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Abstract

Type Qualifiers: Lightweight Specifications to Improve Software Quality

by

Jeffrey Scott Foster

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alexander S. Aiken, Chair

Software plays a pivotal role in our daily lives, yet software glitches and security vulner-

abilities continue to plague us. Existing techniques for ensuring the quality of software

are limited in scope, suggesting that we need to supply programmers with new tools to

make it easier to write programs with fewer bugs. In this dissertation, we propose using

type qualifiers, a lightweight, type-based mechanism, to improve the quality of software.

In our framework, programmers add a few qualifier annotations to their source code, and

type qualifier inference determines the remaining qualifiers and checks consistency of the

qualifier annotations. In this dissertation we develop scalable inference algorithms for flow-

insensitive qualifiers, which are invariant during execution, and for flow-sensitive qualifiers,

which may vary from one program point to the next. The latter inference algorithm in-

corporates flow-insensitive alias analysis, effect inference, ideas from linear type systems,

and lazy constraint resolution to scale to large programs. We also describe a new language

construct “restrict” that allows a programmer to specify certain aliasing properties, and

we give a provably sound system for checking usage of restrict. In our system, restrict is

used to improve the precision of flow-sensitive type qualifier inference. Finally, we describe

a tool for adding type qualifiers to the C programming language, and we present several

experiments using our tool, including finding security vulnerabilities in popular C programs

and finding deadlocks in the Linux kernel.
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Chapter 1

Introduction

Software systems are an increasingly important part of our daily lives. Today,

everything from routine office transactions to critical infrastructure services relies on the

effectiveness of large, complicated software systems, yet our ability to produce such systems

far outstrips our ability to ensure their quality. Well-publicized software glitches have led to

failures such as the Mars Climate Orbiter crash [76], and security vulnerabilities in software

have paved the way for attacks such as the Code Red Worm [15]. The potentially staggering

cost of software quality problems has led to a renewed call to increase the safety, reliability,

and maintainability of software [49, 89].

There are currently two widely used techniques for validating program properties:

testing and code auditing. In testing, either programmers or testers check their program on

a series of inputs designed to exercise the system’s various features. In code auditing, groups

of programmers manually review source code together, looking for potential problems. Both

techniques are extremely useful in practice: testing catches many errors and shows that

the code runs correctly on a variety of inputs, and code auditing can find both obvious

and subtle bugs in software. Unfortunately, while effective, both techniques have serious

limitations. Although well-designed test cases cover much of the behavior of a program,

the only assurance testing provides is that the test cases work correctly. Code auditing is

extremely difficult, and it is unreasonable to assume that manual inspection can show the

safety of a large, complicated software system. Given these limitations, it seems clear that

we need to complement both testing and code auditing with other techniques.

In this dissertation we propose using type qualifiers to improve software quality.

Type qualifiers are lightweight annotations for specifying program properties (see below).
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In later chapters we present techniques that verify, at compile-time, the correctness of

type qualifier annotations in source code. This kind of static, specification-and-checking

approach has a number of advantages:

• Unlike dynamic techniques like testing, static analysis conservatively models all runs

of a program. This is especially valuable for finding bugs that are hard to replicate

and for finding security vulnerabilities, and both are exactly the problems that are

most difficult to identify with testing.

• Static checking can provide strong guarantees by proving that certain program prop-

erties always hold. In particular, type qualifier systems, when applied to type-safe

languages, are sound, meaning that programs with valid qualifier annotations do not

violate the semantics of the qualifiers. This assurance enables the programmer to use

type qualifiers to eliminate whole classes of bugs from their program.

• Programmers work hard to convince themselves that their programs behave as in-

tended. By providing programmers with a specification language for writing down

some of their intentions, and by providing automatic checking of their specifications,

we help programmers write and design correct programs from the start.

• Specifications that are incorporated into the source code are a very precise form of

documentation. Such documentation is invaluable when modifying and upgrading

code, and automatic checking can identify attempted changes that violate existing

interfaces.

The type qualifiers we propose as specifications are atomic properties that “qual-

ify” the standard types. Many programming languages have a few special purpose type

qualifiers. In contrast, in this dissertation we propose a general framework for adding new,

user-specified qualifiers to languages such as C, C++, Java, and ML. In our framework,

programmers add a few key type qualifier annotations to their programs and then apply

type qualifier inference to the source code, automatically inferring the remaining qualifiers

and checking the consistency of the qualifier annotations.

As one example, we can use type qualifiers to detect potential security vulnerabil-

ities (Section 6.2). Security-conscious programs need to distinguish untrusted values read

from the network from trusted values the program itself creates. We can model this prop-

erty by using qualifiers tainted and untainted to mark the types of untrusted and trusted
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data, respectively. Type qualifier errors occur when a value of type tainted T is used where

a value of type untainted T is expected, where T is a standard unqualified type. Any such

type qualifier error indicates a potential security vulnerability.

As another example, we can use type qualifiers to statically check correct usage

of I/O operations on files (Section 6.4). In most systems, file operations can only be used

in certain ways: a file must be opened for reading before it is read, it must be opened for

writing before it is written to, and once closed a file cannot be accessed. We can express

these rules with type qualifiers. We introduce qualifiers open, read , write, and readwrite to

mark files that have been opened in an undetermined mode, for reading, for writing, and

for both reading a writing, respectively. We also introduce a qualifier closed to mark files

that are not open. File operations are given types for tracking file states. For example, the

close function takes an open file and changes it to a closed file. Type qualifier errors occur

when we misuse the file interface—for example, if we attempt to read a closed file or write

a read file. Any such error indicates a potential bug in the program.

Type qualifiers have a number of advantages as a mechanism for specifying and

checking properties of programs:

• Of the multitude of proposals for statically-checked program annotations, types are

arguably the most successful. In many languages, programmers must already include

type annotations in their source code. Thus the machinery of types is familiar to

the programmer, and we believe it is natural for a programmer to specify additional

properties with a type qualifier. This bodes well for the adoption of type qualifiers in

practice, since a key concern about any specification language is whether programmers

are willing to use it.

• Type qualifiers are additional annotations layered on top of the standard types. As

such, they can be safely ignored by conventional tools (such as standard compilers)

that do not understand them. This natural backward compatibility lowers the barrier

to adopting type qualifiers.

• Type qualifiers support efficient inference, which reduces the burden on the program-

mer by requiring fewer annotations. Efficient inference also allows us to apply type

qualifiers to large bodies of legacy code; we can sprinkle in a few type qualifier anno-

tations, and inference determines the remaining qualifiers automatically.
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• While lightweight, type qualifiers can express a number of interesting properties, some

of which we discuss in Chapter 6.

Outline of This Work and Contributions

In our framework, type qualifiers are added to every level of the standard types.

The key technical property of type qualifiers is that they do not affect the underlying

standard type structure (Section 2.1 describes standard types). That is, a program with

type qualifier annotations should type check only if the same program type checks with the

annotations removed. Aside from this restriction, type qualifiers could potentially affect

program semantics arbitrarily. In this dissertation, however, we focus on a very useful

subclass of type qualifiers, those that introduce subtyping.

In our system, each set of related type qualifiers forms a partial order (Section 2.3),

which is extended to a subtype relation among qualified types, which are simply types

with qualifiers. For example, consider the qualifiers tainted and untainted . While it is

an error for tainted data to be used in untainted positions, the reverse is perfectly fine—

presumably positions that accept tainted data can accept any kind of data. Thus we choose

untainted < tainted as the partial order. For the qualifiers open, read , write, readwrite, and

closed , we choose the partial order

readwrite < read < open

readwrite < write < open

In other words, a file open for reading and writing can be treated as a file open reading or as

a file open for writing, and any of those is an open file. A closed file can never be considered

a open file, nor vice-versa, hence closed is incomparable to the other four qualifiers.

Chapter 3 presents a generic system for extending a standard type system with

type qualifiers and related annotations. Chapter 3 also describes an algorithm for perform-

ing flow-insensitive (see below) type qualifier inference. Our inference algorithm is designed

using constraint-based analysis. To infer qualifiers in a source program, we scan the program

text and generate a series of constraints q1 ≤ q2 among qualifiers and qualifier variables,

which stand for as-yet-unknown qualifiers. We solve the constraints for the qualifier vari-

ables and warn the programmer if the constraints have no solution, which indicates a type

qualifier error.
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In program analysis, there is an important distinction between flow-insensitive

analysis, which tends to be very efficient, and flow-sensitive analysis, which is more precise

but usually does not scale well to whole programs. Flow-insensitive analysis proves facts

about a program that are true throughout the whole execution. For example, it is reasonable

to model tainted and untainted qualifiers flow-insensitively, i.e., variables are either always

tainted or always untainted. Flow-sensitive analysis, in contrast, proves facts that may

change from one program point to another. For example, it makes the most sense to model

open, closed , etc. flow-sensitively, since the state of a file can vary from one program point

to the next.

The centerpiece of this dissertation is Chapter 4, which presents a flow-sensitive

type qualifier system, including a novel, lazy constraint-based algorithm for flow-sensitive

type qualifier inference. In contrast to classical data flow analysis, the system described

in Chapter 4 explicitly models pointers, heap-allocated data, aliasing, and function calls.

Since we would like to apply our system to large programs, our inference algorithm is

carefully crafted to scale to whole program analysis. We use an inexpensive flow-insensitive

alias analysis and effect inference to produce an approximate model of the store. That

model of the store forms the basis for a second inference step that computes flow-sensitive

information, using ideas from linear type systems to model updates. To achieve scalability,

rather than explicitly modeling the entire state at each program point, we lazily solve

only a portion of the constraints generated by the second step, namely the portion of the

constraints needed to check qualifier annotations.

In the context of our flow-sensitive qualifier system, we introduce a new language

construct that may be of independent interest, restrictx = e1 in e2 (Section 4.2). The

restrict construct, related to the ANSI C type qualifier of the same name [6], allows

programmers to specify aliasing behavior in their programs. We say that two expressions

referring to a memory location alias if they evaluate to the same location. The presence

of aliasing, which is an essential feature of most modern programming languages, makes

program analysis much more difficult. A programmer can use occurrences of restrictx =

e1 in e2 to help improve the precision of a program analysis. In this construct, the name x is

initialized to e1, which must be a pointer, and x is in scope during evaluation of e2. Suppose

x and e1 point to object o, i.e., *x and *e1 alias, where *e reads indirectly through pointer

e. At a high level, the meaning of restrict is that, within the scope of e2, only x and

values derived from x may be used to access o. This fact often allows a program analysis—
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in particular, our flow-sensitive type qualifier inference—to track the state of o precisely

within e2, intuitively because the restrict construct guarantees that the programmer does

not modify o “behind the back” of the program analysis; the programmer always modifies

o through x or values derived from x. Our inference system checks the correctness of

restrict annotations using effects, and we give proof that this checking is sound.

To test our ideas in practice, we built a tool called Cqual for adding user-defined

flow-insensitive and flow-sensitive type qualifiers to C (Chapter 5). Cqual has been used

both in our own research and by others [127]. A key feature of Cqual is that it includes

a user interface that shows programmers not only what type qualifiers were inferred but

why they were inferred. After inference, the program source code is presented to the user

with each identifier colored according to its inferred qualifiers. For each error message, the

user can browse qualifier constraints that exhibit the error. For example, if an error occurs

because tainted data is used in an untainted position, the user is shown a set of constraints

and a program path that shows step-by-step how tainted was propagated to untainted .

From our own personal experience, such an interface, while often neglected in the research

literature, is one of the most important and visible features of any program analysis tool,

and we found the interface invaluable in our research.

We have performed a number of experiments with Cqual (Chapter 6). We have

used Cqual to infer const qualifiers [6] in ANSI C programs. We found that qualifier

inference is able to infer many additional consts, even in programs that already make a

significant effort to use const (Section 6.1). We have used Cqual to check for format-string

bugs, a particular kind of vulnerability, in several popular C programs. Using Cqual, we

were able to find security vulnerabilities that were not known to us (Section 6.2). We have

used Cqual to find several new deadlocks in the Linux kernel (Section 6.3). Finally, we

have used Cqual to check for proper file operation usage in two C programs (Section 6.4).

In summary, this dissertation makes a number of new contributions:

• We present a framework for adding type qualifiers to almost any language with stan-

dard types, and we show that flow-insensitive type qualifier inference can be carried

out efficiently.

• We show how to extend our system to flow-sensitive type qualifiers, and we give

a novel, lazy, scalable, constraint-based algorithm for inferring flow-sensitive type

qualifiers.
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• We introduce a new language construct restrict that allows programmers to specify

aliasing behavior in their programs. We give a system for checking restrict and show

that it is sound.

• We describe a practical tool Cqual that adds type qualifiers to the C programming

language. We believe many of the lessons learned in developing Cqual are applicable

to other languages, as well.

• We present empirical evidence that type qualifiers are useful in practice by describing

a number of experiments with type qualifier systems, both flow-insensitive and flow-

sensitive. In the process, we show that our algorithms scale to large programs.
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Chapter 2

Background

In this and the next two chapters we present the theoretical underpinnings of

type qualifier systems. Type qualifiers can be added to any language with a standard

static type system. In order to abstract away from many of the tedious details of real

languages, in this and the next two chapters we present type qualifiers in the context of

a particularly simple, abstract language: the call-by-value lambda calculus [55] extended

with updatable references [122]. Chapter 5 discusses an implementation of type qualifiers

for the C programming language.

