
VRID: A Design Model and Methodology for Developing
Virtual Reality Interfaces
Vildan Tanriverdi and Robert J.K. Jacob

Department of Electrical Engineering and Computer Science
Tufts University

Medford, MA 02155
{vildan | jacob} @eecs.tufts.edu

ABSTRACT
Compared to conventional interfaces, Virtual reality (VR)
interfaces contain a richer variety and more complex types of
objects, behaviors, interactions and communications. Therefore,
designers of VR interfaces face significant conceptual and
methodological challenges in: a) thinking comprehensively about
the overall design of the VR interface; b) decomposing the design
task into smaller, conceptually distinct, and easier tasks; and c)
communicating the structure of the design to software developers.
To help designers to deal with these challenges, we propose a
Virtual Reality Interface Design (VRID) Model, and an associated
VRID methodology.

Categories and Subject Descriptors
Realism-Virtual reality, Computing Methodologies

General Terms
Design, Theory

Keywords:
Virtual reality, user interface software, design model, design
methodology

1. INTRODUCTION
Virtual Reality (VR) is seen as a promising platform for
development of new applications in many domains such as
medicine, entertainment, science and business [1, 17, 29, 31].
Despite their potential advantages, however, we do not yet see
widespread development and use of VR applications in practice.
The lack of proliferation of VR applications can be attributed
partly to the challenges of building VR applications [2, 8]. In
particular, interfaces of VR applications are more complex and
challenging to design compared to interfaces of conventional
desktop based applications [7, 9]. VR interfaces exhibit distinctive
visual, behavioral and interaction characteristics.
Visual characteristics. While conventional interfaces mainly use
2D graphical displays, VR interfaces use both 2D and 3D

displays. A major goal of virtual environments is to provide users
with realistic environments. In order to provide the sense of
“being there,” VR interfaces heavily use 3D graphical displays.
Design and implementation of 3D graphical displays are usually
more difficult than 2D displays.
Conventional interfaces typically contain only virtual, computer-
generated objects. VR interfaces, on the other hand, may contain
both virtual and physical objects that coexist and exchange
information with each other, as in the case of augmented reality
systems. The need to properly align virtual and physical objects
constitutes an additional challenge in VR interface design [3].
Behavioral characteristics. In conventional interfaces, objects
usually exhibit passive behaviors. In general, they have
predetermined behaviors that are activated in response to user
actions. Therefore, communication patterns among objects are
usually deterministic. VR interfaces contain both real world-like
objects and magical objects that exhibit autonomous behaviors.
Unlike passive objects, autonomous objects can change their own
states. They can communicate with each other and affect each
other's behaviors and communication patterns. Therefore,
designing object behaviors is more challenging in VR interfaces.
Interaction characteristics. While conventional interfaces
support mainly explicit style interactions, VR interfaces usually
support both explicit and implicit style interactions [6, 23, 25].
Implicit style interactions allow more natural and easier to use
human-computer interactions by allowing arm, hand, head, or eye
movement based interactions. However, these implicit style
interactions are more complex to design compared to explicit style
interactions.
Table 1 summarizes the differences between characteristics of
conventional and VR interfaces. As the table indicates, VR
interfaces contain a richer variety and more complex types of
objects, object graphics, behaviors, interactions, and
communications. These characteristics bring significant
challenges to the design of VR interfaces. In the absence of a
conceptual model and a methodology that provide guidance
during VR interface design, designers will face significant
challenges in a) thinking comprehensively about the VR interface
characteristics reviewed above; b) in decomposing the overall
design task into smaller, conceptually distinct, and easier tasks;
and c) in communicating the design to software developers. In this
paper, we propose the VRID (Virtual Reality Interface Design)
model and methodology to provide conceptual and
methodological guidance to designers in dealing with these
challenges.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VRST’01, November 15-17, 2001, Banff, Alberta, Canada.
Copyright 2001 ACM 1-58113-385-5/01/0011…$5.00.

Table 1. Comparative characteristics of conventional and VR interfaces
Characteristics Conventional interfaces VR interfaces
Object graphics Mainly 2D Mainly 3D
Object types Mainly virtual objects Both virtual and physical objects
Object behaviors Mainly passive objects Both passive and active objects
Communication patterns Mainly simple Mainly complex
Human-computer interactions Mainly explicit Both explicit and implicit

2. RELATED WORK
In this section, we briefly review relevant previous work to assess
whether the existing interface design models and
methodologies address the distinctive needs of VR
interfaces.
A well-known user interface design model is the Four Level
approach developed by Foley and colleagues [11]. This model
describes the user interface as a medium that provides dialogue
between the user and the computer. The four levels of the model
are organized based on the meaning and the form of the dialogue
between the user and the computer. The levels focus mostly on
specifications of user interactions using explicit commands. This
approach works well for command language and GUI (graphical
user interface) style interfaces. But it is not sufficient to meet VR
interface needs such as implicit interactions, object dynamism,
and physical objects. Communication among objects is not
sufficiently addressed either.
Another relevant user interface design model is the Command
Language Grammar (CLG) developed by Moran [24]. It provides
designers a model to describe and design command language
interfaces. As in Foley’s model, CLG divides the interface design
into levels. But specifications of the levels are more formal and
detailed in CLG. Although CLG works well in command
language interfaces, its applicability to VR interfaces is limited.
Object dynamism, interactions using implicit commands, physical
objects, and communication patterns among objects are out of the
scope of this model.
A third related interface design model is Shneiderman’s Object-
Action Interface (OAI) model [27]. It is developed particularly for
design of GUI style interfaces. In order to meet the needs of GUI
style interfaces, the OAI model emphasizes the importance of
visual representations of objects and their actions. This model
focuses on explicit command style interactions using direct
manipulations, and keeps the amount of syntax small in
interaction specifications. However, OAI does not address the
distinctive characteristics of VR interfaces such as object
dynamism, implicit style interactions, physical objects, and
communication patterns among objects.

