu will appear on the

16

CHI 90 Ptocedings Apill

Figure 6, Another display from the testbed,
showing the scrolling text and other windows.

screen, Next, he can look at the items shown on
the menu. After a brief look at an item (100 ms.),
it will be highlighted, but its command will not yet
be executed. This allows the user time to examine
the different items on the menu. If the user looks
at one item for a much longer time (1 sec.), its
command will be executed and the menu erased.
Alternatively, once the item is highlighted, press-
ing a button will execute it immediately and erase
the menu. If the user looks outside the menu (for
600 ms.), the menu is erased without any com-
mand executed.

Figure 7. Testbed display showing eye-
controlled pull-down menu.

Observation: Our initial experience with this
interaction technique suggests that the button is
more convenient than the long dwell time for exe-
cuting a menu command. This is because the
dwell time necessary before executing a command
must be kept quite high, at least noticeably longer
than the time required to read an unfamiliar item.
This is fonger than people normally fixate on one
spot, so selecting such an item requires an unna-
tural sort of “stare.” Fulling the menu down and
selecting an item to be highlighted are both done
very effectively with short dwell times, as with

object selection.

Listener Window
In a window system, the user must designate the
active or “listener” window, that is, the one that
receives keyboard inputs. Current systems use an
explicit mouse command to designate the active
window: simply pointing or else pointing and click-
ing. Instead, we use eye position-the listener win-
dow is simply the one the user is looking at. A
delay is built into the system, so that user can look
briefly at other windows without changing the
listener window designation. Fine cursor motions
within a window are still handled with the mouse,
which gives an appropriate partition of tasks
between eye tracker and mouse, analogous to that
between speech and mouse used by Schmandt [12].
A possible extension to this approach is for each
window to remember the location of the mouse
cursor within it when the user last left that win-
dow. When the window is reactivated (by looking
at it), the mouse cursor is restored to that remem-
bered position.

EXPERIMENTAL PLANS
The next step in this study is to perform more con-
trolled observations on the new techniques. Our
first experiment will compare object selection by
dwell time with conventional selection by mouse
pick. The extraneous details of the ship display
are removed for this purpose, and a simple
abstract display of circular targets is used, as
shown in Figure 8. In the experiment, one of the
targets will be designated, and the subject’s task is
to find it and select it, either by eye with dwell
time or mouse. Response time for the two
methods will be compared. (Initial pilot runs of
this procedure suggest a 30 per cent decrease in
time for the eye over the mouse, although the eye
trials show more variability.)

Figure 8. Display for experimental study of the
object selection interaction technique. Item
“AC” near the upper right has just become
highlighted, and the user must now select it (by
eye or mouse).

17

CHI 90 Prmeedngs April 1!390

CONCLUSIONS
We present, in Brooks’ taxonomy [3], “observa-
tions” rather than “findings” of our research:
An eye tracker as an input device is far from “per-
fect,” in the sense that a mouse or keyboard is,
and that is caused both by the limitations of
current equipment and, more importantly, by the
nature of human eye movements. Accuracy
obtainable is more similar to a touch screen than a
mouse, and the range can barely cover a single
CRT display. The equipment, while non-intrusive
and non-contacting is still difficult to ignore.
Nevertheless, it is perhaps amazing that this can be
done at all; and, when the system is working well,
it can give the powerful impression of responding
to its user’s intentions rather than his explicit
inputs.
To achieve this, our overall approach in designing
interaction techniques is, wherever possible, to
obtain information from a user’s narural eye move-
ments while viewing the screen rather than requir-
ing the user to make specific eye movements to
actuate the system. We also found it important to
search for and recognize fixations in the raw eye
tracker data stream and construct our dialogue
around these higher-level events.
In our initial interaction techniques, we observed
the value of short dwell time eye-only object selec-
tion for cases where a wrong pick immediately fol-
lowed by a correct pick is acceptable. For moving
an object we found filtered eye movements surpris-
ingly effective, even though a mouse initially
seemed more appropriate for this task. For menu
commands,. we found the eye alone appropriate for
popping up a menu or tentatively choosing an
item, but executing an item requires a button for
confirmation rather than a long dwell time.

ACKNOWLEDGMENTS
I want to thank my colleagues, Connie Heitmeyer,
Preston Mullen, Linda Sibert, Stan Wilson, and
Diane Zimmerman, for all kinds of help with this
research.

REFERENCES

1. R.A. Bolt, “Gaze-Orchestrated Dynamic
Windows,” Computer Graphics 15(3) pp.
109-119 (August 1981).

2. R.A. Bolt, “Eyes at the Interface,” Prcc.
ACM Human Factors in Computer Systems
Conference pp. 360-362 (1982).

3. F.P. Brooks, “Grasping Reality Through
Illusion-Interactive Graphics Serving Sci-
ence,” Proc. ACM CHI’88 Human Factors in
Comjuting Systems Conference pp. l-11
(1988).

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

J. Cosco, “TV, Paralysis Victim Will See
Eye-to-Eye,” Virginian-Pilot pp. Al-Al2
(Octobler 23, 1986).
F.A. Glenn and others, “Eye-voice-
controlled Interface,” Proc. 30th Annual
Meeting of the Human Factors Society pp.
322-326, Santa Monica, Calif. (1986).
R.J.K. Jacob, “A Specification Language for
Direct Manipulation User Interfaces,” ACM
Transactions on Graphics 5 pp. 283-317
(1986). Special Issue on User Interface
Software,
M.A. .Just and P.A. Carpenter, “A Theory
of Reading: From Eye Fixations to
Comprehension,” Psychological Review
87 pp. 329-354 (1980).
J.L. Levine, “An Eye-Controlled Com-
puter,‘:’ manuscript, IBM Thomas J. Watson
Research Center, Yorktown Heights, N.Y.
(1981).
J. Merchant, R. Morrissette, and J.L.
Porterfield, “Remote Measurement of Eye
Direction Allowing Subject Motion Over One
Cubic Foot of Space,” IEEE Trans. on
Biomedical Engineering BME-21 pp. 309-317
(1974).
R.A. Monty and J-W. Senders, Eye Move-
ments and Psychological Processes, Lawrence
Erlbaum, Hillsdale, N.J. (1976).
B.A. Myers, “User-interface Tools: Introduc-
tion and Survey,” IEEE Software 6(l) pp.
15-23 (1989).
C. Schmandt and D. Hindus, “Augmenting a
Window Manager with Speech Input,”
Manuscript, M.I.T. Media Lab, Cambridge,
Mass. (1989).
C. Ware and H.T. Mikaelian, “An Evalua-
tion of an Eye Tracker as a Device for Com-
puter Input,” Proc. ACM CHI+GI’87 Human
Factors &z Computing Systems Conference pp.
183-188 (1987).
L.R. Young and D. Sheena, ‘Survey of Eye
Movement Recording Methods,” Behavior
Research Methods and Instrumentation 7 pp.
397-429 (1975).