Figure 2.1 gives our source language. Note that there are no qualifiers in this

language; we introduce qualifiers in Chapter 3. We sometimes use the non-terminal v

to denote values, which are expressions that cannot be further evaluated.1 Our language

contains three kinds of values: variables, written with lowercase letters x, y, z, etc., integers,

and functions λx.e, which denotes a function with parameter x that evaluates to e. The

constructs in our language that can be evaluated are function application e1 e2, which

applies function e1 to argument e2, name binding letx = e1 in e2 which evaluates e1 and

then binds the variable x to e1 within the scope of e2, allocation ref e, which allocates a

new cell in memory and initializes it to e, dereference *e, which returns the contents of

cell e, and assignment e1 := e2, which replaces the contents of cell e1 with the value of e2.

Rather than add explicit recursion to the language, we assume without further comment

that we have a primitive function Y such that Y f reduces to f (Y f) [120, 122].

In addition to the grammar for our source language, in order to reason about how

a program is supposed to behave we need to have some formal statement of what a program
1We do not allow evaluation within a function body
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e ::= v values
| e1 e2 application
| letx = e1 in e2 name binding
| ref e allocation
| *e dereference
| e1 := e2 assignment

v ::= x variable
| n integer
| λx.e function

Figure 2.1: Source Language

means, i.e., we need a semantics for our language. Figure 2.2 gives a big-step operational

semantics [90] for our language. In these semantics a store S is a mapping from locations l

to values v. We use ∅ for the empty store.

In the rules in Figure 2.2, as well as throughout this dissertation, we present

semantics and type systems in the natural deduction style. Rules are of the form

H1 . . . Hn

C

meaning that if we know the hypotheses H1 through Hn are true, then we can prove that

conclusion C is true. For example, here is modus ponens written in this style:

A A⇒ B

B

If we know that A is true and A implies that B is true, then we can conclude that B is

true.

The semantics in Figure 2.2 is a set of reduction rules of the form S ` e → v;S′,

meaning that in initial store S, expression e evaluates to value v and yields a new store

S′. Here a value is either a location, an integer, or a function. Notice that our semantics

contains no environments for variables—instead, we use substitution to bind variables to

values. We discuss each of the rules:

• In [Var], [Int], and [Lam], values remain the same—they do not reduce any further.

• In [App], we evaluate e1 e2 by first evaluating e1, which must yield a function of the

form λx.e. Next we evaluate e2, which yields some value v. Finally, we evaluate the
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l ∈ dom(S)
S ` l→ l;S

[Var]

S ` n→ n;S
[Int]

S ` λx.e→ λx.e;S
[Lam]

S ` e1 → λx.e;S′ S′ ` e2 → v;S′′ S′′ ` e[x 7→ v]→ v′;S′′′

S ` e1 e2 → v′;S′′′ [App]

S ` e1 → v1;S′ S′ ` e2[x 7→ v1]→ v2;S′′

S ` letx = e1 in e2 → v2;S′′ [Let]

S ` e→ v;S′ l 6∈ dom(S′)
S ` ref e→ l;S′[l 7→ v]

[Ref]

S ` e→ l;S′ l ∈ dom(S′)
S ` *e→ S′(l);S′ [Deref]

S ` e1 → l;S′ S′ ` e2 → v;S′′ l ∈ dom(S′′)
S ` e1 := e2 → v;S′′[l 7→ v]

[Assign]

Figure 2.2: Big-Step Operational Semantics

function body e with formal argument x replaced by actual argument v. Notice the

sequencing specified in this rule: we evaluate function application left-to-right, and

we evaluate the argument of a function before performing the function call. The latter

corresponds to our choice of a call-by-value semantics.

• In [Let], we evaluate e1 first to yield a value v1, and then we evaluate e2 with x in e2

replaced by v1. Notice that in fact we could treat letx = e1 in e2 as syntactic sugar

for (λx.e2) e1.

• In [Ref], we first evaluate e to yield value v. Then we find an unused (fresh) location l,

and we return a new store in which l has been bound to value v. The whole expression

evaluates to l.

• In [Deref], we first evaluate e, which yields a location l. We then return the value

bound to l in S′.
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• Finally, in [Assign] we evaluate e1 followed by e2 (notice the left-to-right order of

evaluation). The evaluation of e1 must yield a location l, and we rebind l to the value

of e2.

The operational semantics of Figure 2.2 shows us how to execute a program in our

source language. Unfortunately, not all programs in our source language make sense—some

programs cannot be executed according to the rules in Figure 2.2. For example, rule [App]

requires that the expression in application position evaluate to a function. If we try to

evaluate the expression 3 4 (apply function 3 to argument 4), then rule [App] does not

apply. In fact, there is no rule that allows us to evaluate 3 4, since 3 is not a function.

We model such erroneous programs by reducing them to a special symbol err .

The symbol err is not a value. Intuitively, if while evaluating an expression e we encounter

an expression to which the rules of Figure 2.2 do not apply, then S ` e → err;S′. As

shorthand, we often write this as S ` e → err, since S′ is meaningless once we have

produced an err result. For the sake of completeness, Figure 2.3 gives the error reduction

rules for our semantics. In these rules we use the symbol r to stand for either a value v or the

symbol err . Notice that Figure 2.3 contains two kinds of rules: rules that propagate err

from a sub-step of the reduction (our semantics is strict in err ), and rules that introduce

err when an error is detected locally. Thus there are three possible results for evaluating

an expression: either it reduces to a value, it reduces to err, or it does not terminate.

2.1 Standard Type Systems

As we have just seen, in our operational semantics, among all the programs we can

write down in our source language there are some bad ones that reduce to err. The main

goal of adding a type system to a language is to disallow such programs. Since determining

whether a program reduces to err is undecidable [60], we choose to make our type system

sound but not complete: none of the programs our type system accepts reduce to err, but

there may be some programs our type system rejects that also do not reduce to err.

We observe that one major case when reduction fails is when we apply an operation

to the wrong kind of object (for example, we try to assign to a function, or we try to use

an integer as a function). The idea behind standard static type systems is to try to assign

a static (compile-time) type to each expression e, indicating whether e is an integer, a
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S ` e1 → r r is not of the form λx.e

S ` e1 e2 → err
[App′]

S ` e1 → λx.e;S′ S′ ` e2 → err
S ` e1 e2 → err

[App′′]

S ` e1 → λx.e;S′ S′ ` e2 → v;S′′

S′′ ` e[x 7→ v]→ err
S ` e1 e2 → err

[App′′′]

S ` e1 → err
S ` letx = e1 in e2 → err

[Let′]

S ` e1 → v1;S′ S′ ` e2[x 7→ v1]→ err
S ` letx = e1 in e2 → err

[Let′′]

S ` e→ err
S ` ref e→ err

[Ref′]

S ` e→ r r is not of the form l

S ` *e→ err
[Deref′]

S ` e→ l;S′ l 6∈ dom(S′)
S ` *e→ err

[Deref′′]

S ` e1 → r r is not of the form l

S ` e1 := e2 → err
[Assign′]

S ` e1 → l;S′ S ` e2 → err
S ` e1 := e2 → err

[Assign′′]

S ` e1 → l;S′ S ` e2 → v;S′′ l 6∈ dom(S′′)
S ` e1 := e2 → err

[Assign′′′]

Figure 2.3: Big-Step Operational Semantics, Error Rules

function, or a memory cell. Then when we see an operation on e, we can determine at

compile-time whether it is valid. For example, if we see e1 e2, we accept this application as

valid only if e1 is a function, and if the type of the domain (parameter type) of e1 matches

the type of e2. Note that reduction also may fail if we encounter a variable that is not

bound in the current environment; our type system also prevents this from happening.

The types s (for standard type) we assign to expressions are given by the following
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x ∈ dom(Γ)
Γ ` x : Γ(x)

(Var)

Γ ` n : int
(Int)

Γ[x 7→ s] ` e : s′

Γ ` λx.e : s −→ s′
(Lam)

Γ ` e1 : s −→ s′ Γ ` e2 : s

Γ ` e1 e2 : s′
(App)

Γ ` e1 : s1 Γ[x 7→ s1] ` e2 : s2

Γ ` letx = e1 in e2 : s2
(Let)

Γ ` e : s

Γ ` ref e : ref (s)
(Ref)

Γ ` e : ref (s)
Γ ` *e : s

(Deref)

Γ ` e1 : ref (s) Γ ` e2 : s

Γ ` e1 := e2 : s
(Assign)

Figure 2.4: Standard Type Checking System

grammar:

s ::= int | ref (s) | s −→ s′

The type int is the type of integers. The type ref (s) is the type of a pointer to something

of type s. Finally, the type s −→ s′ is the type of a function that given a parameter of type

s produces a result of type s′. We can use the standard technique of currying [10] to model

functions with multiple parameters.

Our type system is presented as a set of judgments Γ ` e : s, meaning that under

type assumption Γ, expression e has type s. The type assumption Γ is a mapping from

variables to types; intuitively Γ assigns types to the free variables of e. We write ∅ for the

empty mapping.

Figure 2.4 presents our type checking rules. We discuss each of the rules:

• (Var) assigns a variable x the type it has in environment Γ. If x is not assigned a

type in Γ, then this rule cannot apply—hence we reject as ill-typed any programs that
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contain free variables.

• (Int) assigns all integers the type int .

• (Lam) assign a function λx.e type s −→ s′ if, under the assumption that x has type

s, we can show that e has type s′.

• (App) checks that e1 is a function and that the type of e2 matches the type of the

domain of e1. Then (App) assigns e1 e2 the type of the range of e1.

• (Let) computes the type s1 of e1, and then type checks e2 under the assumption that

x has type s1. The type of the let expression is the type of e2.

• (Ref) computes the type s of e, and then assigns ref e the type ref (s), i.e., pointer

to type s.

• (Deref) computes the type of e and checks that it is a ref type. (Deref) assigns *e

the type e points to.

• (Assign) checks that e1 is an updatable reference (a pointer), and that e2 is of the

type e1 points to. Then the expression e1 := e2 is given the type of e2.

Definition 2.1 If e is a closed expression and there exists a type s such that ∅ ` e : s, then

we say that e type checks; informally we say that e has type s.

A key property enjoyed by our type system is subject reduction, meaning an ex-

pression’s type is preserved by reduction:

Lemma 2.2 (Subject Reduction) If e is a closed expression, ∅ ` e → r, and ∅ ` e : s,

then ∅ ` r : s.

Note that this lemma is usually presented in a weaker form to make a proof by induction

easier. We shall not give a proof of this lemma, since it is well known and follows from

the soundness proofs in Appendices A and B, which are for more complicated type systems

described in later chapters.

Using the subject reduction lemma, soundness follows immediately, since err has

no type:

Theorem 2.3 (Type Soundness) If e is a closed expression, ∅ ` e → r, and ∅ ` e : s

for some s, then r is not err .
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Thus we see that type correct programs have the desirable property that they never reduce

to err . Notice, however, that we have not shown that a program that type checks is

“correct.” For example, a program that type checks could fail to terminate, or it could

produce an answer that has the right type but the wrong value. But the partial correctness

guarantee of a type-correct program is still extremely valuable, because it ensures that the

program is free from a large class of errors, allowing the programmer to spend their time

and energy elsewhere. In subsequent chapters in this dissertation, we develop type qualifier

systems to help the programmer eliminate still larger classes of application-specific errors.

2.2 Standard Type Inference

Given that type correct programs have the desirable property that they never

reduce to err , we would like to be able to type check all programs. However, observe that

to apply the type checking rules in Figure 2.4, we need some extra information besides the

bare program in our source language. In particular, to apply (Lam) we somehow need to

guess a type s for the function parameter in order to satisfy the hypothesis of (Lam). But

where does this type come from?

One reasonable solution is to require that programmers annotate their programs

with types. In particular, we extend the syntax for function definition to λx : s.e, where

s is the type of the parameter. Then, whenever we apply (Lam), we get the type of the

parameter from the source code. This is the solution used in languages such as C, C++,

and Java.

It turns out, however, that there is a well-known alternative solution: type infer-

ence. Instead of requiring that the programmer annotate each function parameter with a

type, we can infer the types automatically. This is the solution used in languages such as

ML and Haskell, and it has the advantage that the programmer is freed from the burden of

writing down the types explicitly. ML and Haskell also support (parametric) polymorphic

type inference, which allows the same piece of code to be automatically reused at different

types. However, this dissertation focuses on monomorphic types, so we will not discuss

polymorphism over standard types.

