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ABSTRACT 
This paper describes a new technique for implementing 
educational programming languages using tangible 
interface technology. It emphasizes the use of inexpensive 
and durable parts with no embedded electronics or power 
supplies. Students create programs in offline settings—on 
their desks or on the floor—and use a portable scanning 
station to compile their code. We argue that languages 
created with this approach offer an appealing and practical 
alternative to text-based and visual languages for classroom 
use. In this paper we discuss the motivations for our project 
and describe the design and implementation of two tangible 
programming languages. We also describe an initial case 
study with children and outline future research goals. 
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INTRODUCTION 
Recent research involving tangible user interfaces (TUIs) 
has created exciting new opportunities for the productive 
use of technology in K–12 classrooms. One area that might 
benefit from the application of this technology is that of 
tangible programming languages for education. A tangible 
programming language is similar to a text-based or visual 
programming language. However, instead of using pictures 
and words on a computer screen, tangible languages use 
physical objects to represent various programming 
elements, commands, and flow-of-control structures. 
Students arrange and connect these objects to form physical 

constructions that describe computer programs.   

By giving programming a physical form, we believe that 
tangible languages have the potential to ease the learning of 
complicated syntax, to improve the style and tone of student 
collaboration, and to make it easier for teachers to maintain 
a positive learning environment in the classroom. However, 
tangible interfaces are not without drawbacks. The 
technology involved is often delicate, expensive, and non-
standard, causing substantial problems in classroom settings 
where cost is always a factor and technology that is not 
dependable tends to gather dust in the corner. Thus, in order 
to better explore potential benefits of tangible 
programming, we began with the development of tangible 
languages that are inexpensive, reliable, and practical for 
classroom use.  

In this paper, we describe the design and implementation of 
two tangible languages for middle school and late 
elementary school children: Quetzal (pronounced ket-zal’), 
a language for controlling LEGO MindstormsTM robots, and 
Tern, a language for controlling virtual robots on a 
computer screen. In our design, we emphasize the use of 
inexpensive and durable parts with no embedded 
electronics or power supplies. Students create programs in 
offline settings—on their desks or on the floor—and use a 

 

Figure 1. A collection of tangible programming parts from 
the Quetzal language 



 

 

portable scanning station to compile their code. Because it 
is no longer necessary for teams of children to crowd 
around a desktop computer, collaboration between children 
is less constrained and less formal. Code snippets and 
subroutines become physical objects that can be passed 
around the room and shared between groups. Furthermore, 
because one compiler can be shared by several teams of 
children, teachers are able introduce programming concepts 
to entire classrooms of children even when there are a 
limited number of computers available.   

It is important to note that tangible programming languages 
are not yet commercially available, and their use has been 
restricted almost entirely to laboratory and research 
settings. Thus, the advantages outlined above are 
hypothetical. Indeed, one of the primary goals of this 
project is to better understand how tangible languages 
might affect student learning in classroom environments 
compared to more conventional languages.   

BACKGROUND 

Related work 
Several tangible programming projects influenced our work 
in this area. An early example of a tangible language is 
Suzuki and Kato’s AlgoBlocks [8], in which interlocking 
aluminum blocks represent the commands of a language 
similar to Logo. More recently, McNerney developed 
Tangible Computation Bricks [6], LEGO blocks with 
embedded microprocessors. He also described several 
tangible programming languages that could be expressed 
with the bricks. In a similar project, Wyeth and Purchase of 
the University of Queensland created a language for 
younger children (ages four to eight) also using stackable 
LEGO-like blocks to describe simple programs [10].  
Zuckerman and Resnick’s System Blocks project [11] 
provides an interface for simulating dynamic systems. 
Wood blocks with embedded electronics express six simple 
behaviors in a system. By wiring combinations of the 
blocks together, children can experiment with concepts 
such as feedback loops through real-time interaction 
provided by the blocks. Blackwell, Hague, and Greaves at 
the University of Cambridge developed Media Cubes [1], 
tangible programming elements for controlling consumer 
devices. Media Cubes are blocks with bidirectional, infra-
red communication capabilities.  Induction coils embedded 
in the cubes also allow for the detection of adjacency with 
other cubes. Finally, Scratch is an educational language 
being developed by the Lifelong Kindergarten Group at the 
MIT Media Lab [5]. While not a tangible language, Scratch 
uses a building-block metaphor, in which students build 
programs by connecting graphical blocks that look like 
pieces of a jigsaw puzzle. 

