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Abstract
The large scale and high complexity of modern software systems
make perfectly precise static code analysis (SCA) infeasible. There-
fore SCA tools often over-approximate, so not to miss any real
problems. This, however, comes at the expense of raising false
alarms, which, in practice, reduces the usability of these tools.

To partially address this problem, we propose a novel learning
process whose goal is to discover program structures that cause
a given SCA tool to emit false error reports, and then to use this
information to predict whether a new error report is likely to be a
false positive as well. To do this, we first preprocess code to isolate
the locations that are related to the error report. Then, we apply
machine learning techniques to the preprocessed code to discover
correlations and to learn a classifier.

We evaluated this approach in an initial case study of a widely-
used SCA tool for Java. Our results showed that for our dataset
we could accurately classify a large majority of false positive error
reports. Moreover, we identified some common coding patterns that
led to false positive errors. We believe that SCA developers may be
able to redesign their methods to address these patterns and reduce
false positive error reports.

CCS Concepts •Theory of computation→ Program analysis;
•Computing methodologies→ Machine learning algorithms; Su-
pervised learning by classification; •Software and its engineer-
ing→ General programming languages

Keywords Static code analysis, program slicing, Naive Bayes
classifier, long short-term memories

1. Introduction
Static code analysis (SCA) is the process of analyzing a program’s
source code to find flaws without executing it. SCA tools help
developers identify weaknesses and flaws that might jeopardize the
security and integrity of a software program. Although SCA tools
can clearly aid developers, they are also known to generate large
numbers of spurious error reports, i.e., false positives. Simplifying
greatly, this happens because SCA tools rely on approximations and
assumptions that help their analyses scale to large and complex
software systems. The trade-off is that analysis results become
imprecise, leading to false positives. As a result, developers often

find themselves sifting through the false alarms to find and solve
the real flaws. Inevitably, some developers stop inspecting the SCA
tool’s output.

To solve this problem, some previous research efforts have ap-
plied machine learning techniques to filter out the false positive error
reports (Kremenek and Engler 2003; Yüksel and Sözer 2013; Tripp
et al. 2014). At a high level, these efforts learn classifiers by using
a set of features collected from reports and SCA tools. We found,
however, that none of these efforts incorporates information about
the structure of the actual code being analyzed. We hypothesize that
adding detailed knowledge of a program’s structure to the machine
learning process can lead to more effective classifiers. Therefore, in
this work, we propose an approach for learning a classifier by train-
ing on the code itself. Our goal is to discover the program structures
correlated with false positive error reports and then filter out such
error reports by detecting whether these program structures exist in
a program that has reported a potential flaw.

In the proposed approach, the first step involves reducing the
code to a smaller form of itself that leads to the error report. In
particular, we try two different code reduction techniques. First, as
a very naive reduction, we simply take the body of the method that
contains the warning line. Second, as a more precise reduction, we
compute a backward slice with respect to the warning line. Next,
using the reduced code, we discover program structures that are
correlated with false positive error reports using an easy to interpret
machine learning technique. Finally, also using the reduced code,
we learn a classifier to filter out the false positive error reports using
more advanced machine learning techniques (see more details in
Section 2).

We evaluated the proposed approach by conducting a case study
in which we evaluated the two code reduction techniques and two
machine learning models to classify 2, 371 error reports produced by
FindSecBugs plug-in of FindBugs (Arteau 2016; Ayewah et al. 2008)
by training on Java bytecode representation of the programs that
lead to the error reports. As a simple learning model, we used Naive
Bayes Inference. Then, as a more sophisticated learning model, we
used long short-term memories (LSTM) (more details in Section 3).

The results of these experiments are promising. First, in the
best case, our approach achieved 97% recall and 85% accuracy.
In addition, our analysis of the resulting learning models revealed
likely causes explaining why the SCA tool produced certain false
positive reports (see Section 4).