Figure 2.5 shows the rules for performing standard type inference on a program

with no explicit type annotations. These rules prove judgments of the form Γ `′ e : s,

meaning as before that in type environment Γ, expression e has type s. In this and the
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x ∈ dom(Γ)
Γ `′ x : Γ(x)

(Var′)

Γ `′ n : int
(Int′)

Γ[x 7→ α] `′ e : s′ α fresh
Γ `′ λx.e : α −→ s′

(Lam′)

Γ `′ e1 : s1 Γ `′ e2 : s2 s1 = s2 −→ β β fresh
Γ `′ e1 e2 : β

(App′)

Γ `′ e1 : s1 Γ[x 7→ s1] `′ e2 : s2

Γ `′ letx = e1 in e2 : s2
(Let′)

Γ `′ e : s

Γ `′ ref e : ref (s)
(Ref′)

Γ `′ e : s s = ref (β) β fresh
Γ `′ *e : β

(Deref′)

Γ `′ e1 : s1 Γ `′ e2 : s2 s1 = ref (s2)
Γ `′ e1 := e2 : s2

(Assign′)

Figure 2.5: Standard Type Inference System
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C ∪ {α = s} ⇒ C[α 7→ s] add α 7→ s to solution
C ∪ {s = α} ⇒ C[α 7→ s] add α 7→ s to solution

C ∪ {int = int} ⇒ C
C ∪ {ref (s1) = ref (s2)} ⇒ C ∪ {s1 = s2}

C ∪ {s1 −→ s2 = s′1 −→ s′2} ⇒ C ∪ {s1 = s′1} ∪ {s2 = s′2}
C ∪ {other type eqn} ⇒ unsatisfiable

Figure 2.6: Type Equality Constraint Resolution

remainder of the dissertation we distinguish the inference version from the checking version

of a type system by adding a prime to the judgment and to the rule labels. Our type

inference rules are remarkably similar to the type checking rules of Figure 2.4, so we do not

explain them in detail. There are two key differences. First, we add type variables α, which

stand for unknown types that have yet to be determined, to our language of types:

s ::= α | int | ref (s) | s −→ s′

We usually write type variables with Greek letters near the beginning of the alphabet (α, β,

etc.). We call the set of types without type variables ground types. Whenever we encounter

an expression whose type we need to guess (for instance, a function parameter in (Lam′)),

we give as its type a fresh type variable.

Second, as we perform type inference, we discover constraints among certain types.

For example, in (App′) when we see e1 e2, we know that e1 must be a function whose

domain type matches the type of e2. We write these conditions on the side with type

equality constraints s1 = s2.

After applying the type inference rules in Figure 2.5, we have two things: a proof

tree in exactly the shape we need to perform type checking and a set of type equality

constraints on the type variables appearing in the proof. The last step we need is to solve

the type equality constraints. Let C be a set of type equality constraints s1 = s2.

Definition 2.4 A solution σ to a system of constraints C is a mapping from type variables

to ground types (types without variables) such that for each constraint s1 = s2 in C, we

have σ(s1) = σ(s2).

If σ is a solution to the constraints C, we write σ |= C. Figure 2.6 gives a set of resolution

rules for checking whether a set of type equality constraints C has a solution. These rules
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should be read as left-to-right rewrite rules, in which the system of constraints on the left is

replaced by the (simpler) system of constraints on the right of each⇒. After we have applied

the rules in Figure 2.6, we have either determined that the constraints are unsatisfiable,

or we have computed a partial function σ assigning types to some of the variables in our

program. The remaining type variables, and the remaining variables in the range of σ, are

unconstrained, and hence we can set them arbitrarily—for example, to int . In fact, the

rules in Figure 2.6 compute a most general solution—they constrain as few type variables

as possible.

Lemma 2.5 The rules in Figure 2.6 compute a solution σ to a system of constraints C

if and only if a solution exists. Moreover, if σ′ |= C, then there exists an R such that

σ′ = σ ◦R, i.e., σ is a most general solution.

Thus we see that if any solution to a system of constraints exists, the rules in Figure 2.6

will succeed.

Standard type inference is very efficient. The rules in Figure 2.6 can be imple-

mented using unification [3]. Given an initial, untyped program of size n, standard type

inference takes O(nα(n)) time, where α(n) is the inverse Ackerman’s function.

In this dissertation we assume that programs are fully annotated with their stan-

dard types, either by the programmer or by a preliminary step of type inference.

2.3 Partial Orders and Lattices

In this dissertation we are concerned with adding type qualifiers to further expand

the classes of bugs that type systems can prevent. In our framework, type qualifiers are

related to each other by a partial order. In this section we define partial orders and lattices

and give some of their basic properties. For an excellent introduction to the theory of partial

orders and lattices, see Davey and Priestley [24].

Definition 2.6 A partial order is a pair (S,≤) consisting of a set S and a relation ≤ on

S such that ≤ is reflexive, anti-symmetric, and transitive.

We write a < b if a ≤ b and a 6= b. If it is clear from context we often refer to a partial

order (S,≤) simply by the name S.
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a b a

b
(a) a and b unrelated (b) b < a

Figure 2.7: Two-point Partial Orders
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Figure 2.8: Three-Point Partial Orders

There are several basic partial orders we use in this dissertation. Given any set

S, we can define the discrete partial order on S as the partial order (S, ∅), meaning that

no two elements are related. Let S2 = {a, b}. Then there are exactly two partial orders on

S2: Either a and b are unrelated (the discrete partial order), or we have a < b. (The case

b < a is isomorphic to the second case.) Figure 2.7 contains a graphical representation of

these two partial orders. Similar, Figure 2.8 contains a graphical representation of the five

possible three-point partial orders. See Davey and Priestley [24] for a precise definition of

such graphs.

Given two partial orders, one useful way of combining them to form a new partial

order is to take their cross product.

Definition 2.7 Let (S1,≤1) and (S2,≤2) be two partial orders. Then the partial order

(S1,≤1) × (S2,≤2) is defined as (S,≤) where S = S1 × S2, and (a1, a2) ≤ (b1, b2) iff

a1 ≤1 b1 and a2 ≤2 b2.

Given a partial order, we define two relations between its elements, the least upper

bound or join t and the greatest lower bound or meet u:

Definition 2.8 If a and b are elements of a partial order, then a t b is the element such
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that

1. a ≤ a t b and b ≤ a t b

2. If a ≤ c and b ≤ c, then a t b ≤ c.

Definition 2.9 If a and b are elements of a partial order, then a u b is the element such

that

1. a u b ≤ a and a u b ≤ b

2. If c ≤ a and c ≤ b, then c ≤ a u b

Note that it is not always the case that a u b and a t b are defined uniquely, and they may

not even be defined at all if a and b are unrelated. If for any two elements u (t) is always

defined, we refer to the partial order a meet (join) semilattice. If a partial order is both a

meet and a join semilattice, we call the partial order a lattice. For example, Figures 2.7b

and 2.8c are lattices, Figure 2.8d is a meet semilattice, and Figure 2.8e is a join semilattice.

It is also useful to define two closure operations on elements of a partial order

(S,≤).

Definition 2.10 The upward closure ↑ a of an element a is defined as ↑ a = {b | a ≤ b}.
The downward closure ↓ a of an element a is defined as ↓ a = {b | b ≤ a}.

We extend ↑ and ↓ to sets of elements in the natural way, ↑ S =
⋃

s∈S ↑ s and ↓ S =
⋃

s∈S ↓ s.
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Chapter 3

Flow-Insensitive Type Qualifiers

In this section we present an extension to standard type systems that incorporates

flow-insensitive type qualifiers. In general, type qualifiers can be added to any language

with a standard type system. Throughout this chapter we use the language first introduced

in Chapter 2 to illustrate the process. We assume that our input programs are type correct

with respect to the standard type system of Chapter 2, and that function definitions have

been annotated with standard types s. If that is not the case, we can perform a preliminary

standard type inference pass.

3.1 Qualifiers and Qualified Types

As discussed in Chapter 1, in our system the user specifies a set of qualifiers Q

and a partial order ≤ among the qualifiers. In practice, the user may wish to specify several

sets (Qi,≤i) of qualifiers that do not interact, each with their own partial order. But then

we can choose (Q,≤) = (Q1,≤1) × · · · × (Qn,≤n), so without loss of generality we can

assume a single partial order of qualifiers. For example, Figure 3.1 gives two independent

partial orders and their equivalent combined, single partial order (in this case the partial

orders are lattices). These particular qualifiers are described in more detail in Chapter 5.

In Figure 3.1, as in the rest of this dissertation, we write elements of Q using slanted text.

We sometimes refer to elements of Q as type qualifier constants to distinguish them from

type qualifier variables introduced in Section 3.4.

For our purposes, types Typ are terms over a set Σ of n-ary type constructors.
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const

nonconst

tainted

untainted

const tainted
jjjjjj TTTTTT

nonconst tainted const untainted

nonconst untainted

TTTTTT jjjjjj

Figure 3.1: Example Qualifier Partial Order

Grammatically, types are defined by the language

Typ ::= c(Typ1, . . . ,Typarity(c)) c ∈ Σ

In our source language, the type constructors are {int , ref ,−→} with arities 0, 1, and 2,

respectively. We construct the qualified types QTyp by pairing each standard type construc-

tor in Σ with a type qualifier (recall that a single type qualifier in our partial order may

represent a set of qualifiers in the programmer’s mind). We allow type qualifiers to appear

on every level of a type. Grammatically, our new types are

Typ ::= Q c(Typ1, . . . ,Typarity(c)) c ∈ Σ

For our source language, the qualified types are

τ ::= Q σ

σ ::= int | ref (τ) | τ −→ τ

To avoid ambiguity, when writing down qualified function types we parenthesize them

as Q (τ −→ τ). Some example qualified types in our language are tainted int and

const ref (untainted int). We define the top-level qualifier of type Q σ as its outermost

qualifier Q.

So far we have types with attached qualifiers and a partial order among the qual-

ifiers. A key idea behind our framework is that the partial order on type qualifiers induces

a subtyping relation among qualified types. In a subtyping system, if type B is a subtype

of type A, which we write B ≤ A (note the overloading on ≤), then wherever an object

of type A is allowed an object of type B may also be used. Object-oriented programming

languages such as Java and C++ are perhaps the most well known examples of subtyping

systems (usually called subclassing in an object-oriented context).

Figure 3.2 shows how a given qualifier partial order is extended to a subtyping

relation for our source language. In the first rule (Int≤) we have Q int ≤ Q′ int if Q ≤ Q′.
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Q ≤ Q′

Q int ≤ Q′ int
(Int≤)

Q ≤ Q′ τ = τ ′

Q ref (τ) ≤ Q′ ref (τ ′)
(Ref≤)

Q ≤ Q′ τ2 ≤ τ1 τ ′1 ≤ τ ′2
Q (τ1 −→ τ ′1) ≤ Q′ (τ2 −→ τ ′2)

(Fun≤)

Figure 3.2: Subtyping Qualified Types

This same rule generalizes to any nullary type constructor—for example, char, float, double,

etc..

In the last rule (Fun≤), we constrain the outermost qualifiers as in (Int≤), and we

require that functions are contravariant in their domain (the subtyping direction is reversed)

and covariant in their range (the subtyping direction is preserved). For a discussion, see

Mitchell [78].

In the middle rule (Ref≤), we again constrain the outermost qualifiers as in (Int≤),

and we also require that the types of data stored in the references be equal (i.e., τ ≤ τ ′ and

τ ′ ≤ τ). At first glance this rule looks overly conservative—it would be more natural to

only require
Q ≤ Q′ τ ≤ τ ′

Q ref (τ) ≤ Q′ ref (τ ′)
(Wrong)

Unfortunately, this turns out to be unsound. Consider the following code fragment (we

omit the qualifiers on the references for this example):

let u : ref (untainted int) = ref 0 in /* u points to untainted data */

let t : ref (tainted int) = u in /* Allowed by (Wrong) */

t := 〈tainted data〉 /* Oops! Wrote tainted data into untainted u. */

According to (Wrong), we can bind t to u because ref (untainted int) ≤ ref (tainted int).

But then *t and *u refer to the same object, yet they have different types. Therefore in

the assignment we can store tainted data into u by writing through t, even though *u is

supposed to be untainted. This is a well-known problem, and the standard solution is to use

the rule in Figure 3.2, which requires that the pointed-to types of an updatable reference

are equal.1

1Java uses the rule (Wrong) for arrays. In Java, if S is a subclass of T , then S[] is a subclass of T [], where
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e ::= v values
| e1 e2 application
| letx = e1 in e2 name binding
| ref e allocation
| *e dereference
| e1 := e2 assignment
| annot(e,Q) qualifier annotation
| check(e,Q) qualifier check

v ::= x variable
| n integer
| λx :s.e function

Figure 3.3: Source Language with Qualifier Annotations and Checks

In general, for any c ∈ Σ the rule

Q ≤ Q′ τi = τ ′i i ∈ [1..n]
Q c(τ1, . . . , τn) ≤ Q′ c(τ ′1, . . . , τ

′
n)

should be sound. Whether the equality can be relaxed for any particular position depends

on the meaning of the type constructor c.

3.2 Qualifier Assertions and Annotations

Next we wish to extend our standard type system to work with qualified types.

Thus far, however, we have supplied no mechanism that allows programmers to talk about

which qualifiers are used in their programs. One place where this issue comes up is when

constructing a qualified type during type checking. For example, if we see an occurrence of

the integer 0 in the program, how do we decide which qualifier Q to pick for its type Q int?

We wish to have a generic solution for this problem that allows programmers to talk about

qualifiers without modifying the type rules.

In our system, we extend the syntax with two new forms, shown marked in boldface

in Figure 3.3. A qualifier annotation annot(e,Q) specifies the outermost qualifier Q to add

to e’s type. Annotations may only be added to expressions that construct a term, and

whenever the user constructs a term our type system requires that they add an annotation.

