

 1

Designing Tangible Programming Languages for
Classroom Use

Michael S. Horn
Tufts University

Department of Computer Science
161 College Ave, Medford, MA 02155

michael.horn@tufts.edu

Robert J.K. Jacob
Tufts University

Computer Science
161 College Ave, Medford, MA 02155

jacob@cs.tufts.edu

ABSTRACT
This paper describes a new technique for implementing
educational programming languages using tangible
interface technology. It emphasizes the use of inexpensive
and durable parts with no embedded electronics or power
supplies. Students create programs in offline settings—on
their desks or on the floor—and use a portable scanning
station to compile their code. We argue that languages
created with this approach offer an appealing and practical
alternative to text-based and visual languages for classroom
use. In this paper we discuss the motivations for our project
and describe the design and implementation of two tangible
programming languages. We also describe an initial case
study with children and outline future research goals.

Author Keywords
Tangible UIs, education, children, programming languages

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces.

INTRODUCTION
Recent research involving tangible user interfaces (TUIs)
has created exciting new opportunities for the productive
use of technology in K–12 classrooms. One area that might
benefit from the application of this technology is that of
tangible programming languages for education. A tangible
programming language is similar to a text-based or visual
programming language. However, instead of using pictures
and words on a computer screen, tangible languages use
physical objects to represent various programming
elements, commands, and flow-of-control structures.
Students arrange and connect these objects to form physical

constructions that describe computer programs.

By giving programming a physical form, we believe that
tangible languages have the potential to ease the learning of
complicated syntax, to improve the style and tone of student
collaboration, and to make it easier for teachers to maintain
a positive learning environment in the classroom. However,
tangible interfaces are not without drawbacks. The
technology involved is often delicate, expensive, and non-
standard, causing substantial problems in classroom settings
where cost is always a factor and technology that is not
dependable tends to gather dust in the corner. Thus, in order
to better explore potential benefits of tangible
programming, we began with the development of tangible
languages that are inexpensive, reliable, and practical for
classroom use.

In this paper, we describe the design and implementation of
two tangible languages for middle school and late
elementary school children: Quetzal (pronounced ket-zal’),
a language for controlling LEGO MindstormsTM robots, and
Tern, a language for controlling virtual robots on a
computer screen. In our design, we emphasize the use of
inexpensive and durable parts with no embedded
electronics or power supplies. Students create programs in
offline settings—on their desks or on the floor—and use a

Figure 1. A collection of tangible programming parts from
the Quetzal language

portable scanning station to compile their code. Because it
is no longer necessary for teams of children to crowd
around a desktop computer, collaboration between children
is less constrained and less formal. Code snippets and
subroutines become physical objects that can be passed
around the room and shared between groups. Furthermore,
because one compiler can be shared by several teams of
children, teachers are able introduce programming concepts
to entire classrooms of children even when there are a
limited number of computers available.

It is important to note that tangible programming languages
are not yet commercially available, and their use has been
restricted almost entirely to laboratory and research
settings. Thus, the advantages outlined above are
hypothetical. Indeed, one of the primary goals of this
project is to better understand how tangible languages
might affect student learning in classroom environments
compared to more conventional languages.

BACKGROUND

Related work
Several tangible programming projects influenced our work
in this area. An early example of a tangible language is
Suzuki and Kato’s AlgoBlocks [8], in which interlocking
aluminum blocks represent the commands of a language
similar to Logo. More recently, McNerney developed
Tangible Computation Bricks [6], LEGO blocks with
embedded microprocessors. He also described several
tangible programming languages that could be expressed
with the bricks. In a similar project, Wyeth and Purchase of
the University of Queensland created a language for
younger children (ages four to eight) also using stackable
LEGO-like blocks to describe simple programs [10].
Zuckerman and Resnick’s System Blocks project [11]
provides an interface for simulating dynamic systems.
Wood blocks with embedded electronics express six simple
behaviors in a system. By wiring combinations of the
blocks together, children can experiment with concepts
such as feedback loops through real-time interaction
provided by the blocks. Blackwell, Hague, and Greaves at
the University of Cambridge developed Media Cubes [1],
tangible programming elements for controlling consumer
devices. Media Cubes are blocks with bidirectional, infra-
red communication capabilities. Induction coils embedded
in the cubes also allow for the detection of adjacency with
other cubes. Finally, Scratch is an educational language
being developed by the Lifelong Kindergarten Group at the
MIT Media Lab [5]. While not a tangible language, Scratch
uses a building-block metaphor, in which students build
programs by connecting graphical blocks that look like
pieces of a jigsaw puzzle.