Another possibility for designers is to use general-purpose design
models and methodologies such as object oriented design model
and methodology and Object Modeling Technique (OMT), which
are proposed for software development [5, 26]. However, these
models and methodologies do not provide conceptual guidance for
addressing specific challenges of VR interface design such as
implicit style interactions.

Table 2 summarizes our assessment as to whether the existing
interface design models and methodologies meet the distinctive
needs of VR interfaces. As the table indicates, none of the four
design models and methodologies that we reviewed adequately
meets the distinctive needs of the VR interfaces.
Despite the lack of design models and methodologies that
comprehensively address the needs of VR interfaces, there is

Table 2. Characteristics of existing design models and
methodologies

Support for distinctive characteristics of VR
interfaces

D
es

ig
n

m
od

el
 a

nd

m
et

ho
do

lo
gy

O
bj

ec
t g

ra
ph

ic
s

O
bj

ec
t

dy
na

m
is

m

C
om

m
un

ic
at

io
n

pa
tt

er
ns

Im
pl

ic
it

in
te

ra
ct

io
ns

Four
level

No No Minimal No

CLG No No No No
OAI Yes No No No

OO No Yes Yes No

significant amount of relevant work in the VR field, which can be
used as building blocks in developing such models and
methodologies. The scope and complexity of VR interfaces have
prompted ongoing efforts in the VR field to develop design
languages, frameworks and other tools that can support the design
of VR interfaces. These frameworks, languages and tools provide
solutions for individual characteristics and requirements of VR
interfaces such as the behavioral aspects, interaction aspects or a
particular issue within these domains.

Table 3 provides a summary of the previous work addressing
behavioral and interaction characteristics of VR interfaces. Once
the designer figures out how to conceptualize the interface and
how to decompose the overall design task into smaller
components such as behaviors, interactions, communications,
graphics, etc., she or he can draw on previous studies which may
provide help in dealing with design challenges within individual
components. However, in the absence of higher level conceptual
guidance, it is difficult for designers to decompose a complex VR
interface into smaller, conceptually distinct components.
Therefore, there is need for design models and methodologies that
provide conceptual and methodological guidance to designers at a
higher level of abstraction. We propose the VRID model and
methodology to address this need.

3. COMPONENTS OF A VIRTUAL
REALITY SYSTEM
Before introducing the VRID model, it is important to clarify
what we mean by a VR interface. As depicted in Figure 1, we
conceptualize a VR system in terms of three major components:
application, interface, and dialog control, inspired by the Seeheim
user interface system architecture [14] and the Model View
Controller architecture [20].
The application component is the VR application itself, which
contains features, rules and knowledge defining the logic of the
application. The interface component is the front-end through
which users and other external entities exchange information with

Table 3. Previous research on behavioral and interaction characteristics of VR interfaces
 Frameworks and models Languages Others
Behavioral Cremer, Kearney et al. 1995 [10],

Blumberg and Galyean 1995 [4], Tu and
Terzopoulos 1994 [35]
Gobbetti and Balaguer 1993 [13]

Green and Halliday 1996
[15], Steed and Slater 1996
[32]

Behavioral library: Stansfield, Shawver et al.
1995 [30]

Interaction Kessler 1999 [19], Lewis, Koved et al.
1991 [21], Gobbetti and Balaguer 1993
[13], Bowman 1999 [7]

Jacob, Deligiannidis et al.
1999 [18], Smith and Duke
1999 [28]

Interaction techniques: Bowman and Hodges
1997 [6], Liang and Green 1993 [22],
Poupyrev, Billinghurst et al. 1996 [25],
Stoakley, Conway et al. 1995 [33], Tanriverdi
and Jacob 2000 [34], Wloka and Greenfield
1995 [36]

interface
objects

data

VR System

Dialog
control Application

Interface

Figure 1. Components of a VR system

and manipulate the system. The interface consists of data and
objects. Data refers to inputs received from users (or other
external entities) whereas objects refer to entities in the interface
that have well defined roles and identities. Dialog control enables
communication between the application and the interface. Due to
conceptual separation, internal details of application and interface
components are transparent to each other. This feature allows
designers to work on the two components independently.

We propose the VRID model and methodology only for the
design of the interface component. Design of other VR system
components is beyond the scope of this paper.