X[] is an array of X’s. Java gets away with this by inserting run-time checks at every assignment into an
array to make sure the type system is not violated. Since we seek a purely static system, Java’s approach is
not available to us.
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Clearly this last requirement is not always desirable, and in Section 3.4 we describe an

inference algorithm that allows programmers to omit these annotations if they like.

Dually, a qualifier check check(e,Q) tests whether the outermost qualifier of e’s

type is compatible with Q. Notice that if we want to check a qualifier deeper in a type, we

can do so by first applying our language’s deconstructors. (For example, we can check the

qualifier on the contents of a reference x using check(*x,Q)).

3.3 Flow-Insensitive Type Qualifier Checking

Finally, we wish to extend the original type checking system to a qualified type sys-

tem that checks programs with qualified types, including our new syntactic forms annot(·, ·)
and check(·, ·). Intuitively this extension should be natural, in the sense that adding type

qualifiers should not modify the type structure (we make this precise below). We also need

to incorporate a subsumption rule [78] into our qualified type system to allow subtyping.

We define a pair of translation functions between standard and qualified types

and expressions. For a qualified type τ ∈ QTyp, we define strip(τ) ∈ Typ to be τ with

all qualifiers removed. Analogously, strip(e) is e with any qualifier annotations or checks

removed. In the other direction, for a standard type s ∈ Typ we define embed(s, q) to be the

qualified type with the same shape as t and all qualifiers set to q. Analogously, embed(e, q)

is e with annot(e′, q) wrapped around every subexpression e′ of e that constructs a term.

Figure 3.4 gives formal definitions of strip and embed.

Figure 3.5 shows the qualified type system for our source language. Judgments are

either of form Γ `q e : σ (the first three rules of Figure 3.5a) or Γ `q e : τ (the remaining

rules), meaning that in type environment Γ, expression e has unqualified type σ or qualified

type τ . Here Γ is a mapping from variables to qualified types.

The rules (Intq) and (Refq) are identical to the rules from the standard type

checking system in Figure 2.4. (Lamq) is also as before, plus we check that the parameter’s

qualified type τ has the same shape as the specified standard type. (This check is not

strictly necessary—see Lemma 3.1 below.) Notice that these three rules produce types that

are missing a top-level qualifier. The rule (Annotq) adds a top-level qualifier to such a type,

which is produced in our qualified type grammar by non-terminal σ. Inspection of the type

rules shows that judgments of the form Γ `q e : σ can only be used in the hypothesis of

(Annotq). Thus the net effect of the four rules in Figure 3.5a is that all constructed terms
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strip(Q int) = int
strip(Q ref (τ)) = ref (strip(τ))

strip(Q (τ −→ τ ′)) = strip(τ) −→ strip(τ ′)

strip(x) = x
strip(n) = n

strip(λx.e) = λx. strip(e)
strip(e1 e2) = strip(e1) strip(e2)

strip(letx = e1 in e2) = letx = strip(e1) in strip(e2)
strip(ref e) = ref strip(e)

strip(*e) = * strip(e)
strip(e1 := e2) = strip(e1) := strip(e2)

strip(annot(e,Q)) = strip(e)
strip(check(e,Q)) = strip(e)

embed(int , q) = q int
embed(ref (s), q) = q ref (embed(q, s))

embed(s −→ s′, q) = q (embed(s, q) −→ embed(s′, q))

embed(x, q) = x
embed(n, q) = annot(n, q)

embed(λx.e, q) = annot(λx. embed(e, q), q)
embed(e1 e2, q) = embed(e1, q) embed(e2, q)

embed(letx = e1 in e2, q) = letx = embed(e1, q) in embed(e2, q)
embed(ref e, q) = annot(ref embed(e, q), q)

embed(*e, q) = * embed(e, q)
embed(e1 := e2, q) = embed(e1, q) := embed(e2, q)

Figure 3.4: Definitions of strip(·) and embed(·, ·)

must be assigned a top-level qualifier with an explicit annotation.

The rules (Varq) and (Letq) are identical to the standard type checking rules. The

rules (Appq), (Derefq), and (Assignq) are similar to the standard type checking rules, except

that they match the types of their subexpressions against qualified types. Notice that these

three rules allow arbitrary qualifiers (denoted by Q) when matching a type. Only the rule

(Checkq) actually tests a qualifier on a type.

Finally, the subsumption rule (Subq) allows us to use a subtype anywhere a su-

pertype is expected. Notice that this is a non-syntactic rule that can be applied to any

expression (the other rules apply only to one form of expression). While this is convenient
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Γ `q n : int
(Intq)

Γ[x 7→ τ ] `q e : τ ′ strip(τ) = s

Γ `q λx :s.e : τ −→ τ ′
(Lamq)

Γ `q e : τ

Γ `q ref e : ref (τ)
(Refq)

Γ `q e : σ

Γ `q annot(e,Q) : Q σ
(Annotq)

(a) Rules for unqualified types σ

x ∈ dom(Γ)
Γ `q x : Γ(x)

(Varq)

Γ `q e1 : Q (τ −→ τ ′) Γ `q e2 : τ

Γ `q e1 e2 : τ ′
(Appq)

Γ `q e1 : τ1 Γ[x 7→ τ1] `q e2 : τ2

Γ `q letx = e1 in e2 : τ2
(Letq)

Γ `q e : Q ref (τ)
Γ `q *e : τ

(Derefq)

Γ `q e1 : Q ref (τ) Γ `q e2 : τ

Γ `q e1 := e2 : τ
(Assignq)

Γ `q e : Q′ σ Q′ ≤ Q

Γ `q check(e,Q) : Q′ σ
(Checkq)

Γ `q e : τ τ ≤ τ ′

Γ `q e : τ ′
(Subq)

(b) Rules for qualified types τ

Figure 3.5: Qualified Type Checking System
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for explaining type checking, in Section 3.4 we incorporate this rule directly into the other

rules for inference purposes.

Lemma 3.1 Let e be a closed term.

• If ∅ ` e : s, then for any qualifier q we have ∅ `q embed(e, q) : embed(s, q).

• If ∅ `q e : τ , then ∅ ` strip(e) : strip(τ).

This lemma formalizes our intuitive requirement that type qualifiers do not affect the un-

derlying type structure.

3.4 Flow-Insensitive Type Qualifier Inference

As described so far, type qualifiers place a rather large burden on programmers

wishing to use them: programmers must add explicit qualifier annotations to all constructed

terms in their programs. We would like to reduce this burden by performing type qualifier

inference, which is analogous to standard type inference. As with standard type inference,

we introduce type qualifier variables QVar to stand for unknown qualifiers that we need to

solve for. We write qualifier variables with the Greek letter κ. In the remainder of this

dissertation we use type qualifier constants to refer to elements of the given qualifier partial

order, and we use type qualifiers to refer to either a qualifier constant or variable. We define

a function embed ′(s) that maps standard types to qualified types by inserting fresh type

qualifier variables at every level:

embed ′(int) = κ int κ fresh

embed ′(ref (s)) = κ ref (embed ′(s)) κ fresh

embed ′(s −→ s′) = κ (embed ′(s) −→ embed ′(s′)) κ fresh

The type qualifier inference rules for our source language are shown in Figure 3.6.

In this system, we have eliminated qualifier annotations completely. Instead, whenever we

assign a type to a term constructor, we introduce a fresh type qualifier variable to stand

for the unknown qualifier on the term (see (Int′q), (Lam′
q), and (Ref′q)). We use embed ′

in (Lam′
q) to map the given standard type to a type with fresh qualifier variables. To

simplify the rules slightly we use our assumption that the program is correct with respect

to the standard types to avoid some shape matching constraints. For example, in (App′q)
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x ∈ dom(Γ)
Γ `′q x : Γ(x)

(Var′q)

κ fresh
Γ `′q n : κ int

(Int′q)

Γ[x 7→ τ ] `′q e : τ ′ τ = embed ′(s) κ fresh
Γ `′q λx :s.e : κ (τ −→ τ ′)

(Lam′
q)

Γ `′q e1 : Q (τ −→ τ ′) Γ `′q e2 : τ2 τ2 ≤ τ

Γ `′q e1 e2 : τ ′
(App′q)

Γ `′q e1 : τ1 Γ[x 7→ τ1] `′q e2 : τ2

Γ `′q letx = e1 in e2 : τ2
(Let′q)

Γ `′q e : τ κ fresh
Γ `′q ref e : κ ref (τ)

(Ref′q)

Γ `′q e : Q ref (τ)
Γ `′q *e : τ

(Deref′q)

Γ `′q e1 : Q ref (τ) Γ `′q e2 : τ ′ τ ′ ≤ τ

Γ `′q e1 := e2 : τ ′
(Assign′q)

Γ `′q e : Q′ σ Q′ ≤ Q

Γ `′q check(e,Q) : Q′ σ
(Check′q)

Figure 3.6: Qualified Type Inference System
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C ∪ {Q int ≤ Q′ int} ⇒ C ∪ {Q ≤ Q′}
C ∪ {Q ref (τ) ≤ Q′ ref (τ ′)} ⇒ C ∪ {Q ≤ Q′} ∪ {τ ≤ τ ′} ∪ {τ ′ ≤ τ}

C ∪ {Q (τ1 −→ τ2) ≤ Q′ (τ ′1 −→ τ ′2)} ⇒ C ∪ {Q ≤ Q′} ∪ {τ ′1 ≤ τ1} ∪ {τ2 ≤ τ ′2}

Figure 3.7: Subtype Constraint Resolution

we know that e1 has a function type, but we do not know its qualifier, or the qualifiers on its

parameter and result types. Finally, instead of having a separate subsumption rule, to make

inference syntax-driven we use the standard technique of incorporating (Subq) directly into

(App′q) and (Assign′q).

As we perform type qualifier inference, the rules in Figure 3.6 generate subtyping

constraints of the form τ1 ≤ τ2. Next we apply the rules of Figure 3.7, which are simply the

rules of Figure 3.2 written as left-to-right rewrite rules, to reduce the subtyping constraints

to qualifier constraints among type qualifier constants and variables. Notice that because

we assume that the program we are analyzing type checks with respect to the standard

types, we know that none of the structural matching cases in Figure 3.2 can fail. The rule

(Check′q) also generates qualifier constraints.

Thus after applying the rules in Figures 3.6 and 3.2, we are left with qualifier

constraints of the form L ≤ R, where L and R are type qualifier constants from Q or type

qualifier variables κ. As with the type equality constraints in Section 2.2, we need to solve

these qualifier constraints to complete type qualifier inference.

Definition 3.2 A solution σ to a system of qualifier constraints C is a mapping from type

qualifier variables to type qualifier constants such that for each constraint L ≤ R, we have

σ(L) ≤ σ(R).

We write σ |= C is σ is a solution to C. Note that there may be many possible solutions to

C. There are two solutions in particular that we may be interested in.

Definition 3.3 If σ |= C, then σ is a least (greatest) solution if for any other σ′ such that

σ′ |= C, for all κ ∈ dom(σ) we have σ(κ) ≤ σ′(κ) (σ(κ) ≥ σ′(κ)).

Even if C is satisfiable, least and greatest solutions may not always exist for a given partial

order on Q. Clearly if C is satisfiable and Q is a meet semilattice then a least solution

exists, and similarly if Q is a join semilattice then a greatest solution exists.
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Qual-solve(C) =
for all κ ∈ C do S(κ)← Q
for all q ∈ Q do S(q)← {q}
let C ′ = C
while C ′ 6= ∅ do

remove an L ≤ R from C ′

let S′
L = S(L)∩ ↓ S(R)

let S′
R = S(R)∩ ↑ S(L)

if S′
L = ∅ or S′

R = ∅
then return unsatisfiable

if S(L) 6= S′
L

then S(L)← S′
L

Add each L′ ≤ L and L ≤ R′ in C to C ′

if S(R) 6= S′
R

then S(R)← S′
R

Add each L′ ≤ R and R ≤ R′ in C to C ′

return S

Figure 3.8: Qualifier Constraint Solving

A system of qualifier constraints is also known as an atomic subtyping constraint

system, and there are well-known algorithms for solving such constraints efficiently if Q is a

semilattice [93]. In general, solving atomic subtyping constraints over an arbitrary partial

order is NP-hard, even with fixed Q [91]. Here we present a simple algorithm that works

for semilattices, discrete partial orders, and arbitrary cross products of those.

Figure 3.8 gives our algorithm. The function Qual-solve(C) takes as input a

system of qualifier constraints. It either returns unsatisfiable or it returns a mapping

S : QVar→ 2Q that captures, in the sense described below, the possible solutions of C if Q

is a semilattice, a discrete partial order, or a cross product of those. For any partial order

the algorithm is sound, as shown in the following lemma:

Lemma 3.4 Let S = Qual-solve(C). Then for any σ such that σ |= C and for any

qualifier variable κ ∈ C, we have σ(κ) ∈ S(κ).

Proof: We show that this property is preserved by each step of the algorithm. Clearly

it holds before the loop since S(κ) = Q initially for all qualifier variables κ. So suppose

that this property holds and we execute one step of the loop iteration. Let L ≤ R be the

constraint we remove from C ′. By assumption, σ(L) ∈ S(L) and σ(R) ∈ S(R) (where
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we set σ(q) = q for q ∈ Q). Then since σ |= C, we must have σ(L) ≤ σ(R). But then

σ(L) ∈↓ σ(R) and σ(R) ∈↑ σ(L). Thus σ(L) ∈ S′
L and σ(R) ∈ S′

R, and therefore the

property holds after this iteration. 2

Corollary 3.5 If Qual-solve(C) = unsatisfiable, then C has no solution.