2. Approach
Figure 1 depicts the proposed learning approach. Given source code
and a list of error reports emitted by an SCA tool for the source
code, we start by reducing the source code to a subset of itself to
isolate the code locations that are related to the error report. Next,
we label the error reports by manually examining code (potentially
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Figure 1. Learning approach overview.

the reduced version). Lastly, we use machine learning techniques on
the reduced code to discover code structures that are correlated with
false positive error reports and to learn a classifier that can filter out
false positive error reports emitted by the SCA tool in the future.

2.1 Code Preprocessing
In prior work (Reynolds et al. 2017) we identified 14 core code
patterns that lead to false positive error reports. We observed that in
all code patterns the root cause of the false error report often spans
over a small number of program locations. To better document these
patterns, we performed manual code reduction to remove the parts of
the code that were not related to the error report. After this manual
reduction, the resulting program is effectively the smallest code
snippet that still leads to the same false positive error report from
the subject SCA tool.

In this work, we automated the code reduction step. Such
reduction is important because code segments that are not relevant to
the error report may introduce noise, causing over-fitting or spurious
correlations. Now, we explain the reduction techniques we apply;
method body and program slicing.
Method body. As a naive approach, we simply take the body of the
method that contains the warning line in it (referred to as “warning
method" later in the text). Note that, many of the code locations
relevant for the error report are not inside the body of the warning
method. In many cases, the causes of the report span over multiple
methods and classes. Hence, this reduction is not a perfect way of
isolating relevant code locations. However, if we can detect patterns
in such sparse data, our models must be on the right track.
Program slicing. Given a fixed point in a program, program slicing
is a technique that reduces that program to its minimal form, called
slice, which still has the same behavior at that fixed point (Weiser
1981). The reduction is done by removing the code that does not
affect the behavior at the given point. Computing the program slice
from the warning line up to the entry point of a program would
give us the backward slice which covers all code locations that are
relevant for the error report (in theory). We will explain how we
configured an industrial scale framework, WALA, to compute the
backward slice later in Section 3 with more detail.

2.2 Learning
Filtering false positive error reports can be viewed as a binary
classification problem with the classes True Positive and False
Positive. In this binary classification problem, we have two major
goals; 1) discovering code pieces correlated with these classes, and
2) learning a classifier (see Figure 1). Towards achieving these goals,
we explore two different learning approaches. First, we use a simple
Naive Bayes inference based learning model. Second, we use a
neural network based language model called LSTM (Hochreiter and
Schmidhuber 1997). The first approach is simple and interpretable.
The second approach can learn more complex structures.

2.2.1 Naive Bayesian Inference
We formulate the problem as calculating the probability that an error
report is either a true positive or a false positive, given the underlying
code. So, the probability of the error report being a false positive is
P (e=0|code) where e=0 means there is no error in the code. Since
there are only two classes, the probability of being a true positive
can be simply computed as P (e=1|code) = 1− P (e=0|code).
To calculate the probability P (e=0|code), we use a simple Bayesian
inference:

P (e = 0|code) = P (code|e = 0)P (e = 0)

P (code)
=

P (code|e = 0)P (e = 0)

P (code|e = 0)P (e = 0) + P (code|e = 1)P (e = 1)

Where P (e=0) and P (e=1) are respectively the percentages of
false positive and true positive populations in the dataset, and
P (code) is the probability of getting this specific code from the
unknown distribution of all codes. To calculate P (code|e=0) and
P (code|e=1), we formulate the code as a sequence of instruc-
tions (bytecodes), i.e., code=< I1, I2, I3, ..., In >. So we rewrite
P (code|e=0) as,

P (code|e = 0) = P (I1, I2, ..., In|e = 0)

= P (I1|e = 0)P (I2, ..., In|I1, e = 0)

= P (I1|e = 0)P (I2|I1, e = 0)P (I3, ...In|I1, I2, e = 0)

...