In these examples, the blocks that make up the various 
tangible programming languages all contain some form of 
electronic components.  When connected, the blocks form 
structures that are more than just abstract representations of 
algorithms.  They form working, specialized computers that 

can execute algorithms through the sequential interaction of 
the blocks.  Our model differs from these languages in that 
programs are purely symbolic representations of 
algorithms—much in the way that Java or C++ programs 
are only collections of text files. An additional piece of 
technology, a compiler, must be used to translate the 
abstract representations of a program into a machine 
language that will be executed on some computer system.  
This approach cuts cost, increases reliability, and allows 
greater freedom in the design of the physical components of 
the language. 

Reality-Based Interaction 
Tangible programming languages exhibit two fundamental 
principles of the reality-based interaction framework 
described by Jacob [4].  First, interaction takes place in the 
real world. That is, students no longer program behind large 
computer monitors where they have easy access to 
distractions such as games, IM, and the Web.  Instead they 
program in more natural classroom settings such as on their 
desks or on the floor. Ideally, this gives teachers more 
flexibility to determine the structure and timing of in-class 
programming activities. It may also allow students to more 
easily transition between computer and non-computer work. 

Second, interaction behaves more like the real world.  That 
is, tangible languages take advantage of students’ 
knowledge of the everyday, non-computer world to express 
and enforce language syntax.  For example, Tern parts are 
shaped like jigsaw puzzle pieces. This provides a physical 
constraint system that prevents many invalid language 
constructions from being assembled as physical 
constructions. Furthermore, the metaphor of the jigsaw 
puzzle provides culturally-specific hints which imply 
syntax.  In other words, the form of the parts suggests that 
they are to be connected in a particular way.  

LANGUAGE OVERVIEW 

Quetzal 
Quetzal is a programming language for controlling the 
LEGO MindstormsTM RCX brick. It consists of interlocking 
plastic tiles that represent flow-of-control structures, 
actions, and parameters. Statements in the language are 
connected together to form flow-of-control chains. Simple 
programs start with a Begin statement and end with a single 
End statement. For example, figure 2 shows a program that 
starts a motor, waits for three seconds, and then stops the 
motor. Programmers can add or change parameter values to 
adjust the wait time and the motor’s power level. The order 
in which the statements are connected is important, but the 
overall shape of a program does not change its meaning. By 
inserting a Merge statement into the program, we can create 
an infinite loop. Here we don’t need an End statement—the 
robot will execute this program until turned off. With 
Quetzal, loops in a program’s flow-of-control form physical 
loops program structure. Using other statements, 
programmers can add conditional branches and concurrent 
tasks. Certain statements also accept parameter values 
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which can include constants and sensor readings. Parameter 
tokens are plastic tiles with specific shapes to represent 
their data type. These tiles can be inserted into slots in the 
top face of statements. 

Figure 2. A merge statement creates a loop in the program. 

Figure 3. Tern programs may include conditional branches, 
loops, and subroutines 

Tern Overview 
The Tern language is based on the text-based programming 
language described in Karel the Robot: A Gentle 
Introduction to the Art of Programming [7].  With Tern, 
programmers connect wooden blocks shaped like jigsaw 
puzzle pieces to form flow-of-control chains. These 
programs control simple virtual robots in a grid world on a 
computer screen. Multiple robots can interact in the same 
world, and teams of students can collaborate to solve 
challenges such as collecting objects and navigating 
through a maze. A teacher might project the grid world on 
the wall of a classroom, so that all students can participate 
in one shared activity. Like Quetzal, Tern programs can 
include loops, branches, and parameter values. The Tern 
language also includes the ability to create subroutines 
called skills.  Skills are defined using a special Start Skill 
block and can be invoked from anywhere in the flow-of-

control chain. Figure 3 shows a sample program with a skill 
definition.  Coiled wire connects special Jump and Land 
statements. These statements work in a way similar to a 
GOTO statement in a text-based language.  