Proof: Suppose for a contradiction that σ |= C. Then by Lemma 3.4, for all κ we have

σ(κ) ∈ Qual-solve(C). But since the algorithm returned unsatisfiable, there must be

some κ such that S(κ) = ∅, a contradiction. 2

If the algorithm returns unsatisfiable, then, no solution to the constraints exists.

As mentioned above, solving atomic subtyping constraints is NP-hard; thus there are cases

when the algorithm does not discover that the constraints are unsatisfiable even though

they are. But we can prove that our algorithm is complete if Q is a semilattice, discrete

partial order, or a cross product of those.

First we define a non-standard term to capture a key property of our algorithm.

Definition 3.6 Let (S,≤) be a partial order. A set S′ ⊆ S is an interval if x, z ∈ S′ and

x ≤ y ≤ z implies y ∈ S′.

Lemma 3.7 If S1 and S2 are intervals, then S1 ∩ S2 is an interval.

Lemma 3.8 The sets S(κ) computed by Qual-solve(C) are intervals.

Proof: This clearly holds at the beginning of the algorithm. Since ↓ S(R) and ↑ S(L) are

intervals, this holds after each step of the algorithm by Lemma 3.7. 2

Lemma 3.9 Let (S,≤) be a finite meet (join) semilattice and let S1, S2 ⊆ S be intervals

and contain their least (greatest) elements. Suppose that S1∩S2 6= ∅. Then S1∩S2 contains

its least (greatest) element.

Proof: We show this for a meet semilattice; the other case is similar. Let s1 =
d

S1,

s2 =
d

S2, and s =
d

(S1 ∩ S2). By definition of u we have s1 ≤ s and s2 ≤ s. So pick a

q ∈ S1 ∩ S2, which exists by assumption. Then q ∈ S1 and q ∈ S2, so s1 ≤ q and s2 ≤ q.

But then by continuity s ∈ S1 and s ∈ S2, thus s ∈ S1 ∩ S2. 2

Lemma 3.10 Suppose the elements of Q are in a semilattice, and let S = Qual-solve(C).

Then if S 6= unsatisfiable, there exists σ such that σ |= C.
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Proof: Suppose that Q is a meet semilattice. Since greatest lower bounds always exist,

we can view S(κ) as an alternate representation of a solution σ where σ(κ) =
d

S(κ). To

make the mapping clear, observe that σ(κ) ∈ S(κ) at every step of the algorithm. This

clearly holds initially, and since ↓ S(R) and ↑ S(L) are intervals and contain their least

elements, by Lemma 3.9 it holds after each iteration.

Further, pick any q ∈ S(L)∩ ↓ S(R) from the execution of the algorithm in

Figure 3.8 and consider one additional step of iteration. Then
d

S(L) ≤ q, hence
d

S(L) ∈↓
S(R). Thus

d
S(L) ∈ S′

L, i.e.,
d

S′
L ≤

d
S(L). But we already know

d
S(L) ≤

d
S′

L, and

therefore
d

S(L) =
d

S′
L, i.e., intersecting with ↓ S(R) does not change the least solution.

For the other intersection, S′
R = S(R)∩ ↑ S(L), we know that

d
S(R) ≤

d
S′

R and
d

(↑ S(L)) ≤
d

S′
R. But

d
(↑ S(L)) =

d
S(L). Thus

d
S′

R is an upper bound of
d

S(L)

and
d

S(R), our solutions for L and R. Thus intersecting with ↑ S(L) increases the least

solution of R to account for having L as a lower bound.

Thus we see that Qual-solve is just the standard least-fixpoint algorithm, and

σ |= C. The case when Q is a join semilattice is similar, and in that case we can view

Qual-solve as computing the greatest solution. 2

Lemma 3.11 Suppose the elements of Q are in the discrete partial order, and let S =

Qual-solve(C). Then if S 6= unsatisfiable, there exists σ such that σ |= C.

Proof: If Q is in the discrete partial order, the directionality of the constraints does

not matter. Observe that at every step of the algorithm, S(κ) is either Q or contains a

single element. Clearly this holds initially and after each iteration of the algorithm, since

↑ q =↓ q = {q} for any partial order element q. Thus we can view Qual-solve as computing

the standard most general solution of a set of equality constraints. 2

Lemma 3.12 Suppose that the partial order on Q is a cross product of semilattices and

the discrete partial order, and let S = Qual-solve(C). Then if S 6= unsatisfiable, there

exists σ such that σ |= C.

Proof: Let Q = Q1 × · · ·Qn. We can view the set S(κ) computed by the algorithm

is a tuple of solution sets S1(κ) × · · · × Sn(κ). Then we can imagine we have n copies of

the constraints C, and by Lemmas 3.10 and 3.11 and our assumptions we can compute a

solution σi from each Si for each component of the tuple. 2
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l ∈ dom(S)
S `q (l, Q)→ (l, Q);S

[Varq]

S `q annot(n, Q)→ (n, Q);S
[Int]

S `q annot(λx :s.e, Q)→ (λx :s.e, Q);S
[Lam]

S `q e1 → (λx.e, Q);S′ S′ `q e2 → (v′, Q′);S′′

S′′ `q e[x 7→ (v′, Q′)]→ (v′′, Q′′);S′′′

S `q e1 e2 → (v′′, Q′′);S′′′ [App]

S `q e1 → (v,Q);S′ S′ `q e2[x 7→ (v,Q)]→ (v′, Q′);S′′

S `q letx = e1 in e2 → (v′, Q′);S′′ [Let]

S `q e→ (v,Q);S′ l 6∈ dom(S′)
S `q annot(ref e,Q′)→ (l, Q′);S′[l 7→ (v,Q)]

[Ref]

S `q e→ (l, Q);S′ l ∈ dom(S′)
S `q *e→ S′(l);S′ [Deref]

S `q e1 → (l, Q);S′ S′ `q e2 → (v,Q′);S′′ l ∈ dom(S′′)
S `q e1 := e2 → (v,Q′);S′′[l 7→ (v,Q′)]

[Assign]

S `q e→ (v,Q′);S′ Q′ ≤ Q

S `q check(e,Q)→ (v,Q′);S′ [Check]

Figure 3.9: Big-Step Operational Semantics with Qualifiers

Given a system of constraints C of size n and a fixed set of k qualifiers, the

algorithm in Figure 3.8 runs in O(n2k) time. To see this, observe that each constraint

L ≤ R can only be added back to C ′ if the solution of L or of R changes. Since S(κ)

decreases monotonically for all κ, we can only change S(κ) at most 2k times. Thus we can

only add a constraint back into C ′ a total of 2 · 2k times. Since we assume k is a small

constant, the whole algorithm runs in time O(n).
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3.5 Semantics and Soundness

As with the standard type system for our language, we can prove that our qualified

type system is sound under a natural semantics for type qualifiers. Figure 3.9 gives our

semantic reduction rules. In this semantics, values are simply standard values paired with

uninterpreted qualifiers. The rules are identical to the standard semantic rules of Figure 2.2,

except that locations, integers, and function values are paired with qualifiers, and that

deconstruction steps throw away the outermost qualifier. Rule [Check] tests the top-level

qualifier of a value.

A full proof of soundness, using standard techniques, can be found in Appendix A.

Here we simply state our soundness theorem, where r, a reduction result, is either a value

pair (v,Q) or err.

Theorem 3.13 If ∅ `q e : τ and ∅ `q e→ r;S′, then r is not err.

3.6 Subtyping Under Non-Writable Pointer Types

As discussed in Section 3.1, we use a conservative rule (Ref≤) for pointer subtyping:

the constraint ref (τ) ≤ ref (τ ′) is satisfiable only if τ = τ ′. This rule can often lead

to non-intuitive “backward” qualifier propagation. For example, consider the following

code:

let f = λx : ref (int). *x in

f y;

f z

Ignoring the outermost qualifier, inference assigns the domain of f type ref (κ int). Assume

that the types of y and z are ref (κ′ int) and ref (κ′′ int), respectively. Then by (Ref≤),

the first application requires κ′ = κ, and the second application requires κ′′ = κ. Putting

the two together yields the rather counter-intuitive κ′ = κ′′. In other words, y’s qualifier κ′

is propagated from x into f and then backward to κ′′ and z.

Notice, however, that f does not write through its parameter x. Therefore y and z

cannot be modified by f , and we can soundly weaken our constraints to κ′ ≤ κ and κ′′ ≤ κ.

Think of an updatable reference x containing data of type τx as an object with two methods

getx : void −→ τx and setx : τx −→ void to read and write the reference, respectively. Here
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Q ≤ Q′ τ ≤ τ ′ Q′ ref (τ ′) cannot be updated
Q ref (τ) ≤ Q′ ref (τ ′)

(Ref′≤)

Figure 3.10: Subtyping Non-Writable References

void is a placeholder meaning “no parameter” or “no result.” Notice that τx appears both

co- and contravariantly (on the left and right sides of the function arrow). When we apply

f to y in the above code, we generate two constraints:

void −→ τy ≤ void −→ τx (1) get compatibility

τy −→ void ≤ τx −→ void (2) set compatibility

These constraints require that the get and set methods of y and of f ’s parameter x be

compatible. By (Fun≤) the constraint (1) yields τy ≤ τx and (2) yields τx ≤ τy, which

put together produce τy = τx, which is exactly what (Ref≤) requires. But if f does not

write through x, then intuitively x does not have a set method. Thus by standard width

subtyping in object-oriented type systems we do not generate constraint (2), and the result

is that we only require τy ≤ τx.

Thus we can use a new subtyping rule for references, as shown in Figure 3.10. We

refer to this as deep subtyping. There are a number of techniques for checking whether a

particular name is used to write to an updatable reference. In Section 5.2 we describe the

approach used in our implementation.

3.7 Related Work

In this section we discuss work related to the basic concepts of type qualifiers. We

delay discussion of most of the related program analysis systems and tools until Section 5.6.

The flow-insensitive type qualifier system presented here was previously described by us

[43].

Specific examples of flow-insensitive type qualifiers have been proposed to solve

a number of problems. ANSI C contains the type qualifier const [6], discussed further in

Section 6.1. Binding-time analysis [30] can be viewed as associating one of two qualifiers

with expressions, either static for expressions that may be computed at compile time or

dynamic for expressions not computed until run-time. The Titanium programming language
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[124] uses qualifiers local and global to distinguish data located on the current processor

from data that may be located at a remote node [73]. Solberg [106] gives a framework for

understanding a particular family of related analyses as type annotation (qualifier) systems.

Several related techniques have been proposed for using qualifier-like annotations

to address security issues. A major topic of recent interest is secure information flow

[114], which associates high and low security levels with expressions and tries to prevent

high-security data from “leaking” to low-security outputs. Other examples of security-

related annotation systems are lambda calculus with trust annotations [87] and Java security

checking [103]. For a discussion of a related technique using our framework, see Section 6.2.

Type qualifiers, like any type system, can be seen as a form of abstract interpreta-

tion [19]. Flow-insensitive type qualifiers can be viewed as a label flow system [80] in which

we place constraints on where labels may flow. Control-flow analysis [102] is a label flow

system in which labels decorate only functions. We believe that recent efficient techniques

for polymorphic recursive label flow inference [37, 92] can be applied to flow-insensitive type

qualifiers. Type qualifiers can also be viewed as refinement types [48], which have the same

basic property: refinement types do not change the underlying type structure. The key dif-

ference between qualifiers and refinement types is that the latter is based on the theory of

intersection types, which is significantly more complex than atomic subtyping. Refinement

types also are not flow-sensitive (see Chapter 4).
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Chapter 4

Flow-Sensitive Type Qualifiers and

Restrict

In the discussion so far, type qualifiers, like the standard types, are flow-insensitive,

meaning that qualifiers do not change from one program point to the next. For example,

consider an assignment to x:

/* x : τ */ x := e /* x : τ */

Notice that x has the same type—and the same qualifiers, since types τ contain qualifiers—

before and after the assignment. While a flow-insensitive system is natural for many prob-

lems and useful in practice (see Chapter 6), many important program properties are flow-

sensitive. Checking such properties requires associating different facts—in our system,

different qualifiers—with a value at different program points.

In this chapter, we present monomorphic systems for flow-sensitive type qualifier

checking and inference. With one exception our syntax and semantics are the same as in

Chapter 3, but our type system is enhanced to track qualifiers more precisely across state

changes. The one exception is restrict , a new language construct that can be used to

enhance the precision of our flow-sensitive type qualifier system (Section 4.2). As in the

previous chapter, type qualifiers do not affect the underlying type structure. This choice is

critical for making a scalable flow-sensitive inference algorithm (Section 4.5).

As before, we assume that our input programs are annotated with standard types

s and type check with respect to those types. In our implementation (Chapter 5) we support
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fun f w =
let x = ref 0

y = ref annot(1, a)
z = ref annot(2, b)

in
x := 3;
w := 4;
y := annot(5, c);
if (· · ·) {

f z
};
check(*y, c)

Figure 4.1: Example Program

both flow-insensitive and flow-sensitive type qualifiers simultaneously, but in order to avoid

confusion we assume in this chapter that all type qualifiers of interest are flow-sensitive.