= P (I1|e = 0)P (I2|I1, e = 0)...P (In|I1, I2, ..., e = 0)

To calculate each probability, we need to count the number of times
each combination occurs in the dataset. However, for a complicated
probability like P (In|I1, I2, ..., e=0), we need to have a huge
dataset to be able to estimate it accurately. In order to avoid this issue,
we simplify this probability by assuming a Markov property. For
this analysis, the Markov property simply means that the probability
of seeing each instruction is independent of any other instruction
in the code. Although this is not necessarily true in all codes, this
assumption helps us build an initial model to have an intuition of
what is happening in the dataset (we know this assumption is not
likely for flow sensitive properties. Our second model does not
need this assumption). With the Markov property, the underlying
probability becomes:

P (code|e = 0) = P (I1|e = 0)P (I2|e = 0)...P (In|e = 0)

Calculating each of the P (Ii|e=0) is very straightforward. We
count the number of times instruction Ii appears in any false positive
example, and we divide it by the total number of instructions
in all of the false positive examples. Algorithm 1 shows how to
calculate these probabilities. Line 3 counts the number of times
each instruction appears in true positive and false positive examples.

Algorithm 1 Computing Probabilities
1: for each code C in Dataset do
2: for each instruction I in C do
3: count[C.isTruePositive][I]++
4: total[C.isTruePositive]++
5: end for
6: end for
7: for each instruction I do
8: P (I|e = 1)← count[True][I]/total[True]
9: P (I|e = 0)← count[False][I]/total[False]

10: end for
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Then, line 4 counts the total number of instructions in each class.
Finally, lines 8 and 9 compute the probabilities for instructions.

2.2.2 Long Short Term Memory
Long Short-Term Memory (LSTM) is a special kind of recurrent
neural network introduced by Hochreiter and Schmidhuber (1997).
The main motivation behind this model is to capture long-term
dependencies in sequential data. Although there are many variations,
a standard LSTM model typically has two recurrent connections;
the output and the memory. The output recurrence is the norm of
the recurrent neural networks. The memory, however, is specific to
LSTM and it enables the model to remember information from the
past (earlier tokens in the sequence), and by doing so, LSTM can
capture long-term dependencies.

We think LSTM model is a good fit for our classification problem
because 1) our data is sequential, and 2) it certainly has long-term
dependencies which may be relevant to whether or not an error
report is true or false. For instance, variable def-use pairs, method
calls with arguments, accessing class fields are some of the program
structures which would form long-term dependencies in code (see
Section 3 for an example long-term dependency).

Carrier and Cho (2016) designed a single layer LSTM model
for sentiment analysis which is also a binary classification problem
like ours. In this work, we adopt this simple LSTM model using
adadelta optimization algorithm (Zeiler 2012). To be able to make
some observations by visualizing the inner workings of the model,
we prefer having fewer (four) cells each of which is an LSTM (see
Figure 4). Finding the optimum number of cells is not in the scope
of this work. Following the LSTM layer, there is a pooling layer
to compute a general representation of the data and finally logistic
regression to classify the data into one of the two classes. Figure 2
shows the structure of the LSTM unrolled over time, with n being
the length of the longest sequence.

Figure 2. The LSTM model unrolled over time.

3. Case Study
This section presents the case study we conducted to evaluate the
effectiveness of the proposed approach.

3.1 Subject SCA Tool and Warning Type
In this case study, we focus on the SQL injection flaw type. As
the subject SCA tool, we use the FindSecBugs plug-in of Find-
Bugs (Arteau 2016; Ayewah et al. 2008) (a widely-used tool for
Java). This plug-in performs taint analysis to find SQL injection
flaws. Very simply, taint analysis checks for data-flow from untrusted
sources to safety critical sink points. For example, one safety-critical
sink point for SQL injection is the “Connection.execute(String)"
Java statement. A string parameter passed to this method is con-
sidered as tainted if it comes from an untrusted source such as an
HTTP cookie or a user input (both are untrusted source because
malicious users can leverage them to attack a system). FindSecBugs

emits an SQL injection error report in such cases to warn the user
of a potential security problem.

However, for complex source code, it may be difficult to deter-
mine whether the parameters are tainted. To give an example, it is a
very common scenario to receive a user input to become a part of
an SQL string. In such cases, developers often perform their own
security checks against an injection threat. When the chain of in-
formation flow becomes too complicated, the SCA tool may not be
able to correctly track it, and might, therefore, emit a false positive
error report.