4. THE VRID MODEL
Building on our review and synthesis of the previous work on VR
interface design, we identify object graphics, object behaviors,
object interactions and object communications as the key
constructs that designers should think about in designing VR
interfaces. Therefore, we organize the VRID model around a
multi-component object architecture that is depicted in Figure 2.
Graphics, behavior, interaction and communicator components are
included to conceptually distinguish and address the distinctive
characteristics of VR interfaces. The mediator component is
included to coordinate communications among the other four
components of an object. These five components serve as the key
constructs of our design model. Next, we will explain each of
these components.
The graphics component is for specifying graphical
representations of interface objects. It covers specification of all
graphical models that are needed for computer-generated
appearance and animations of the objects. We include the graphics
component in the model in order to address the distinctive visual
characteristics of VR interfaces. Since VR interface objects
exhibit more complex behaviors and these behaviors need to be
represented by more complex visual displays, it is important to
associate object behaviors with object graphics at a high level of
abstraction.

In general, responsibility for the design of visual aspects of VR
interfaces lies with graphics designers rather than VR interface

Graphics

Mediator

Interaction Communicator

Composite Behavior

Physical
Behavior

Magical
Behavior

Data

Figure 2. Multi -component object architecture used in the
VRID model

designers. That is why we treat the graphics component as a black
box, and focus only on its outcomes, i.e., graphical models. We
aim to provide guidance to VR interface designers in specifying
graphical models associated with interface objects and their
behaviors. By doing so, we seek to facilitate communications
between graphics designers and VR interface designers so that
graphical representations and animations generated by graphics
designers are compatible with behaviors specified by interface
designers.
The behavior component is for specifying various types of
object behaviors. In order to help designers to understand and
simplify complex object behaviors, we categorize object
behaviors into two groups: physical behaviors and magical
behaviors. Physical behavior refers to those changes in an
object’s state that are observable in the real world. Magical
behavior refers to those changes in an object’s state, which are
rarely seen, or not seen at all in the real world. Consider a virtual
basketball exhibiting the following behaviors: it falls; it bounces
off; it changes its color when touched by a different player; and it
displays player statistics (e.g., ball possession, scores, etc.). Here,
the falling and bouncing off behaviors are physical behaviors
because these behaviors have counterparts in the physical world.
However, “changing color” or “displaying player statistics” are
magical behaviors because a real world basketball does not
exhibit these behaviors.
Breaking down complex behaviors into simple physical and
magical behaviors serve two purposes. First, it allows designers to
generate a library of behaviors, which can be reused in creating
new behaviors. Second, physical and magical distinction enables
designers to assess the level of detail required in communicating
design specifications to software developers unambiguously.
Physical behaviors are relatively easy to describe and
communicate. Since they have counterparts in the real world,
software developers can easily relate to physical behaviors.
Hence, interface designers may not need to describe all details of
physical behaviors. Magical behaviors, on the other hand, are
either rarely seen or not seen at all in the real world. Therefore,

software developers may have difficulty in visualizing the magical
behaviors. Interface designers may need to specify magical
behaviors in more detail to avoid any misunderstandings in the
later stages of development.

Objects may exhibit composite behaviors that consist of a series
of simple physical and magical behaviors. For example, running
behavior of an athlete can be considered as a composite behavior
consisting of simple physical behaviors such as leg and arm
movements. By conceptually distinguishing between “simple” and
"composite behaviors," we aim to help designers to decompose
complex behaviors into smaller, conceptually distinct parts; and to
increase the reusability of the resulting software code. Designers
can combine simple behaviors in different ways and sequences to
generate new composite behaviors. Breaking down a complex
behavior into simpler behaviors also increases clarity of
communication between designers and software developers since
it is easier to visualize a series of simpler behaviors.
We devote specific attention to the design of object behaviors
because defining object behaviors has typically been a challenge
in VR [15]. Most virtual environments remain visually rich, but
behaviorally impoverished [10]. Previous work on behavioral
characteristics of VR interfaces does not provide high level
guidance for decomposing complex behaviors into simpler
behaviors. By proposing physical-magical and simple-composite
categories, we aim to help designers to decompose complex
behaviors into simpler, easier to design components, which can
also be reused in creating new behaviors.

The interaction component is used to specify where inputs of
the VR system come from and how they change object behaviors.
The interaction component receives the input, interprets its
meaning, decides on the implication of the input for object
behavior, and communicates with behavioral components to make
the desired change in the object behavior. VR interfaces need to
support implicit style interactions, which require monitoring and
interpretation of inputs such as hand, arm, head and eye
movements. Each of these interaction types presents a particular
design challenge. Therefore, unlike previous work, which usually
merge the design of interactions and behaviors, we make a
conceptual distinction between interactions and their implications
for object behaviors. This distinction allows designers to focus on
the challenges of interactions in the interaction component, and on
the challenges of behaviors in the behavior component. It also
increases reusability of resulting interactions and behaviors since
interactions and behaviors are de-coupled from each other.