Tern was developed after Quetzal. In our initial evaluations 
with Quetzal, we found that children tended to spend more 
time building and playing with their LEGO creations than 
did programming them. While this is certainly not a bad 
thing, from a research perspective we are more interested in 
the programming aspect of the children’s activities than the 
building aspects. Thus, one of our primary goals with Tern 
is to provide activities more focused around programming. 
Accordingly, the only way for children to control their on-
screen robots is to write programs that tell them what to do. 
To enable robots to accomplish more sophisticated tasks, 
children must learn to write more sophisticated programs. 

IMPLEMENTATION 
The implementation of these languages uses a collection of 
image processing techniques to convert physical programs 
into machine code. Each statement in a language is 
imprinted with a circular symbol called a SpotCode [2, 3].  
These codes allow the position, orientation, relative size, 
and type of each statement to be quickly determined from a 
digital image. Parameter tokens are also imprinted with 
similar visual codes.  The image processing routines use an 
adaptive thresholding algorithm [9] and work under a 
variety of lighting conditions without the need for human 
calibration.  

Our prototype uses a digital camera attached to a tablet or 
laptop PC. The camera has an image resolution set to 1600 
x 1200 pixels.  A programming surface approximately 3 
feet wide by 2 feet high can be reliably compiled as long as 
the programming surface is white or light-colored. A Java 
application controls the flash, optical zoom, and image 
resolution. Captured images are transferred to the host 
computer through a USB connection and saved as JPEG 
images on the file system. With this image, the compiler 
converts a program directly into virtual machine code (in 
the case of Tern) or into an intermediate text-based 
language such as NQC (http://bricxcc.sourceforge.net/nqc) 
in the case of Quetzal. Students initiate a compilation by 
pressing an arcade button on the scanning station. The 
entire process takes only a few seconds, and, with Quetzal, 
programs are automatically downloaded to a LEGO 
computer. Any error messages are reported to the user. 
Error messages include a picture of the original program 
with an arrow pointing to the statements that caused the 
problem. With Tern there are no language syntax errors. 
The only possible errors are due system problems such as 
the camera being disconnected. 

INITIAL EVALUATION 
We conducted an initial evaluation with nine first and 
second grade children in a week-long day camp called 
“Dinosaurs and Robots” conducted at the Eliot-Pearson 

 



 

 

School at Tufts University. The purpose of this 
investigation was to iron out any usability problems and get 
a basic sense for how students would react to physical 
programming. As part of the camp, the children used a 
Quetzal prototype to program robots that they had 
constructed. This investigation provided encouraging 
evidence that Quetzal can be viable and appropriate 
language for use with children in educational environments. 
For example, all of the children were easily able to 
construct and flow-of-control chains and read the sequence 
of actions out loud when asked. While not all of the 
children were able to understand the effects their programs 
would have on their robots, some were able to make 
predictions and correctly identify bugs in their code. After 
initial instruction, the children were able to build programs 
without direct adult help. There were also several examples 
of ad hoc collaboration between the children. 

 
 

Figure 4. A student constructs a program with Quetzal during 
a week-long day camp on dinosaurs and robots. 

NEXT STEPS 
Our work with tangible programming languages is ongoing.  
We would like to expand the capabilities of the languages, 
improve the existing prototypes, and conduct more formal 
evaluations of their effectiveness in classroom settings. 
Future evaluations will be conducted with late elementary 
and middle school students. After our experience with first 
and second graders, we feel that programming activities 
will be more developmentally appropriate for older 
children. We also believe that it is important to conduct 
these evaluations in real-life educational settings such as 
after school programs or classrooms.  

CONCLUSION 
In this paper we described the design and implementation 
of two tangible programming languages for use in 
educational settings. Unlike many other tangible 
programming languages, our languages consist of parts with 
no embedded electronics or power supplies.  Instead of real-
time interaction, our languages are compiled using a 
portable scanning station and reliable computer vision 
technology. This allows us to create durable and 
inexpensive parts for practical classroom use. We described 
an initial usability session and also outlined future 
directions in our research. 
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