Note that, the proposed approach is not restricted to SQL
injection flaws, FindSecBugs, or taint analysis which are just the
subjects for this case study. Our learners do not make use of any
piece of information that is specific to these subjects. Furthermore,
we think that it can be possible to train a model that works for
multiple flaw types or SCA tools.

3.2 Data
One of the biggest challenges for our problem is to find a sufficient
dataset on which to train. We know of no publicly available bench-
mark datasets containing real-world programs with labeled error
reports emitted by SCA tools. However, there are two benchmark
test suites developed to evaluate the performance of SCA tools;
Juliet (Boland and Black 2012) and Owasp benchmark (Owasp
2017). These test suites consist of test cases that exercise common
weaknesses (Martin 2007). Note that, not all test cases really have an
actual weakness. In fact, roughly half of the test cases are designed
in ways that may trick SCA tools into emitting false reports. For
this case study, we focused on the Owasp benchmark test suite as it
has a bigger dataset for SQL injection flaw type. This dataset has
2,371 data points; 1,193 false positive and 1,178 true positive error
reports.

Figure 3 shows an example Owasp test case for which Find-
SecBugs generates an error report. In line 7, the “param" variable
gets a value from an HTTP header element which is considered
to be a tainted source. The “param” variable is then passed to
the “doSomething" method as an argument. In the “doSomething"
method, starting at line 17, the tainted “param" argument is put into
a HashMap object, line 21. Next, it is read back from the map into
the “bar" variable in line 23. At this point, the “bar" variable has
a tainted value. However, without doing anything with that tainted
value, the program gets a new value from the map which is this time
a hard-coded string, i.e., a trusted source. Finally “doSomething"
returns this hard-coded string which gets concatenated into the “sql"
variable at line 10. Then a callable statement is created and executed,
lines 13 and 14. To summarize, the string concatenated with the
SQL is hard coded and thus does not represent an injection threat.
Therefore, the error report is a false positive.

3.3 Preprocessing
For practicality reasons, we focus on the bytecode representation
of the data. With bytecode, there are fewer program specific tokens
and syntactic components than that found in source code. Also, it is
much easier for a machine learning model to work on the bytecode
since it has already been simplified and itemized. In contrast, in the
source code there might be multiple instructions in a single line and
what each instruction is doing is, therefore, less easy to understand.
This makes source code harder to analyze.

For the SQL injection dataset, we applied the two code reduction
techniques (described in Section 2) leading to two different reduced
datasets called “method body" and “backward slice" respectively.
Application of method body reduction is straightforward, we simply
take the bytecode for the body of the warning method. Backward
slicing is more complex, as described below.
Tuning WALA. We use the WALA (IBM 2006) program slicer to
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1 public class BenchmarkTest16536 extends HttpServlet {
2 public void doPost(HttpServletRequest r){
3 String param = "";
4 Enumeration<String> headers =

r.getHeaders("foo");
5 if (headers.hasMoreElements()) {
6 // just grab first element
7 param = headers.nextElement();
8 }
9 String bar = doSomething(param);

10 String sql = "{call verifyUserPassword(’foo’,’"
11 + bar + "’)}";
12 Connection con = DatabaseHelper.getConnection();
13 CallableStatement stmt = con.prepareCall(sql);
14 stmt.execute();
15 } // end doPost
16
17 private static String doSomething(String param){
18 String bar = "safe!";
19 HashMap<String,Object> map = new HashMap();
20 map.put("keyA", "a_Value");
21 map.put("keyB", param.toString());
22 map.put("keyC", "another_Value");
23 bar = (String) map.get("keyB");
24 bar = (String) map.get("keyA");
25 return bar;
26 }
27 }

Figure 3. An example Owasp test-case that FindSecBugs generates
a false positive error report for (simplified for presentation).

compute a backward slice with respect to a warning line. In theory,
backward slice should cover all code locations related to the error
report. However, program slicing is unsolvable in general and not
scalable most of the time (Weiser 1981). In fact, we experienced
excessive execution times when computing backward slices even
for the simple short Owasp test cases. To avoid this problem, we
configured WALA program slicer to narrow the scope and limit the
amount of analysis it does for computing the slice.