The mediator component is for specifying control and
coordination mechanisms for communications among other
components of the object. The goals are to avoid conflicts in
object behaviors, and to enable loose coupling among
components. To achieve these goals, we propose the mediator
component by adapting the concept of “mediator design pattern”
suggested by Gamma and colleagues [12]. The mediator controls
and coordinates all communications within the object. When a
component needs to communicate with another component, it
sends its message to the mediator rather than sending it directly to
the destination. This component enables designers to identify, in
advance, which communication requests might lead to conflicts in
object behaviors, and to specify how the requests can be managed
to avoid the conflicts. Since a component only needs to know
about itself and the mediator rather than having to know about all
components with which it might communicate, the mediator
component also ensures loose coupling between components.

High level specifications of graphics,
behaviors, interactions, internal and external
communications for each object

Identifying data
elements

Low level specifications of graphics,
behaviors, interactions, internal and external
communications for each object

H
ig

h
 L

ev
el

D

es
ig

n

P
h

as
e

L
o

w
 L

ev
el

D

es
ig

n

P
h

as
e

Identifying objects

Figure 3. VRID Methodology

The communication component is for external
communications of the object with other objects, data elements, or
with the application component. In this component, designers
need to specify sources of communication inflows into the object,
destinations of communications outflows from the object, and the
message passing mechanisms between them such as the
synchronous, asynchronous, balking, or timeout mechanisms
discussed by Booch [5]. Previous work on object behaviors
discusses message-passing mechanisms among objects during low
level specifications of behaviors. The difference in our approach
is that we start analyzing the communication needs of objects at a
higher level of abstraction, and that we make a distinction
between internal and external communications of objects. By
using two separate components for specification of internal and
external communications mechanisms of objects, we help
designers to decompose the complexity associated with design of
communications into smaller, conceptually distinct components,
which are easier to analyze, design, code, and maintain.
In summary, the VRID model synthesizes previous work on VR
interface design and proposes a comprehensive set of modeling
structures in the form of a multi-component object architecture,
which helps designers to see clearly which issues and decisions
are involved in VR interface design, and why.

5. THE VRID METHODOLOGY
To systematically apply the VRID model in VR interface design,
we propose the VRID methodology. We conceptualize design of a
VR interface as an iterative process in which requirements for the
interface are translated into design specifications that can be
implemented by software developers. We divide the design
process into high-level and low-level design phases as depicted in
Figure 3. In the high-level design phase, the goal is to specify a
design solution, at a high-level of abstraction, using the multi
component object architecture as a conceptual guidance. The
input of the high-level design phase is a functional description of
the VR interface. The output is a high-level representation of data
elements and objects in the interface. Graphical models,
behaviors, interactions, and internal and external communication
characteristics of interface objects are identified and defined at a
high level of abstraction. This output becomes the input of the
low-level design phase. In the low-level design phase, the goal is
to provide fine-grained details of the high-level representations,
and to provide procedural details as to how they will be formally
represented. The outcome of low-level design is a set of design
specifications, which are represented in formal, implementation-
oriented terminology, and ready to be implemented by software
developers. We take a top -down approach to the design process
by going from high-level abstractions to lower level details.
However, this is not a linear process. It requires iterations between
the high-level and low-level design phases, and reciprocal

Table 4. Description of the virtual surgery system

Consider an augmented reality system developed for
training surgeons. It includes a virtual patient body and a
physical biopsy needle. The surgeon wears a head-mounted
display, and uses the needle to interact with the patient. A
Polhemus is attached to the needle to communicate 3D
coordinates of the needle to the VR system. Coordinate data
is used to interpret actions of the surgeon. Abdominal area
of the body is open, and organs, nerves, vessels, and muscles
are visible. When the surgeon punctures an organ with the
needle, it starts bleeding. The surgeon can see status of
operation by prodding the organ. When prodded, the organ
enlarges, and shows the status of surrounding nerves,
vessels, and muscles by highlighting each of them with a
unique color.

refinements at both levels of abstraction until a conceptually
sound and practically implementable design emerges.

In the following sections, we explain step-by-step details of each
phase of the VRID methodology. We use an example, which runs
throughout the paper, to illustrate how the VRID model and
methodology are applied in developing a VR interface design. The
example, which is described in Table 4, is a hypothet ical virtual
surgery system inspired by and adapted from the descriptions
given in prior studies [29, 31].

5.1 High-level (HL) design phase
High-level design phase consists of three major steps:

?? HL1. Identifying data elements
?? HL2. Identifying objects
?? HL3. Modeling the objects

o HL3.1. Graphics
o HL3.2. Behaviors
o HL3.3. Interactions
o HL3.4. Internal communications (mediator)
o HL3.5. External communications

5.1.1 HL1: Identifying data elements
The role of data elements is to enable communication between VR
interface and entities that are external to the VR system. The goal
of the first step is to identify data inflows coming into the VR
interface. The interface can receive data from three sources: a)
users, b) physical devices; and c) other VR systems. Designer
should analyze the description of the VR interface to identify the
data inflows. In the virtual surgery example, the only data element
is the 3D coordinates of the needle communicated to the interface
by the Polhemus. Identification of data elements is a relatively
simple design task, which does not require deliberations at
different levels of abstraction. We include this task in the high-
level design phase in order to enable designers to understand and
define data inputs of the VR interface early in the design process.