Example 1. Figure 4.1 shows an example program we would like to check with our flow-

sensitive type qualifier system. Here we use some syntactic sugar; for example, we write

a recursive function in the natural way instead of using the primitive Y combinator, and

we write if directly instead of encoding it with functions. In this example the qualifier

constants a, b, and c are in the discrete partial order (they are incomparable). Just before

f returns, we wish to check that y has the qualifier c . This check succeeds only if we

can model the update to y as a strong update. The qualifiers on x and z will be used to

demonstrate other features of our system. 2

4.1 Designing a Flow-Sensitive Type Qualifier System

In this section, we give an informal overview of how our flow-sensitive type qualifier

system works and what design choices went into it. Since we expect programmers to interact

with our system, both when adding and when reviewing the results of inference (Section 4.5),

we consciously seek a system that supports efficient inference and is straightforward for a

programmer to understand and use.
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4.1.1 Abstract Stores, Abstract Locations, and Linearities

In order to model type qualifiers flow-sensitively, we need to be able to talk about

the qualifiers at a particular program point. In our system, we model the state at a particular

point using an abstract store, which associates a qualified type with each location in the

program. As locations are updated, we update their qualifiers in the abstract store to reflect

their new state. For example, suppose that x, y, and z are updatable references (typically

called variables in an imperative language such as C or Java), and assume for a moment

that those are the only locations in the program. Then we can choose as abstract stores a

mapping from x, y, and z to their qualified types:

{x : q int , y : r int , z : s int}
x := annot(e, q′)

{x : q′ int , y : r int , z : s int}
y := annot(e, r′)

{x : q′ int , y : r′ int , z : s int}

This is the approach taken by classical dataflow analysis [3, 67], which focuses on

intraprocedural analysis (analyzing one function body at a time) of languages like FOR-

TRAN. For such an analysis there is only a small, fixed set of locations, and aliasing can

often be modeled very conservatively (for example, function calls may change any non-local

variable) without greatly compromising the effectiveness of the analysis [3]. Aliasing occurs

when there are multiple names for the same object—for example, via pointers or by-reference

parameter passing. Because we want to perform interprocedural checking (modeling more

than one function body at once) of languages such as C, C++, Java, and ML, where pointers

and indirection are very common, we need to handle aliasing in a more sophisticated way.

For example, suppose that p is a pointer to updatable reference x. Consider the following

code (the outermost qualifier on p has been omitted):

{x : q int , p : ref (q int), . . .}
*p := annot(e, q′)

{x :? int , p : ref (q′ int), . . .}

What happens when we indirectly update x through p? We need to know that both *p and

x are changed, and so far this information is not encoded in abstract stores.

Our solution is to introduce another level of indirection into abstract stores. In-

stead of program names, in our system abstract stores map abstract locations ρ to qualified



41

types. Intuitively, two expressions that evaluate to the same run-time location are assigned

the same abstract location. Instead of types ref (τ) (again, omitting the qualifier on the

ref ), we use pointer types of the form ref (ρ), where ρ is the pointed-to location. Reads

and writes to an object of type ref (ρ) access location ρ in the current abstract store. Our

example above becomes
{ρ : q int , ν : ref (ρ), . . .}

*p := annot(e, q′)

{ρ : q′ int , ν : ref (ρ), . . .}

The write through *p updates ρ, the location of x, and both *p and x have the same qualified

type.

To apply this idea of mapping abstract locations to types, we need a way to

compute abstract locations and assign them to expressions. There are several issues in doing

so. First, the program may have an unbounded number of run-time locations. For example,

it may have a recursive function with a local variable, or it may use a data structure.

Thus we need some way to represent all possible run-time locations in finite space. Second,

determining whether two objects evaluate to the same location is undecidable [60]. Thus our

assignment of abstract locations to expressions must be conservative. Finally, because our

abstract location assignment is conservative, we may not always be able to track updates

precisely.

The process of assigning abstract locations to expressions is a form of alias analysis

[17, 69]. There are two basic kinds of aliasing information we can compute. If two expres-

sions could evaluate to the same run-time location, then we say they may alias. If two

expressions always evaluate to the same run-time location, then they must alias. Usually

may alias information is used in the negative sense: if it’s not the case that two expressions

may alias, then we know they evaluate to different locations.

In practice, we need both may and must alias information to model flow-sensitive

type qualifiers. In our system we encode may alias information in abstract locations—two

expressions have the same abstract location if they may alias. In Section 4.3 we describe

checking and inference systems for computing flow-insensitive may alias information. We

choose flow-insensitivity for the abstract location computation to make inference as a whole

efficient. We associate a linearity [21, 112] with each abstract location to encode must

alias information. Informally, we say that a location ρ is linear, which we write ρ1, if it

corresponds to exactly one run-time location. Otherwise, ρ is non-linear, written ρω. The
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key feature of linear locations is that two expressions that refer to the same linear location ρ1

must alias, since they always refer to run-time location ρ and there is only one of those. On

the other hand, two expressions assigned the same non-linear location ρω by alias analysis

may—but not necessarily must—alias, since ρ may stand for multiple run-time locations.

The linearities 1 and ω are ordered, with 1 < ω. Intuitively the ordering corresponds to the

fact that two locations that must alias also may alias, but not vice-versa.

When we model updates to a location, we treat linear and non-linear locations

differently. When a linear location is updated, we can track the update precisely, since we

know which run-time location is changing. Suppose that p has type ref (ρ) and location ρ

is linear. Consider the following code:

{ρ1 : q int , . . .}
*p := annot(e, q′)

{ρ1 : q′ int , . . .}

Here we have performed a strong update [17] on ρ, replacing its qualifier after the assignment,

because we know precisely which location was updated. On the other hand, suppose ρ is

non-linear. Then ρ may stand for multiple locations, but the assignment *p := . . . only

updates a single one of them. Thus we need to be conservative:

{ρω : q int , . . .}
*p := annot(e, q′)

{ρω : q t q′ int , . . .}

After the assignment, ρ refers to both the run-time location that was updated, which has

qualifier q′, and the run-time locations that were not updated, which still have qualifier q.

Thus we conservatively say that ρ’s qualifier is either q or q′, which we represent with the

least upper bound operator (Section 2.3). This is called a weak update.

In our system we model linearities flow-sensitively. Thus in their final form, ab-

stract stores are mappings from abstract locations to types and linearities, which we write

as follows:

{ρ1 : q int , νω : r int , . . .}

As it turns out, while these abstract stores are useful for describing our system, they are an

inefficient representation for type qualifier inference. In Section 4.5 we present a constructor-

based formalism for describing such stores compactly and efficiently.
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{ρ1 : a int , . . .}
f ()

{ρω : a t b int . . .}

{ρω : b int , . . .}
f ()

{ρω : a t b int . . .}

(a) Two calls to f with no effect information

{ρ1 : a int , . . .}
f ()

{ρ1 : a int . . .}

{ρω : b int , . . .}
f ()

{ρω : b int . . .}

(b) Result if f has no effect on location ρ

Figure 4.2: Using Effects at Function Calls

4.1.2 Effects

Abstract stores represent the state at a particular program point. To model func-

tions, we add abstract stores to their types to represent the state at the beginning and end

of the function. We also add an effect [51, 74, 75, 121] to function types to capture all

possible reads, writes, and allocations that may happen when a function is called.

We can use the effect of a function to improve the precision of our flow-sensitive

qualifier system. Recall that the system we describe is monomorphic, meaning that all

calls to a function share the same initial and final stores. For example, consider the state of

location ρ after two distinct calls to f in the same program, shown in Figure 4.2a. Before the

call on the left, ρ is linear and has qualifier a, and before the call on the right, ρ is non-linear

and has qualifier b. But since f is monomorphic there is only one store representing the

state following f , and in that store location ρ may have qualifier a or qualifier b. Moreover,

in that store ρ must be non-linear, since ρ is non-linear before one of the two calls to f .

The most general solution to this problem is to introduce polymorphism over stores

[21, 104]. Instead, we choose a simpler solution: we use effects to gain some of the benefits

of polymorphism without the added complexity.

Observe that if f does not use location ρ, then we need not merge the qualifiers

and linearity of ρ after the calls to f . Intuitively, we can simply flow the qualifiers and

linearity of ρ “around” the calls to f , as shown in Figure 4.2b. Using effects this way makes

functions fully polymorphic in locations they do not use. We can even do slightly better—if
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f reads or allocates ρ but does not write ρ, then we can flow the qualifiers of ρ around calls

to f . If f does not allocate ρ, we can flow the linearity of ρ around calls to f . We formalize

these ideas in Section 4.4.

4.2 Restrict

Finally, the system described so far has a serious practical weakness. Type check-

ing may fail because a location on which a strong update is needed may be non-linear. This

is especially problematic for data structures, since our may alias analysis for computing ab-

stract locations (Section 4.3) tends to conflate different elements of the same data structure.

We address this issue by adding a new language construct restrictx = e in e′, which is

inspired by the ANSI C type qualifier of the same name [6]. ANSI C’s restrict qualifier,

whose use is not checked for correctness, is designed to enable a compiler to optimize code

more aggressively. In our system, restrict is used as a tool to document and check aliasing

properties of the program, increasing the precision of flow-sensitive type qualifier checking.

For a complete discussion of the relation of our system for restrict to ANSI C’s type

qualifier, see Section 5.5.

In our system, the construct restrictx = e in e′ binds x to the value of e, which

must be a pointer, during evaluation of e′. The contract restrict enforces is that during

evaluation of e2, the only access to the object x points to is through the name x or through

copies of x. We sometimes informally refer to x as a restricted pointer.

Example 2. Consider the following code:

restrict p = q in

*p; /* valid */

*q; /* invalid */

Here we may access the object p points to by dereferencing p but we may not access it via

q. 2

Example 3. The following code shows how restricted pointers can be passed from outer

to inner scopes:
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restrict p = . . . in

restrict r = p in {
*r; /* valid */

*p; /* invalid */

}
*p /* valid */

We have added braces to make the grouping clear. In this example, within the scope of r

we can dereference r but not p. When r goes out of scope we recover the ability to access

p. 2

Example 4. Consider the following code:

restrict p = . . . in

let r = ref p in

*r := . . . /* valid */

Notice that the restricted pointer p is actually written to memory. In our system we may

store and retrieve the value of p from memory as long as that memory does not escape the

scope of p. Although as mentioned above the C standard contains a construct similar to

our restrict , this particular example is not allowed in the standard [6]; see Section 5.5. 2

We can use restrict to locally regain strong updates of flow-sensitive type qual-

ifiers. Consider an instance of restrictx = e in e′, and suppose that expression e points

to location ρ. Then because of the semantics of restrict , we know that out of all the

objects location ρ may refer to, only one of them can be used within e′, namely the one x

is dynamically initialized to. Thus we give x a fresh abstract location ρ′, and we can allow

ρ′ to be linear even if ρ is non-linear. Only when the scope of the restrict ends do we

need to merge the state of ρ′ with the state of ρ, which may require a weak update to ρ.

Example 5. Consider the following code to acquire and release a lock from a data struc-

ture (here a[i] reads the ith element of array a and x.f accesses field f of x):
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restrict l = a[i].lock in

lock(l)

. . .

unlock(l)

In our implementation of type qualifiers for C (Chapter 5), we assign all elements of an array

the same type and the same location. Thus the location ρ that l points to is non-linear. If

l were bound with let , then we could not strongly update the state of l when the lock is

acquired and released. But since l is bound with restrict , it can be assigned a fresh linear

location ρ′ (assuming the . . . does not alias ρ′ with other locations). Since ρ′ is linear, we

can track precisely that l is locked after it is acquired and unlocked at the end of the block.

When the scope ends, we merge the state of ρ′ back with the state of ρ. In this way we

can check that this code adheres to a standard locking protocol (for example, lock is never

called twice in a row on the same lock). 2

In Section 4.3 we discuss restrict in more depth and show how to use effects to

enforce the correctness of restrict expressions.

4.3 Aliasing, Effects, and Restrict

Now that we have described our flow-sensitive type qualifier framework at a high

level, we begin developing the system more formally. Our type system is divided into two

stages, a preliminary flow-insensitive step followed by flow-sensitive qualifier checking. The

first, flow-insensitive step computes aliasing information and effects and checks restrict .

In practice, this stage is combined with checking flow-insensitive type qualifiers, though we

omit that here to avoid confusion. The second, flow-sensitive step uses the information from

the first stage to build stores modeling the qualifiers and linearities at each program point.

In order to conveniently transmit information from the first stage to the second, we

present the first stage as a translation system from unannotated programs to programs with

location and effect annotations, shown in Figure 4.3. The target language extends the source

language in two ways. First, every allocation site ref ρe is annotated with the abstract

location ρ that is allocated, and similarly each restrict site restrict ρx = e1 in e2 is

annotated with the abstract location that x is bound to (see below). Second, each function
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e ::= v | e1 e2 | letx = e1 in e2 | ref e | *e | e1 := e2

| annot(e,Q) | check(e,Q) | restrictx = e1 in e2

v ::= x | n | λx :s.e
s ::= int | ref (s) | s −→ s′

(a) Source Language

e ::= v | e1 e2 | letx = e1 in e2 | ref ρe | *e | e1 := e2

| annot(e,Q) | check(e,Q) | restrict ρx = e1 in e2

v ::= x | n | λLx :t.e
L ::= ∅ | ρ | rd(ρ) | wr(ρ) | al(ρ) | L1 ∪ L2 | L1 ∩ L2 | L1 − ρ
t ::= int | ref (ρ) | t −→L t′

(b) Target Language

Figure 4.3: Source Language and Target Language with Location and Effect Annotations

λLx :t.e is annotated with the type t of its parameter and the effect L of calling the function.