First, we restricted the set of data dependencies by ignoring
exception objects, base pointers, and heap components. We assume
that exception objects are not relevant to the error report. Base
pointers and heap variables, on the other hand, are just represented
as indexes in the bytecode, over which our models cannot effectively
reason, so we discarded them.

Second, we set the entry points as close to the warning method as
possible. An entry point is the place where the backward slice ends.
By default, this point would be the main method of the program. For
the Owasp test suite, however, there is a large amount of code in the
main method that is common for all test cases. Since this common
code is unlikely to be relevant to any error reports, we rule it out by
setting the warning method as the entry point for Owasp.

Third, we exclude Owasp utility classes, Java classes, and all
classes of third party libraries as none of them are relevant to the
error report for this case study. With this exclusion, we are not
removing the references to these classes, just treating them as a
black box. With the WALA tuning mentioned here, we are now
able to compute a modified backward slice for Owasp test cases in
reasonable times.

Note that, although WALA analyzes bytecode, the slice it outputs
differs from bytecode with a few points. For presentation purposes,
WALA uses some additional instructions like “new”, “branch”,
“return”, which do not belong to Java bytecode. Therefore, the
dictionary of the method body dataset and the dictionary of the
backward slice dataset are not exactly the same.

Now, we explain the further changes we performed for both
datasets. First of all, we removed program-specific tokens and literal
expressions because they may give away whether the error report is
a true positive or a false positive. For the LSTM Classifier, we do
this by deleting literal expressions and replacing program-specific
objects with “UNK_OBJ" and method calls with “UNK_CALL".
For the Naive Bayes Classifier, we do so by simply deleting them
all. Note that, this step is also necessary to be able to generalize the
classifier across programs. If we let the model learn from program-
specific components, then it will not be able to do a good job on the
code that does not share same components.

Lastly, for the Naive Bayes Classifier, we remove all arguments
to instructions except the invoke instructions (invokeinterface, in-
vokevirtual etc.). With them, we also keep the class names being
called. This is done to simplify the dataset more. Furthermore, we
treat all kinds of invoke instructions as the same by simply replacing
them with "invoke". For the LSTM Classifier, we tokenized the data
by whitespace. (e.g., with the invoke instructions, the instruction
itself is one token and the class being invoked is one token). There-
fore, when analyzing results, we use the word ‘token’ for LSTM
and ‘instruction’ for Naive Bayes.

4. Results and Analysis
For all experiments, the dataset has been randomly split into 80%
training set, and 20% test set. Table 1 summarizes the results.
Accuracy is the percentage of correctly classified samples. Recall
and precision are the percentages of correctly classified false positive
samples with respect to all false positive samples and the samples
classified as false positive, respectively. All three of the metrics are
computed using the test portion of the datasets.

4.1 Naive Bayes Classifier Analysis
For the analysis of results, we consider any instruction I to be
independent of SQL injection flaw if the value[

P (I|e = 0)

P (I|e = 0) + P (I|e = 1)
− 0.5

]
is smaller than 0.1 in magnitude. We call this value “False Positive
Dependence" and it ranges from −0.5 to 0.5 inclusive, where large
positive values mean the instruction is correlated with false positive
class and large negative values mean it is correlated with true
positive class. Values around zero mean the instruction is equally
likely to appear in both true positive and false positive classes (i.e.
P (I|e=0) ' P (I|e=1)) and therefore is independent of SQL
injection flaw.

We started the experiment by running the Naive Bayes Classifier
on the method body dataset. Although the accuracy result is not
very high for this experiment (63%, in Table 1), it confirmed that
the bytecode contains recognizable signals indicating false positive
error reports.