5.1.2 HL2: Identifying objects
In this step, the goal is to identify objects that have well defined
roles and identities in the interface. This step involves: a)
identifying potential objects mentioned in the interface
description; b) deciding on legitimate objects; and c)
distinguishing between virtual and physical objects. In parts (a)
and (b), designers can use the object-oriented analysis and design
guidelines provided for identification of potential objects and
selection of legitimate objects [5, 26]. In part (c), virtual objects
are those entities that need to be modeled and generated by the

computer. Physical objects are physical entities that interact with
the VR system. Physical objects may or may not require
modeling. If they are capable of coexisting and exchanging data
with the VR interface, they do not require modeling. For example,
the biopsy needle in our virtual surgery example is capable of
sending data to the VR interface through the Polhemus. Hence, it
should be identified as a physical object. Physical objects that
exhibit magical behaviors need to be identified and modeled as
virtual objects. For example, a biopsy needle, which is capable of
melting down and disappearing when the surgeon makes a wrong
move, is exhibiting a magical behavior. This behavior is only
possible through computer generation since no physical biopsy
needle is capable of exhibiting this behavior. Therefore, such
objects should be modeled as virtual objects.

In the virtual surgery example, potential objects are biopsy needle,
patient body, organs, nerves, vessels, and muscles. In parts (a) and
(b), the biopsy needle and the patient body can be identified as
legitimate objects using the general guidelines of object-oriented
analysis and design. The patient body is an aggregate object
comprising of organ, nerve, vessel, and muscle components. In
part (c), the needle can be identified as a physical object because
it is capable of coexisting and exchanging data with the VR
interface. The patient body should be identified as a virtual object
because it exhibits magical behaviors such as highlighting nerves,
vessels, and muscles with unique colors.

5.1.3 HL3: Modeling the objects
In the reminder of the design, we are no longer concerned with
entities that are identified as physical objects because they do not
require modeling, and their inputs to the VR system had already
been identified as data elements in HL1. Therefore, the goal in
this step is to model the virtual objects identified in HL2.
Modeling of virtual objects involves specification of: a) graphical
models; b) behaviors; c) interactions; d) internal communication
characteristics; and e) external communication characteristics of
the objects. Designers should analyze the interface description and
use the VRID model to specify characteristics of each virtual
object, as described below.

HL3.1: Graphics
In this step, the goal is to specify a high-level description of
graphics needs of virtual objects. Designers should describe what
kinds of graphical representations are needed for each object, and
its parts, if any. Since representing objects graphically is a
creative task, this step aims to provide flexibility to graphical
designers by focusing only on general, high-level descriptions of
graphical needs.
In our example, we should describe graphics needs of the patient
body, organs, nerves, vessels, and muscles in enough detail for
graphics designers to understand the context of the graphical
modeling needs. We should mention that we need graphical model
of an adult human body, which lies on its back on the operation
table. Gender is arbitrary. Abdominal part of the body should be
open, and show the organs in the area, and the nerves, vessels, and
muscles that weave the organs. Boundaries of organs, nerves,
vessels, and muscles must be distinguishable when highlighted.

HL3.2: Behaviors
The goals of this step are to identify behaviors exhibited by
objects; classify them into simple physical, simple magical, or
composite behavior categories; and to describe them in enough
detail for designers to visualize the behaviors. This step involves
the following activities: a) identify behaviors from the description;
b) classify the behaviors into simple and composite categories; c)

classify simple behaviors into physical and magical behavior
categories; and d) for composite behaviors, specify sequences in
which simple behaviors are to be combined for producing the
composite behaviors.

In our example, behaviors exhibited by the patient body are: 1)
bleeding; 2) enlarging; 3) highlighting nerves, vessels, and
muscles with unique colors; and 4) showing the status of
operation. Bleeding can be specified as a simple behavior or as a
composite behavior obtained by combining simple behaviors of
increasing the amount, color intensity, and viscosity of blood.
This design decision should be based on reusability considerations
and providing clear communications with software developers.
We classify bleeding as composite behavior to reuse its
components in generating different behaviors of blood such as
coagulating. Similarly, to prevent communication problems with
software developers and help software developers to visualize
what we mean by “showing the status of operation,” we classify
showing the status of operation as composite behavior that
consists of enlarging and highlighting behaviors. Enlarging organ
and highlighting nerves, vessels, and muscles are simple
behaviors. Components of bleeding behavior are physical
behaviors because there is nothing magic about them and they can
be observed in real world. Enlarging organ and highlighting
nerves, vessels, and muscles with unique colors are magical
behaviors because they have no counterpart in the real world.
The next task is to specify sequences in which simple behaviors
are to be combined for producing the composite behaviors. The
description indicates that enlarging and highlighting behaviors
should be superimposed and exhibited simultaneously. Similarly,
components of the bleeding behavior are exhibited
simultaneously.

HL3.3: Interactions
The goal in this step is to specify where inputs of interface objects
come from and how they change object behaviors. This step
involves: a) identifying interaction requests to objects; b)
identifying behavioral changes caused by these requests and
which behavioral components will be notified for these changes
In our example, user interacts with the patient body using the
needle. The interaction component should be able to process the
3D coordinates of the needle and interpret their meaning to decide
whether the surgeon is prodding or puncturing (since this is a
hypothetical example, we do not specify in detail how coordinates
are to be processed and interpreted). If the surgeon is prodding,
the implication for the behavior of the patient body is to show the
status of operation. The interaction component should
communicate with the composite behavior component to initiate
the "showing the status of operation" behavior. If the surgeon is
puncturing, the implication for the behavior of the patient body is
bleeding. The interaction component should communicate with
the composite behavior component to initiate the bleeding
behavior.