Effects are sets of three basic effects: reading rd(ρ), writing wr(ρ), and allocation al(ρ).

The effect ρ is shorthand for rd(ρ) ∪ wr(ρ) ∪ al(ρ). When we write ρ 6∈ L (see below), we

mean rd(ρ) 6∈ L, wr(ρ) 6∈ L, and al(ρ) 6∈ L.

Integer types are as before, and function types contain the effect of calling the

function. Notice that there are no qualifiers—in this system, all qualifiers are flow-sensitive,

hence they are ignored during this first stage.

Intuitively, the fundamental difference between a flow-sensitive type system and a

flow-insensitive type system is the choice between having a single, global model of the store

and having a per-program point model of the store. To emphasize this distinction, here we

write pointer types as ref (ρ), and we maintain a single global abstract store SI mapping

locations ρ to types. If SI(ρ) = t, then location ρ contains data of type t. In contrast, in

the second, flow-sensitive stage of the algorithm, we use a per-program point model of the

store.

We define a function strip(·) from types with locations and effects to standard

types:
strip(int) = int

strip(ref (ρ)) = ref (strip(SI(ρ)))

strip(t −→L t′) = strip(t) −→ strip(t′)
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As with the previous type systems, we present both a system for checking whether

a translation into our target language is correct and an inference system for constructing a

correct translation from a bare program.

4.3.1 A Flow-Insensitive Checking System

Figure 4.4 presents our system for checking a translation while simultaneously

checking the correctness of uses of restrict . This system proves judgments of the form

Γ ` e⇒ e′ : t;L, meaning that in type environment Γ, expression e translates to annotated

expression e′ and has type t, and evaluating e has effect L. We define the set of locations

and effects appearing in a type t as

loceff (int) = ∅
loceff (ref (ρ)) = ρ ∪ loceff (SI(ρ))

loceff (t1 −→L t2) = L ∪ loceff (t1) ∪ loceff (t2)

We define loceff (Γ) =
⋃

[x 7→t]∈Γ loceff (t).

We discuss the rules the Figure 4.4.

• (Vara) and (Inta) translate variables and integers to themselves. Evaluating a variable

or an integer has no effect—recall that in lambda calculus, a variable is an r-value,

not an l-value.

• (Lama) translates a function by annotating it with the effect L of evaluating its body

e and with the type t of its parameter. The type t must have the same shape as the

specified standard parameter type s. Notice that L is added to the function type, and

that the evaluation of the function definition itself has no effect, since the function

does not execute until it is actually called.

• (Appa) translates an application, and the effect of evaluating an application is the

union of the effect of evaluating e1, the effect of evaluating e2, and the effect of

calling the function e1. Notice here that the type of e1’s domain and the type of e2

must match. Since those types may contain abstract locations, this rules enforces

our aliasing requirement. The formal parameter x and the actual parameter e2 may

represent the same location, so they must contain identical abstract locations.

• (Leta) translates a let binding.
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x ∈ dom(Γ)
Γ ` x⇒ x : Γ(x); ∅

(Vara)

Γ ` n⇒ n : int ; ∅
(Inta)

Γ[x 7→ t] ` e⇒ e′ : t′;L strip(t) = s

Γ ` λx :s.e⇒ λLx :t.e′ : t −→L t′; ∅
(Lama)

Γ ` e1 ⇒ e′1 : t −→L t′;L1 Γ ` e2 ⇒ e′2 : t;L2

Γ ` e1 e2 ⇒ e′1 e′2 : t′;L1 ∪ L2 ∪ L
(Appa)

Γ ` e1 ⇒ e′1 : t1;L1 Γ[x 7→ t1] ` e2 ⇒ e′2 : t2;L2

Γ ` letx = e1 in e2 ⇒ letx = e′1 in e′2 : t2;L1 ∪ L2
(Leta)

Γ ` e⇒ e′ : t;L SI(ρ) = t

Γ ` ref e⇒ ref ρe′ : ref (ρ);L ∪ al(ρ)
(Refa)

Γ ` e⇒ e′ : ref (ρ);L
Γ ` *e⇒ *e′ : SI(ρ);L ∪ rd(ρ)

(Derefa)

Γ ` e1 ⇒ e′1 : ref (ρ);L1 Γ ` e2 ⇒ e′2 : SI(ρ);L2

Γ ` e1 := e2 ⇒ e′1 := e′2 : SI(ρ);L1 ∪ L2 ∪ wr(ρ)
(Assigna)

Γ ` e⇒ e′ : t;L
Γ ` annot(e,Q)⇒ annot(e′, Q) : t;L

(Annota)

Γ ` e⇒ e′ : t;L
Γ ` check(e,Q)⇒ check(e′, Q) : t;L

(Checka)

Γ ` e1 ⇒ e′1; ref (ρ);L1 SI(ρ′) = SI(ρ)
Γ[x 7→ ref (ρ′)] ` e2 ⇒ e′2 : t2;L2

ρ 6∈ L2 ρ′ 6∈ loceff (Γ) ∪ loceff (SI(ρ)) ∪ loceff (t2)
Γ ` restrictx = e1 in e2 ⇒ restrict ρ′x = e′1 in e′2 : t2;L1 ∪ L2 ∪ ρ

(Restricta)

Γ ` e⇒ e′ : t;L ρ 6∈ loceff (Γ) ∪ loceff (t)
Γ ` e⇒ e′ : t;L− ρ

(Downa)

Figure 4.4: Alias, Effect, and Restrict Checking
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• (Refa) translates an allocation by annotating it with the location ρ being allocated.

We require that ρ’s type in SI matches t. Again, t may itself contain locations, so

this condition also enforces our aliasing requirement. Finally, the effect of evaluating

a ref includes the effect al(ρ) of allocating it.

• (Derefa) translates a dereference. To compute the type of *e, we look up the type of

its location ρ in SI . The effect of evaluating the dereference includes the effect rd(ρ)

of reading location ρ.

• (Assigna) translates an assignment. The expression e1 must be a pointer to some

location ρ, and e2’s type must match ρ’s type in SI . Again, this matching condition

enforces our aliasing requirement. The effect of the assignment is the union of the

effects of evaluating the subexpressions and the effect wr(ρ) of updating location ρ.

• (Annota) and (Checka) translate type qualifier annotations and checks unchanged into

the target language, since in this system all type qualifiers are flow-sensitive.

The most novel rule in this system, (Restricta), annotates restrict bindings with

the location ρ′ of x while simultaneously enforcing the semantics of restrict . This rule is

similar to the rule for let , with four key differences:

• Recall that the semantics of restrictx = e1 in e2 state that during evaluation of e2,

the object x points to may only be accessed through x or copies of x. We enforce this

requirement by binding x to an abstract location ρ′ that may be different from the

abstract location ρ of e1. With this binding we can distinguish accesses through x

and values derived from x, which have an effect on location ρ′, from accesses through

other aliases of e1, which have an effect on ρ.

• The constraint ρ 6∈ L2 forbids location ρ from being accessed during evaluation of

e2. (Recall that ρ 6∈ L2 is shorthand for rd(ρ) 6∈ L2, wr(ρ) 6∈ L2, and al(ρ) 6∈ L2.)

Notice that dereferencing ρ′ within e2 is allowed, as long as ρ and ρ′ are chosen to be

different.

• Dually, the constraint ρ′ 6∈ loceff (Γ) ∪ loceff (SI(ρ)) ∪ loceff (t2) prevents the location

ρ′ of x from escaping the scope of e2. Consider the following program:
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let x = ref 0 in

let p = . . . in

restrict q = x in {p := q};
/* 1 */

restrict r = x in {**p}

Suppose x has type ref (ρx). By (Restricta), the abstract locations pointed to by

q and x can be different. Let q’s type be ref (ρq), where ρx 6= ρq. If the clause

ρ′ 6∈ loceff (Γ)∪ loceff (SI(ρ))∪ loceff (t2) were not in the hypothesis of (Restricta), the

assignment p := q would type check. But then, at program point 1, we would have

two different names ρx and ρq for the same run-time location even though neither is

restricted. Thus the dereference **p would type check even though the program is

incorrect. We forbid ρ′ escaping in (Restricta) to prevent this problem.

• The conclusion of (Restricta) contains the effect ρ, i.e., restricting a location is itself

an effect. This naturally forbids the following program:

restrict y = x in

restrict z = x in

*y

If restricting a location had no effect on that location, it would be possible to restrict

the same name twice and have both restricted names available for use in the same

scope.

The final rule in our system, (Downa), can be used to hide an effect [14, 51, 75],

thereby increasing both the precision of restrict checking and the precision of the flow-

sensitive analysis (Section 4.4). Suppose that our system proves a judgment

Γ ` e⇒ e′ : t;L

It may happen that the effect L contains locations that occur neither in Γ nor in t. While

this behavior seems odd at first, observe that e may have subexpressions that allocate, read,

and write from a temporary location ρ. But aside from (Downa), the rules in Figure 4.4

only add to the effect of an expression. Thus as we move from the leaves to the root of

the syntax tree, without (Downa) effects can only grow. This behavior makes it difficult to
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check restrict in the presence of recursive functions. For example, consider the following

code:

fun foo x =

let p = ref 0 in

restrict y = p in {
y := . . .

foo x

}

Suppose that p has location ρ. Then without (Downa), since y is initialized to p with

restrict the effect of foo contains ρ. But then the recursive call to foo will not type check,

since the hypothesis of (Restricta) requires that ρ is not in the effect of the application

foo x.

Using (Downa), however, we can remove effects on purely local state. The rule

(Downa) says that if location ρ is not visible outside the scope of e—i.e., if it is not bound

in the environment Γ and is not in the type of e—then any effects on ρ can be removed from

the effect of e [14, 75]. In the case of our example program, since ρ is purely local to the

body of foo, it can be removed from the effect of foo, and thus with (Downa) our example

program type checks. By using (Downa), we also increase the precision of the flow-sensitive

qualifier system, since reducing the size of effect sets will increase the benefit of using effects

to filter state at recursive function calls (recall Section 4.1.2).

Example 6. Figure 4.5 shows the translation of the example program in Figure 4.1 into

our target language. The translation assigns x, y, and z distinct locations ρx, ρy, and ρz,

respectively. Because f is called with argument z and our system is not polymorphic in

locations, we require that the types of z and w match, and thus w is given the type ref (ρz).

Finally, notice that since x and y are purely local to the body of f , using the rule (Downa)

we can hide all effects on ρx and ρy. The effect of f is al(ρz) ∪ wr(ρz) because f allocates

z and writes to its parameter w, both of which have type ref (ρz). 2

As given in Figure 4.4, (Downa) is a non-syntactic rule. We can use the following

lemma to construct a purely syntax-directed version of our system by incorporating (Downa)

into the other type rules.
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fun al(ρz)∪wr(ρz) f w : ref (ρx) =
let x = ref ρx0

y = ref ρy annot(1, a)
z = ref ρz annot(2, b)

in
x := 3;
w := 4;
y := annot(5, c);
if (· · ·) {

f z
};
check(*y, c)

Figure 4.5: Translation of Example Program in Figure 4.1

Lemma 4.1 A proof of Γ ` e⇒ e′ : t;L can be rewritten so that the only uses of (Downa)

are as the final step in the proof, or as the hypothesis of (Lama) or (Downa).

Proof: All rules except (Downa) and (Lama) are monotonic in their effects, meaning that

the set of effects in their conclusions is a superset of all the sets of effects in their hypotheses.

All rules except (Restricta) place no conditions on the effects in their hypotheses. For any

effect sets L and L′ we have

(L− ρ) ∪ L′ =

 (L ∪ L′)− ρ ρ 6∈ L′

L ∪ L′ ρ ∈ L′

Thus for any rules except (Downa) and (Lama), we can move a use of (Downa) above one

of the hypotheses of an instance of a rule to below the conclusion of the rule. In (Restricta)

we can clearly move uses of (Downa) from above the e1 hypothesis to below the conclusion.

For the e2 hypothesis, observe that if we could apply (Downa) to remove ρ from the effect

of e2, then choosing the name ρ must have been arbitrary. Thus we can pick a fresh name

ρ′′ in place of ρ in the typing proof for e2, and hence the constraint ρ 6∈ L2 will be satisfied.