The Naive Bayes Classifier learns the conditional property of
each instruction, given that an error exists. We observed that instruc-
tions like iload, ifne, etc., are equally likely to appear in both true
and false positive samples. Therefore, their “False Positive Depen-
dence" value is below the threshold (0.1) and these instructions are
independent of SQL injection flaws.

classifier dataset training recall precision accuracy
time (m) %

Naive method body 0.02 60 64 63
Bayes backward slice 0.03 66 75 72

LSTM method body 17 81.3 97.3 89.6
backward slice 18 97 78.2 85

Table 1. Results.
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instructions False Positive Dependence
method body backward slice

invoke esapi.Encoder −0.09 −0.36
invoke java.util.ArrayList 0.04 0.18
invoke java.util.HashMap 0.18 0.25

Table 2. Important instructions

Next, the only instruction we found to be correlated with the false
positive class is “invoke java.util.HashMap" (Table 2). By manually
examining the Owasp test suit we see that, it is a common pattern
to insert a tainted string and also a safe string into a HashMap, and
then extract the safe string from the HashMap to become a part of
an SQL (see Figure 3 for an example). This is done to “trick” SCA
tools into emitting incorrect reports, and Naive Bayes Classifier
correctly identifies this situation.

For the second experiment, we did the same analysis for the
backward slices dataset. Our hypothesis is that analyzing only the
code available in method bodies is not enough. Instead, we need
to consider all relevant instructions, even if they are outside the
method body. Backward slices provide this information by including
instructions that may be relevant to the error report.

Running the Naive Bayes model on the backward slice dataset
confirms our findings in method body dataset. In addition to
HashMap, this model also learns from the backward slices that
ArrayList invocation is highly correlated with false positives, and
Encoder invocation is highly correlated with true positives. The
False Positive Dependence for significant classes invoked is shown
in Table 2. These correlations can easily be justified by examining
the code.

In Owasp, ArrayList is used to trick the analyzer, much like
HashMap did in the previous discussion. Furthermore, Encoder is
mainly used in the dataset for things like HTML encoding but not
for SQL escaping. This pattern is used to trick the analyzer into
missing some true positive samples, which our model identifies as
well.

The main reason for improved results in backward slices dataset
is that we have access to all relevant instructions and irrelevant
instructions which act as noise have been removed. This increases
the confidence of the classifier. Table 2 shows that dependence
values have increased in magnitude for backward slices, which
means the classifier is more confident in their effect on the code.
Weaknesses. To better understand the limitations of the Bayes
model, we examined some of the incorrectly classified examples. We
observed that the model can still identify the role of each instruction
correctly. However, in those examples, multiple instructions are
correlated with true positives and a single or a few instruction
that make the string safe. By it’s nature, the Naive Bayes model
cannot take into account that a single instruction is enough to make
the string untainted. So when we multiply the probabilities for all
instruction, that single instruction cannot make much of a difference
and the Bayes model end up classifying the code incorrectly.

4.2 LSTM Classifier Analysis
With the LSTM classifier, we achieved 89.6% and 85% accuracy for
the method body and backward slice datasets respectively (Table 1).
The classifier trained on method body dataset is very precise, i.e.
97.3% of the error reports classified as false positive are indeed false
positive. However, this classifier misses 18.7% of false positives,
i.e., classifying them as true positives. The situation is reversed for
the classifier trained on the backward slice dataset. It catches 97%
of the false positives but also filters out many true positive reports,
i.e., 21.8% of the samples classified as false positive are indeed true
positive.

We examined a sample program in which the classifier trained on
method body dataset can classify correctly but the classifier trained
on backward slice dataset can not. We observed that many instruc-
tions that only exist in the method body dataset, like “aload_0”,
“i_const_0”, “dup” etc., are found to be important by the classifier.
Note that, these instructions are not in the backward slice dataset
either because they do not have any effect on the warning line, or
because of the tuning we did. The first case, learning the instructions
that are not related to the warning line, is basically over-fitting the
noise. The second case, however, requires a deeper examination that
we defer to the future work. Just relying on the first case, we think
that the classifier trained on the backward slice dataset is more gen-
eralizable as this dataset has lesser noise and more report relevant
components. Hence, in the rest of this section, we will only analyze
the classifier trained on the backward slice dataset.