HL3.4: Internal communications (mediator)
In this step, the goal is to specify control and coordination needs
for internal communications among the components of objects in
order to avoid potential conflicts in object behavior. This
involves: a) examining all communication requests and behavioral
changes that are caused by these requests; b) identifying
communications requests that may cause the potential conflicts;
and c) deciding how to prioritize, sequence, hold or deny the
communications requests to avoid the potential conflicts.

In our example, behaviors of the patient body are: 1) bleeding; 2)
enlarging; 3) highlighting nerves, vessels, and muscles with
unique colors; and 4) showing status of operation. If
communication requests for bleeding and showing status of
operation arrive simultaneously, the patient may enter into an
unstable state between bleeding and showing status of operation
behaviors. This conflict can be avoided by prioritizing, holding, or
denying the communication requests. Here, we give higher
priority to showing status of operation to avoid the conflict.

HL3.5: External communications
In this step, the goal is to specify control and coordination needs
for external communications of the objects. This involves a)
identifying communication inflows into the object, and their
sources; b) communications outflows from the object, and their
destinations; and c) describing time and buffering semantics of
external communications of the object.

In our example, communication inflows into the patient body are
3D coordinates coming from the needle. There are no
communications outflows. Although it is not specified in the
description, for illustrative purposes, we assume that a
communication between the needle and patient body starts when
the needle initiates an operation (e.g., prodding, puncturing), and
the patient body is ready to display the associated behavior with
that operation. If the patient body is busy, the needle will wait for
a specified amount of time. If the patient body is still not ready
after a certain amount of time, the needle will abort the
communication request.

5.2 Low-level (LL) design phase
Output of the high-level design becomes the input to the low-level
design, which repeats the five modeling steps at a lower level
abstraction to generate fine-grained details of the high-level
design specifications:

?? LL1. Graphics
?? LL2. Behaviors
?? LL3. Interactions
?? LL4. Internal communications (mediator)
?? LL5. External communications

5.2.1 LL1: Graphics
Low-level design of graphics aims to associate graphical models
and behaviors of objects. The outcome of this step should enable
graphical designer to understand how object behaviors can be
animated. This step involves matching the graphical models
specified in HL3.1 with behaviors specified in HL3.2.
In our example, graphical models were specified for patient body
and its parts (organs, nerves, vessels, and muscles in the
abdominal area) in HL3.1. Associated behaviors specified in
HL3.2 were bleeding, enlarging, highlighting, and showing the
status of operation. Using the description, we need to associate
graphical models of organs with all four behaviors; and the
graphical models of nerves, vessels, and muscles with the
bleeding and highlighting behaviors.

5.2.2 LL2: Behaviors
In low-level design of behaviors, the goal is to formalize fine-
grained procedural details of behaviors that have been specified in
HL3.2. Formal representation of behaviors requires use of
constructs of a selected design language. In our example, we use
PMIW, the user interface description language that we had
originally developed for specifying interactions[18], but is also

(a) Continuous parts of bleeding behavior

Start

increase
blood

amount

Increase
viscosity

increase
color

intensity

BLEEDON BLEEDOFF

(b) Discrete parts of bleeding behavior

bleed

Increase
viscosity

Increase
color
intensity

Increase
blood
amountbleed

Increase
viscosity

Increase
color
intensity

Increase
blood
amount

Figure 4. PMIW representation of bleeding behavior

suitable for specifying behaviors. PMIW representation requires:
a) identification of discrete and continuous components of
behaviors; b) use of data flow diagrams to represent continuous
behaviors; and c) use of statecharts [16] and state transition
diagrams to represent discrete behaviors. For illustration purposes,
we depict in Figure 4 formal representation of continuous and
discrete parts of the bleeding behavior using PMIW.

5.2.3 LL3: Interactions
Like low-level design of behaviors, low-level design of
interactions aims to formalize fine-grained aspects of the
interactions that have been specified in HL3.3. Formal
representation of interactions also requires selection of a design
language. PMIW is well suited for this purpose, although
designers may choose any other suitable design language.
Activities outlined for formal representation of behaviors are
repeated in this step, this time for representing interactions. For
illustration purposes, we depict in Figure 5 a formal representation
of the puncturing interaction using PMIW.

5.2.4 LL4: Internal communications (mediator)
In low-level design of internal communications, the goal is to
specify scheduling mechanisms for managing the communication
requests identified in HL3.4 as giving rise to conflicting object
behaviors. As in the previous steps of the low level phase,
designers are free to choose appropriate scheduling mechanisms.
In our example, to resolve conflicts between bleeding and
showing the status of operation behaviors, we prefer to use
priority scheduling mechanisms that are similar to the ones used
in operating systems.