In these examples, the blocks that make up the various
tangible programming languages all contain some form of
electronic components. When connected, the blocks form
structures that are more than just abstract representations of
algorithms. They form working, specialized computers that

can execute algorithms through the sequential interaction of
the blocks. Our model differs from these languages in that
programs are purely symbolic representations of
algorithms—much in the way that Java or C++ programs
are only collections of text files. An additional piece of
technology, a compiler, must be used to translate the
abstract representations of a program into a machine
language that will be executed on some computer system.
This approach cuts cost, increases reliability, and allows
greater freedom in the design of the physical components of
the language.

Reality-Based Interaction
Tangible programming languages exhibit two fundamental
principles of the reality-based interaction framework
described by Jacob [4]. First, interaction takes place in the
real world. That is, students no longer program behind large
computer monitors where they have easy access to
distractions such as games, IM, and the Web. Instead they
program in more natural classroom settings such as on their
desks or on the floor. Ideally, this gives teachers more
flexibility to determine the structure and timing of in-class
programming activities. It may also allow students to more
easily transition between computer and non-computer work.

Second, interaction behaves more like the real world. That
is, tangible languages take advantage of students’
knowledge of the everyday, non-computer world to express
and enforce language syntax. For example, Tern parts are
shaped like jigsaw puzzle pieces. This provides a physical
constraint system that prevents many invalid language
constructions from being assembled as physical
constructions. Furthermore, the metaphor of the jigsaw
puzzle provides culturally-specific hints which imply
syntax. In other words, the form of the parts suggests that
they are to be connected in a particular way.

LANGUAGE OVERVIEW

Quetzal
Quetzal is a programming language for controlling the
LEGO MindstormsTM RCX brick. It consists of interlocking
plastic tiles that represent flow-of-control structures,
actions, and parameters. Statements in the language are
connected together to form flow-of-control chains. Simple
programs start with a Begin statement and end with a single
End statement. For example, figure 2 shows a program that
starts a motor, waits for three seconds, and then stops the
motor. Programmers can add or change parameter values to
adjust the wait time and the motor’s power level. The order
in which the statements are connected is important, but the
overall shape of a program does not change its meaning. By
inserting a Merge statement into the program, we can create
an infinite loop. Here we don’t need an End statement—the
robot will execute this program until turned off. With
Quetzal, loops in a program’s flow-of-control form physical
loops program structure. Using other statements,
programmers can add conditional branches and concurrent
tasks. Certain statements also accept parameter values

 3

which can include constants and sensor readings. Parameter
tokens are plastic tiles with specific shapes to represent
their data type. These tiles can be inserted into slots in the
top face of statements.

Figure 2. A merge statement creates a loop in the program.

Figure 3. Tern programs may include conditional branches,
loops, and subroutines

Tern Overview
The Tern language is based on the text-based programming
language described in Karel the Robot: A Gentle
Introduction to the Art of Programming [7]. With Tern,
programmers connect wooden blocks shaped like jigsaw
puzzle pieces to form flow-of-control chains. These
programs control simple virtual robots in a grid world on a
computer screen. Multiple robots can interact in the same
world, and teams of students can collaborate to solve
challenges such as collecting objects and navigating
through a maze. A teacher might project the grid world on
the wall of a classroom, so that all students can participate
in one shared activity. Like Quetzal, Tern programs can
include loops, branches, and parameter values. The Tern
language also includes the ability to create subroutines
called skills. Skills are defined using a special Start Skill
block and can be invoked from anywhere in the flow-of-

control chain. Figure 3 shows a sample program with a skill
definition. Coiled wire connects special Jump and Land
statements. These statements work in a way similar to a
GOTO statement in a text-based language.

Tern was developed after Quetzal. In our initial evaluations
with Quetzal, we found that children tended to spend more
time building and playing with their LEGO creations than
did programming them. While this is certainly not a bad
thing, from a research perspective we are more interested in
the programming aspect of the children’s activities than the
building aspects. Thus, one of our primary goals with Tern
is to provide activities more focused around programming.
Accordingly, the only way for children to control their on-
screen robots is to write programs that tell them what to do.
To enable robots to accomplish more sophisticated tasks,
children must learn to write more sophisticated programs.

IMPLEMENTATION
The implementation of these languages uses a collection of
image processing techniques to convert physical programs
into machine code. Each statement in a language is
imprinted with a circular symbol called a SpotCode [2, 3].
These codes allow the position, orientation, relative size,
and type of each statement to be quickly determined from a
digital image. Parameter tokens are also imprinted with
similar visual codes. The image processing routines use an
adaptive thresholding algorithm [9] and work under a
variety of lighting conditions without the need for human
calibration.