Understanding the source of the LSTM’s high performance is
very challenging as we cannot fully unfold the inner workings of
it. Nevertheless, we can visualize the output values of some cells
as suggested by Karpathy et al. (2015). Figure 4 illustrates output
values of four cells for two correctly classified backward slices by
coloring the background. The latter is the slice computed for the
false positive sample in Figure 3. The former is the slice computed
for a true positive which is structurally similar to the latter with two
important differences; 1) “doSomething" method is defined in an
inner class, and 2) an HTML encoder is called in “doSomething"
method (instead of HashMap operations). Note that, last tokens are
the labels; “truepositive" and “falsepositive".

Now, we discuss some interesting observations from Figure 4.
First, due to the memory component of LSTM, the background color
of a token (output for that token) does not solely depend on that to-
ken but is affected by the history. For example, looking at the Cell 1,
the first token causes some yellowness in both samples. Since there
is no history before the first token, this yellowness is solely due to
that token. On the other hand, looking at Cell 4, the first lines of both
samples mostly the same except that there is one token with cyan
background in the true positive sample; “eq". The only difference in
the first lines is the tainted sources invoked which are “HttpServle-
tRequest.getHeaderNames" and “HttpServletRequest.getHeaders
String" in true positive and false positive respectively. Therefore, the
only reason why “eq" token is interesting only in the true positive
sample must be the invocation of the tainted source “HttpServle-
tRequest.getHeaderNames". This is a good example of a long-term
dependency as there are six other tokens in between.

Second, in both samples, all cells have a high output for the
“Enumeration.nextElement" token, which is highly relevant for the
error report as it is the tainted source. Note that, all cells treat this
token the same way in both samples. On the other hand, for the last
return instructions in both samples all cells have very high output,
but this time the output is negative in the true positive sample and
positive in the false positive sample (in first three cells and vice
versa for in the last cell) which clearly happens so due to the history
of tokens. This is a good example illustrating the LSTM’s ability to
infer the context.

Next, looking at the false positive sample in Figure 3, we see that
the core reason of falseness resides in the body of the “doSomething"
method. In particular, HashMap put and get instructions are very
critical. We see that all cells have very high output for a subset of
the tokens that correspond to that instructions. These high output
values for HashMap put and get instructions match the findings of
the Bayesian model. Furthermore, all cells go very yellow for the
“Encoder.encodeForHTML" method call in the true positive sample.
These high results for “Encoder" tokens are also in accordance with
the findings of the Bayesian model.

Lastly, Figure 4 shows that although most of the high output
values are reasonable and interpretable, there are still many that we
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Figure 4. LSTM color map for two correctly classified slices. First slice is a true positive and second slice is the false positive in Figure 3.
Cyan, yellow, and white background mean positive, negative and under threshold (±0.35) output value respectively. There is only one tint of
white, but for cyan and yellow, the darker the background the larger the output is (in magnitude).

cannot explain. This situation is common with neural networks and
we will continue to explore it in the future work.

4.3 Threats to Validity
Like any empirical study, our findings are subject to threats to
internal and external validity. For this case study, we were primarily
concerned with threats to external validity since they limit our ability
to generalize the results of our studies.

For this case study, all majors generalizability threats are related
to the representativeness of the datasets. First, Owasp test cases are
not truly representative of real-world programs. They are not large
in size and they do not handle any particular functionality other than
exercising the targeted weakness. Nevertheless, they are still a good
starting point for our problem. Second, the datasets only cover one
type of flaw, SQL injection, emitted by one SCA tool, FindSecBugs.
However, FindSecBugs is a plug-in of FindBugs which we think is
a good representative of open source SCA tools. Next, we see that
FindSecBugs performs the same analysis all other types of security
flaws it checks (such as command injection, LDAP injection, and
XSS). Therefore, FindSecBugs and SQL injection flaw is a good
combination representing security flaws and checkers. Lastly, we
only experiment with Java bytecode. We will work to address these
threats in future work (see Section 6).