5.2.5 LL5: External communications
Low-level design of external communications aims to specify the
message passing mechanisms that control and coordinate external
communications of the objects. Designers can select from the
synchronous, asynchronous, timeout, and bulking message
passing mechanisms discussed by Booch [5]. In our example, the
communication needs between the patient body and the biopsy
needle, which had been specified in HL3.5, can be modeled with
the timeout mechanism.
This step concludes a complete pass of the phases of the VRID
methodology. In applying the VRID methodology, we started with
the English description of the VR system. Then, we followed the
steps of the VRID methodology and applied the conceptual
framework of the VRID model to decompose the overall design
task into simpler, easier to design components. Each component
represents a nicely encapsulated, conceptually distinct part of the
interface. Designers should iterate between steps of the high and
low level design phases to refine the specifications until they are
convinced that conceptually sound and implementable
specifications are produced.

B L E E D O N /
P o l h e m u s_ c u r s o r . i n s i d e (o r g a n)

B L E E D O F F /
n o t (P o l h e m u s_ c u r s o r . i n s i d e (o r g a n))
a n d t i m e o u t (b l e e d)

s t a r t p u n c t u r e

B L E E D O N /
P o l h e m u s_ c u r s o r . i n s i d e (o r g a n)

B L E E D O F F /
n o t (P o l h e m u s_ c u r s o r . i n s i d e (o r g a n))
a n d t i m e o u t (b l e e d)

s t a r t p u n c t u r es t a r t p u n c t u r e

Figure 5. PMIW representation of puncturing interaction

6. DISCUSSIONS AND CONCLUSIONS
In this paper, we identified a gap in the VR literature, namely, the
lack of high-level design models and methodologies for design
and development of VR interfaces. By proposing the VRID model
and methodology as one possible approach, we have taken an
initial step towards addressing this gap.
The VRID model allows designers to think comprehensively
about various types of human-computer interactions, objects,
behaviors, and communications that need to be supported by VR
interfaces. It enables designers to decompose the overall design
task into smaller, conceptually distinct, and easier to design tasks.
It provides a common framework and vocabulary, which can
enhance communication and collaboration among users, designers
and software developers involved in development of VR
interfaces. The model may also be useful in implementation and
maintenance stages of the life cycle of a VR interface since it
isolates details of components, and makes changes in one
component transparent to other components.
The VRID methodology contributes to practice by guiding
designers in the application of the VRID model to the VR
interface design process. The methodology formalizes the process
of VR interface design into two phases, which represent different
levels of abstraction, and breaks down the phases into a discrete
number of steps. High-level design phase helps designers to
conceptually design the interface without having to use
implementation specific terminology. Low-level design phase
guides designers in representing design specifications in formal,
implementation oriented terminology. The VRID offers flexibility
in selection of languages, tools or mechanisms for specifying fine-
grained details of the interface.
We evaluated the VRID model and methodology by applying
them in designing various types and complexities of VR
interfaces, which we identified from the literature or created for
test purposes, including the virtual surgery example presented
here. We have also just completed an experimental user study,
which assessed validity, usability, and usefulness of the VRID
model and the methodology. Findings provide empirical support
for the validity of the VRID model and methodology. These
findings are reported in a separate paper, which is currently under
review.

7. ACKNOWLEDGMENT
This work is supported by National Science Foundation Grant
IRI-9625573 and Office of Naval Research Grant N00014-95-1-
1099.

8. REFERENCES
[1] D. Allison, B. Wills, D. Bowman, J. Wineman, and L.

F. Hodges, “The Virtual Reality Gorilla Exhibit,” IEEE
Computer Graphics and Applications, vol. 17, pp. 30-
38, 1997.

[2] P. Astheimer, “A Business View of Virtual Reality,”
IEEE Computer Graphics and Applications, vol. 19, pp.
28-29, 1999.

[3] R. T. Azuma, “A Survey of Augmented Reality,”
Presence, vol. 6, pp. 355-385, 1997.

[4] B. Blumberg and T. Galyean, “Multi-Level Direction of
Autonomous Creatures for Real-Time Virtual
Environments,” presented at ACM Conference on
Computer Graphics, SIGGRAPH'95, 1995.

[5] G. Booch, Object Oriented Design with Applications.
Redwood City, CA: Benjamin/Cummings Pub. Co.,
1991.

[6] D. Bowman and L. Hodges, “An Evaluation of
Techniques for Grabbing and Manipulating Remote
Objects in Immersive Virtual Environments,” presented
at Symposium on Interactive 3D Graphics, 1997.

[7] D. A. Bowman, “Interaction Techniques For Common
Tasks In Immersive Virtual Environments: Design,
Evaluation, and Application,” Doctoral dissertation,
Georgia Institute of Technology, 1999,
http://vtopus.cs.vt.edu/~bowman/thesis/.

[8] F. P. Brooks, “What's Real About Virtual Reality?,”
IEEE Computer Graphics and Applications, vol. 19, pp.
16-27, 1999.

[9] S. Bryson, “Virtual Reality in Scientific Visualization,”
Communications of the ACM, pp. 62-71, 1996.