Our prototype uses a digital camera attached to a tablet or
laptop PC. The camera has an image resolution set to 1600
x 1200 pixels. A programming surface approximately 3
feet wide by 2 feet high can be reliably compiled as long as
the programming surface is white or light-colored. A Java
application controls the flash, optical zoom, and image
resolution. Captured images are transferred to the host
computer through a USB connection and saved as JPEG
images on the file system. With this image, the compiler
converts a program directly into virtual machine code (in
the case of Tern) or into an intermediate text-based
language such as NQC (http://bricxcc.sourceforge.net/nqc)
in the case of Quetzal. Students initiate a compilation by
pressing an arcade button on the scanning station. The
entire process takes only a few seconds, and, with Quetzal,
programs are automatically downloaded to a LEGO
computer. Any error messages are reported to the user.
Error messages include a picture of the original program
with an arrow pointing to the statements that caused the
problem. With Tern there are no language syntax errors.
The only possible errors are due system problems such as
the camera being disconnected.

INITIAL EVALUATION
We conducted an initial evaluation with nine first and
second grade children in a week-long day camp called
“Dinosaurs and Robots” conducted at the Eliot-Pearson

School at Tufts University. The purpose of this
investigation was to iron out any usability problems and get
a basic sense for how students would react to physical
programming. As part of the camp, the children used a
Quetzal prototype to program robots that they had
constructed. This investigation provided encouraging
evidence that Quetzal can be viable and appropriate
language for use with children in educational environments.
For example, all of the children were easily able to
construct and flow-of-control chains and read the sequence
of actions out loud when asked. While not all of the
children were able to understand the effects their programs
would have on their robots, some were able to make
predictions and correctly identify bugs in their code. After
initial instruction, the children were able to build programs
without direct adult help. There were also several examples
of ad hoc collaboration between the children.

Figure 4. A student constructs a program with Quetzal during
a week-long day camp on dinosaurs and robots.

NEXT STEPS
Our work with tangible programming languages is ongoing.
We would like to expand the capabilities of the languages,
improve the existing prototypes, and conduct more formal
evaluations of their effectiveness in classroom settings.
Future evaluations will be conducted with late elementary
and middle school students. After our experience with first
and second graders, we feel that programming activities
will be more developmentally appropriate for older
children. We also believe that it is important to conduct
these evaluations in real-life educational settings such as
after school programs or classrooms.

CONCLUSION
In this paper we described the design and implementation
of two tangible programming languages for use in
educational settings. Unlike many other tangible
programming languages, our languages consist of parts with
no embedded electronics or power supplies. Instead of real-
time interaction, our languages are compiled using a
portable scanning station and reliable computer vision
technology. This allows us to create durable and
inexpensive parts for practical classroom use. We described
an initial usability session and also outlined future
directions in our research.

ACKNOWLEDGEMENTS
We thank the Tufts University Center for Children (TUCC)
and the University College of Citizenship and Public
Service (UCCPS) for their generous financial support. We
acknowledge the Center for Engineering Education
Outreach (CEEO) at Tufts University for materials used in
this project. Kevin Joseph Staszowski was the principal
Investigator for the Dinosaurs and Robots project. Finally,
we thank the National Science Foundation for support of
this research (NSF Grant No. IIS-0414389). Any opinions,
findings, and conclusions or recommendations expressed in
this article are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES
1. Blackwell, A.F. and Hague, R. Autohan: An architecture

for programming in the home. In Proc. IEEE Symposia
on Human-Centric Computing Languages and
Environments 2001, pp 150-157.

2. de Ipina, D.L., Mendonca, P.R.S. and Hopper, A. TRIP:
A low-cost vision-based location system for ubiquitous
computing. Personal and Ubiquitous Computing, 6
(2002), pp 206–219.

3. High Energy Magic. http://www.highenergymagic.com
4. R.J.K. Jacob. "CHI 2006 Workshop Proceedings: What

is the Next Generation of Human-Computer
Interaction?," Technical Report 2006-3, Dept. of
Computer Science, Tufts University, Medford, Mass.
(2006)

5. Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman,
B., and Resnick, M. Scratch: a sneak preview. In Proc.
Second International Conference on Creating,
Connecting, and Collaborating through Computing C5
‘04. IEEE (2004), pp 104-109.

6. McNerney, T.S. From turtles to Tangible Programming
Bricks: explorations in physical language design.
Personal Ubiquitous Computing, 8(5), Springer-Verlag
(2004), pp 326–337.

7. Pattis, R.E., Roberts J., Stehlik, M. Karel the Robot: a
Gentle Introduction to the Art of Programming, 2nd
edition. John Wiley and Sons, Inc. 1995.

8. Suzuki, H. and Kato, H. Interaction-level support for
collaborative learning: Algoblock–an open
programming language. In Proc. CSCL ’95, Lawrence
Erlbaum (1995).

9. Wellner, P.D. Adaptive thresholding for the
DigitalDesk. Technical Report EPC-93-110, EuroPARC
(1993).

10.Wyeth, P. and Purchase, H.C. Tangible programming
elements for young children. In Proc. CHI’02 extended
abstracts, ACM Press (2002), pp 774–775.

11.Zuckerman, O. and Resnick, M. A physical interface for
system dynamics simulation. In Proc. CHI ’03 extended
abstracts, ACM Press (2003), pp 810-811.

 5