5. Related Work
There are three threads of related work.
Code reduction. We looked into three code reduction techniques;
delta debugging (Zeller and Hildebrandt 2002), hierarchical delta
debugging (Misherghi and Su 2006), and c-reduce Regehr et al.
(2012). Delta debugging isolates the failure-inducing input by
applying a systematic binary search based reduction to the input that
causes the program to crash. Hierarchical delta debugging has the
same goal but it specifically targets structured inputs. C-reduce is a
tool that applies a set of C/C++ specific transformations for finding
small programs that cause compiler crashes.

All of these techniques use a user-provided interestingness
criteria to guide the reduction. For our problem, writing such an
interestingness criteria is not possible because in general, falseness
of a report cannot be automatically detected. Thus, we choose not
to use these reduction techniques.
Spurious error report filtering. Previous research has looked
into false positive error report problem of SCA tools. Kremenek
and Engler (2003) propose the z-ranking technique to rank error
reports emitted by SCA tools using statistical analysis based on
the likelihood of being a real bug. Kim et al. (2010) report 70%
reduction in the number of false buffer overflow error reports for C
code by applying an iterative analysis with different abstraction
levels. Yüksel and Sözer (2013) experiment with 34 different
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machine learning algorithms to classify SCA error reports using
ten artifact characteristics and report 86% accuracy in classification.
Tripp et al. (2014) propose a customizable approach for learning
a classifier for false error reports produced with taint analysis for
JavaScript.

None of these approaches apply machine learning to the source
code. We differ from them in this respect.
Natural language processing (NLP) techniques applied to code.
NLP techniques work very well in practice due to the fact that the
language humans use in the daily life is repetitive and predictable.
Hindle et al. (2012) argue source code written by human developers
is similarly repetitive and predictable. Therefore, NLP techniques
can potentially be very successful in learning properties from code.
Since the work of Hindle et al. (2012), there have been many studies
using statistical language models for handling important software
development and maintenance tasks (Nguyen et al. 2013; Tu et al.
2014; Raychev et al. 2014, 2015; Allamanis et al. 2015, 2016;
Fowkes and Sutton 2016; Gu et al. 2016; White et al. 2016; Dam
et al. 2016).

Although these work represent a good example of successful
application of NLP techniques for source code processing, none of
them solves the false error report classification problem.

6. Conclusion and Future Work
We presented a learning approach to find program structures that
cause the state of the art SCA tools to emit false error reports and
filter out such false error reports with a classifier trained on the code.
In particular, we used a Naive Bayes model and an LSTM model.
With the Bayes model, we discovered interesting signals involving
Java collection objects. Investigating these correlations, we found
that FindSecBugs, the subject SCA tool, cannot successfully reason
about very simple usage scenarios of Java collection objects like
“HashMap" and “List". Therefore some false positive results might
be avoided if SCA developers improve their analysis of collection
classes in future. With the LSTM model, we achieved 89.6%
and 85% accuracy in classification for the method body and the
backward slice datasets respectively. By coloring the background of
the input tokens based on the output of LSTM cells, we 1) showed
a long-term dependency in the data, 2) demonstrated LSTMs’
capability of inferring the context, and 3) showed how LSTMs
output values agree with the findings of Naive Bayes model.

In future work, we will aim at expanding our datasets to improve
the generalizability of our approach. To build a dataset of real-world
programs with true and false positive error reports generated for
them, we will use crowd-sourcing techniques as studied by LaToza
and Hoek (2016) using checklist questions to review SCA results
(Ayewah and Pugh 2009).

After improving our datasets, we will conduct extended empir-
ical studies including more SCA tools and flaw types and using
more advanced machine learning techniques. In particular, we are
interested in investigating recursive neural networks (Socher et al.
2011) for learning on abstract syntax tree (AST) representation of
the code. One downside of the bytecode representation we used in
this work is that there is not contextual information in it. In contrast,
AST representation can provide this information which advanced
learning techniques can potentially leverage.

Lastly, we will extend the approach to become a semi-supervised
incremental online service that SCA developers and users can
leverage to improve the SCA tools quality and practicality.
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