[10] J. Cremer, J. Kearney, and Y. Papelis, “HCSM: A
Framework for Behavior and Scenario Control in
Virtual Environments,” ACM Transactions on Modeling
and Computer Simulation, vol. 5, pp. 242-267, 1995.

[11] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes,
Computer Graphics, Principles and Practice, Second
Edition ed. Reading, MA: Addision-Wesley, 1996.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns, Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley, 1995.

[13] E. Gobbetti and J.-F. Balaguer, “VB2 An Architecture
For Interaction in Synthetic Worlds,” presented at ACM
Symposium on User Interface Software and
Technology, UIST'93, 1993.

[14] M. Green, “Report on dialogue specification tools,”
presented at Workshop on User Interface Management
Systems, Seeheim, FRG, 1983.

[15] M. Green and S. Halliday, “A Geometric Modeling and
Animation System for Virtual Reality,”
Communications of the ACM, vol. 39, pp. 46-53, 1996.

[16] D. Harel and A. Naamad, “The Statemate Semantics of
Statecharts,” ACM Transactions on Software
Engineering and Methodology, vol. 5, pp. 293-333,
1996.

[17] L. Hodges, B. RothBaum, R. Kooper, O. D., T. Meyer,
N. M., J. de Graff, and J. Williford, “Virtual
Environments for Treating the Fear of Heights,” IEEE
Computer, vol. 28, pp. 27-34, 1995.

[18] R. J. K. Jacob, L. Deligiannidis, and S. Morrison, “A
Software Model and Specification Language for Non-
WIMP User Interfaces,” ACM Transactions on
Computer-Human Interaction, vol. 6, pp. 1-46, 1999.

[19] D. Kessler, “A Framework for Interactors in Immersive
Virtual Environments,” presented at IEEE Virtual
Reality, 1999.

[20] G. E. Krasner and S. T. Pope, “A Cookbook for Using
the Model-View Controller User Interface Paradigm in

Smalltalk-80,” Journal of Object-Oriented
Programming, vol. 1, pp. 26-49, 1988.

[21] J. B. Lewis, L. Koved, and D. T. Ling, “Dialogue
Structures for Virtual Worlds,” presented at ACM
Human Factors in Computing Systems, CHI'91, 1991.

[22] J. Liang and M. Green, “Interaction Techniques For A
Highly Interactive 3D Geometric Modeling System,”
presented at ACM Solid Modeling, 1993.

[23] M. Mine, F. Brooks, and C. Sequin, “Moving Objects in
Space: Exploiting Proprioception in Virtual
Environment Interaction,” presented at SIGGRAPH'97,
Los Angeles, CA, 1997.

[24] T. Moran, “The Command Language Grammar,”
International Journal of Man-Machine Studies , vol. 15,
pp. 3-50, 1981.

[25] I. Poupyrev, M. Billinghurst, S. Weghorst, and T.
Ichikawa, “The Go-Go Interaction Technique: Non-
linear Mapping for Direct Manipulation in VR,”
presented at ACM Symposium on User Interface
Software and Technology, UIST'96, 1996.

[26] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorenson, Object Oriented Modeling and Design.
Edglewood Cliffs, New Jersey: Prentice Hall, 1991.

[27] B. Shneiderman, Designing the User Interface,
Strategies for Effective Human-Computer Interaction,
Third Edition ed. Reading, MA: Addison-Wesley, 1998.

[28] S. Smith and D. J. Duke, “Virtual Environments as
Hybrid Systems,” presented at Annual Conference
Eurographics UK Chapter, Cambridge, 1999.

[29] D. Sorid and S. Moore, “The Virtual Surgeon,” IEEE
Spectrum, pp. 26-31, 2000.

[30] S. Stansfield, D. Shawver, N. Miner, and D. Rogers,
“An Application of Shared Virtual Reality to Situational
Training,” presented at IEEE Virtual Reality Annual
International Symposium, 1995.

[31] A. State, M. A. Livingston, G. Hirota, W. F. Garrett, M.
C. Whitton, H. Fuchs, and E. D. Pisano, “Technologies
for Augmented-Reality Systems: realizing Ultrasound-
Guided Needle Biopsies,” presented at ACM
Conference on Computer Graphics, SIGGRAPH'96,
1996.

[32] A. Steed and M. Slater, “A Dataflow Representation for
Defining Behaviors within Virtual Environments,”
presented at IEEE Virtual Reality Annual Symposium,
VRAIS'96, 1996.

[33] R. Stoakley, M. Conway, and R. Pausch, “Virtual
Reality on a WIM: Interactive Worlds in Miniature,”
presented at ACM Human Factors in Computing
Systems, CHI'95, 1995.

[34] V. Tanriverdi and R. J. K. Jacob, “Interacting with Eye
Movements in Virtual Environments,” presented at
ACM Human Factors in Computing Systems, CHI'00,
2000.

[35] X. Tu and D. Terzopoulos, “Artificial Fishes: Physics,
Locomotion, Perception, Behavior,” presented at ACM
Conference on Computer Graphics, SIGGRAPH'94,
1994.

[36] M. Wloka and E. Greenfield, “The Virtual Tricorder: A
Uniform Interface for Virtual Reality,” presented at
ACM Symposium on User Interface Software and
Technology, UIST'95, 1995.