(For details on the renaming step, see the proof of Theorem 4.4 below.) 2

By applying Lemma 4.1 and combining sequences of (Downa), we arrive at a purely

syntax-directed type system by removing (Downa) and replacing (Lama) by

Γ[x 7→ t] ` e⇒ e′ : t′;L strip(t) = s
{ρ1, . . . , ρn} 6⊆ loceff (Γ) ∪ loceff (t) ∪ loceff (t′) L′ = L− {ρ1, . . . , ρn}

Γ ` λx :s.e⇒ λLx :t.e′ : t −→L′
t′; ∅
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S ` e1 → l;S′ S′ ` e2 → v;S′′ l ∈ dom(S′′) S′′(l) 6= err
S ` e1 := e2 → v;S′′[l 7→ v]

[Assign]

S ` e1 → l;S′ S′[l 7→ err, l′ 7→ S′(l)] ` e2[x 7→ l′]→ v, S′′

l ∈ dom(S′) l′ 6∈ dom(S′)
S ` restrictx = e1 in e2 → v;S′′[l 7→ S′′(l′), l′ 7→ err]

[Restrict]

Figure 4.6: New Big-Step Operational Semantics Rules for Restrict

Finally, we can rewrite L′ = L− {ρ1, . . . , ρn} to L′ = L ∩ (loceff (Γ) ∪ loceff (t) ∪ loceff (t′)),

which eliminates as many locations as possible:

Γ[x 7→ t] ` e⇒ e′ : t′;L strip(t) = s
L′ = L ∩ (loceff (Γ) ∪ loceff (t) ∪ loceff (t′))

Γ ` λx :s.e⇒ λLx :t.e′ : t −→L′
t′; ∅

This is the final, syntax-directed rule for function definitions.

4.3.2 Semantics and Soundness of Restrict

In this section we sketch a proof of the soundness of restrict with respect to a

precise semantics. Along the way we indirectly prove that the alias and effect computation

by the type system is also correct, meaning that they are conservative approximations to

the actual run-time behavior of the program. The complete proof of soundness can be found

in Appendix B.

In order to prove soundness we need a semantics to make precise the meaning

of restrict . We extend the standard semantics of Figure 2.2 by adding a new semantic

reduction rule for restrict and modifying the rule for assignment slightly, as shown in

Figure 4.6. The new rule for assignment [Assign] checks whether S′′(l) is err before allowing

an update to location l. We need this modification because [Restrict] makes it possible for a

store to contain locations mapped to err (see below), and normally [Assign] does not check

the contents of l before overwriting it. We do not need to modify (Derefa) to make this

check because our semantics are strict in err.

The key rule is [Restrict], which uses copying to enforce restrict ’s semantics. To

evaluate restrictx = e1 in e2, we first evaluate e1 normally, which must yield a pointer l.

Within the body of e2, the only way to access what l points to should be via the particular

value that resulted from evaluating e1. We enforce this by allocating a fresh location l′
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initialized with the contents of l, and then binding l to err to forbid access through l. Recall

that because our semantics is strict in err, and because of our modification to [Assign], any

program that tries to read or write l within e2 will reduce to err. The soundness of our

checking system (see below) implies that no program evaluates to err, which in turn implies

that an implementation can safely optimize restrict by eliding the copy of l. Instead, in

an implementation restrict simply binds x to l.

Notice that it is not an error to use the value l, but only to dereference it. When

e2 has been evaluated, we re-initialize l to point to the value x points to, and then forbid

accesses through l′. Forbidding access through l′ corresponds to the requirement in the type

rule (Restricta) that ρ′ not escape. An alternative formulation is to rename occurrences of

l′ to l after e2 finishes.

We next sketch a proof of soundness; the complete proof can be found in Ap-

pendix B. For purposes of our proof we have no need for the translation of expressions.

Thus we abbreviate the judgment Γ ` e ⇒ e′ : t;L by Γ ` e : t;L. Locations l are rep-

resented in the proof as free variables, and thus their types are stored in Γ and they type

check using (Vara). We implicitly treat evaluated and unevaluated integers identically and

use (Inta) to type check both. Functions are represented not as closures but as syntac-

tic functions, as in standard small-step semantics subject-reduction proofs [31, 122]. Thus

evaluated functions are type checked using (Lama).

To show soundness we first show a subject-reduction result. We begin by intro-

ducing a notion of compatibility to capture when it is safe to evaluate an expression.

Definition 4.2 (Compatibility) We say Γ and L are compatible with store S, written

(Γ, L) ∼ S, if

1. dom(Γ) = dom(S) and

2. for all l ∈ dom(S), there exists ρ such that Γ(l) = ref (ρ) and Γ ` S(l) : SI(ρ); ∅ if S(l) 6= err

ρ 6∈ L if S(l) = err

Intuitively, (Γ, L) ∼ S means an expression e that type checks in environment Γ and has

effect L can execute safely in store S. Notice that the definition of compatibility requires

dom(Γ) = dom(S), i.e., that expressions typed in environment Γ contain locations but not
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other free variables. This property is maintained during evaluation because in [App] we

implement function calls with substitution.

As evaluation progresses in our proof we extend Γ with new locations allocated by

ref expressions. It is a property of our semantics and type system that these extensions

are safe, in the following sense:

Definition 4.3 (Safe Extension) We say that (Γ′, S′) is a safe extension of (Γ, S), writ-

ten (Γ, S)⇒ (Γ′, S′), if

1. dom(Γ) = dom(S) and dom(Γ′) = dom(S′),

2. Γ′|dom(Γ) = Γ,

3. for all l ∈ dom(S′) − dom(S), if S′(l) = err and Γ′(l) = ref (ρ), then ρ 6∈ loceff (Γ),

and

4. for all l ∈ dom(S), if S′(l) = err then S(l) = err.

Here Γ′|dom(Γ)(x) is the restriction of Γ′ to the domain of Γ. Intuitively, (Γ, S) ⇒ (Γ′, S′)

means the err-bound locations in S′ are either also err-bound in S, or if they are fresh (do

not appear in Γ).

With these definitions we can state our subject reduction theorem. We use r to

stand for a semantic reduction result, either a value v or err.

Theorem 4.4 (Subject Reduction) If Γ ` e : t;L and S ` e→ r;S′, where (Γ, L∪L′) ∼
S for some L′, then there exists Γ′ such that

1. Γ′ ` r : t; ∅ (which implies r 6= err),

2. (Γ′, L′) ∼ S′, and

3. (Γ, S)⇒ (Γ′, S′)

Proof (Sketch): By induction on the structure of the proof S ` e → r;S′. The

interesting case is restrictx = e1 in e2. By assumption, we know

Γ ` e1 : ref (ρ);L1 SI(ρ′) = SI(ρ)
Γ[x 7→ ref (ρ′)] ` e2 : t2;L2

ρ 6∈ L2 ρ′ 6∈ loceff (Γ) ∪ loceff (SI(ρ)) ∪ loceff (t2)
Γ ` restrictx = e1 in e2 : t2;L1 ∪ L2 ∪ ρ
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We also have a reduction S ` restrictx = e1 in e2 → r;S′. By inspection of the semantic

rules, to achieve this reduction we must have applied a reduction S ` e1 → re1 ;S
′
e1

for e1.

Then by induction, there exists a Γ′e1
satisfying

1. Γ′e1
` re1 : ref (ρ); ∅

2. (Γ′e1
, L2 ∪ ρ ∪ L′) ∼ S′

e1

3. (Γ, S)⇒ (Γ′e1
, S′

e1
)

After this step, though, we cannot apply induction directly to the evaluation

S′
e1

[re1 7→ err, l′ 7→ S′
e1

(re1)] ` e2[x 7→ l′]→ re2 ;S
′
e2

of e2. The problem is that we would need to show the following compatibility:

(Γ′e1
, L2 ∪ ρ ∪ L′) ∼ S′

e1
[re1 7→ err, l′ 7→ S′

e1
(re1)]

But of course this compatibility does not hold, because re1 maps to err in that store. We

can solve this problem by simply removing ρ from the effect set for compatibility. But

there is a deeper problem: although l′ is fresh, ρ′ may not be, and thus there may be some

location l′′ such that Γ′e1
(l′′) = ref (ρ′) and S′

e1
(l′′) = err. To solve this problem, we observe

that the name ρ′ is arbitrary. We construct a substitution R = [ρ′ 7→ ρ′′] for some fresh ρ′′,

with SI(ρ′′) = SI(ρ′). Then from

Γ[x 7→ ref (ρ′)] ` e2 : t2;L2

we conclude

R(Γ[x 7→ ref (ρ′)]) ` e2 : Rt2;RL2

Using the hypothesis ρ′ 6∈ loceff (Γ) ∪ loceff (SI(ρ)) ∪ loceff (t2) in the type rule (Restricta),

we derive

Γ[x 7→ ref (ρ′′)] ` e2 : t2;RL2

Now we can show the following compatibility:

(Γ′e1
, RL2 ∪ (L− ρ)) ∼ S′

e1
[re1 7→ err, l′ 7→ S′

e1
(re1)]

and thus apply induction to the evaluation of e2. 2

Given the subject-reduction theorem, soundness is easy to show:
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Theorem 4.5 If ∅ ` e : t;L and ∅ ` e→ r;S, then r is not err.

Proof: First observe that (∅, L) ∼ ∅. Then by Theorem B.10, there is a Γ′ such that

Γ′ ` r : t; ∅. Thus r is not err. 2

4.3.3 A Flow-Insensitive Inference System

In this section we give an efficient inference algorithm that produces a correct

translation of an unannotated program into the target language of Figure 4.3. Our algorithm

will be both sound and complete; if there is any proof that a program is correct according

to the rules of Figure 4.4, the algorithm will find it.

As with the previous type inference systems we have discussed, our inference sys-

tem for aliasing, effects, and restrict generates a system of constraints C. In this case,

we generate equality constraints between types, inclusion constraints between effects, and

disinclusion constraints between locations and effects:

C ::= t1 = t2 | L ⊆ ε | ρ 6∈ L

t ::= int | ref (ρ) | t −→ε t′

L ::= ∅ | ε | ρ | rd(ρ) | wr(ρ) | al(ρ) | L1 ∪ L2 | L1 ∩ L2

Here ε is an effect variable standing for an unknown set of effects. Notice that function types

always have effect variables on their arrows, and inclusion constraints between effects have

the special form L ⊆ ε, both of which make type equality and effect inclusion constraints

particularly convenient to solve.

An important algorithmic consider is how we compute the sets of locations loceff (t)

and loceff (Γ) for a type t and a type environment Γ, both of which are required by (Restricta)

and the version of (Lama) with (Downa) incorporated. In a program of size n, types may

be of size O(n) and type environments may have O(n) variables in their domain. Thus we

would like to avoid traversing types and environments as much as possible, since that alone

would lead to a quadratic algorithm.

Our solution is to memoize the computation of loceff (·). Notice that we can view

loceff (t) and loceff (Γ) simply as an effect, using our shorthand ρ = rd(ρ) ∪ wr(ρ) ∪ al(ρ).

To each type t used during inference we associate an effect variable εt to model loceff (t). As

part of our algorithm, we use the embed ′ function to map standard types to types with fresh

locations and effects. As a side effect of applying embed ′, we generate constraints between
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effect variables.

embed ′(int) = int

embed ′(ref (s)) = ref (ρ) ρ fresh

where SI(ρ) = embed ′(s) and εSI(ρ) ∪ ρ ⊆ εref (ρ)

embed ′(s −→ s′) = t −→ε t′ ε fresh

where t = embed ′(s), t′ = embed ′(s′), and εt ∪ ε ∪ εt′ ⊆ ε(t−→εt′)

We generate similar constraints when constructing types during type inference.

For type environments, observe that the type environment is empty at the root of

the proof tree and then is only incrementally modified when type checking each subexpres-

sion. We use effect variables εΓ to contain the set of locations in environment Γ. When

we extend Γ to Γ′ = Γ[x 7→ t], we generate a fresh effect variable εΓ′ and the constraint

εΓ ∪ loceff (t) ⊆ εΓ′ In this way we succinctly model the set loceff (Γ′) without recomputing

loceff (Γ).

Figure 4.7 presents our type inference rules. Because the variables εΓ need to be

communicated between adjacent steps of the proof, they are included to the left of the

turnstile in the rules.

• (Var′a) (Int′a), (Annot′a), and (Check′a) are as before, except for the addition of εΓ to

the left of the turnstile.

• (Lam′
a) incorporates (Downa) as discussed at the end of Section 4.3.1, along with the

computation of εΓ′ as described above. We use embed ′ to map the given standard

parameter type to a type with fresh locations and effect variables. Notice that we

always place an effect variable on the arrow of a function type. In this way when we

solve equality constraints t1 = t2 between types, we produce equalities only between

effect variables rather than between arbitrary effects. Since we are constructing a new

type, we make the appropriate constraints so that εt−→εt′ models loceff (t −→ε t′).

• (App′a), (Ref′a), (Deref′a), and (Assign′a) are written with explicit fresh locations and

equality constraints between types where needed. Note that we assume that the

program is correct with respect to the standard types, and so we avoid some shape

matching constraints (for example, in (Assign′a) we know that e1 is a pointer type). In

(Ref′a) since we are constructing a new type we generate the appropriate constraints

for its memoized location variable.
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x ∈ dom(Γ)
Γ, εΓ `′ x⇒ x : Γ(x); ∅

(Var′a)

Γ, εΓ `′ n⇒ n : int ; ∅
(Int′a)

Γ′ = Γ[x 7→ t] t = embed ′(s) εΓ ∪ εt ⊆ εΓ′

Γ′, εΓ′ `′ e⇒ e′ : t′;L εt ∪ ε ∪ εt′ ⊆ εt−→εt′

L ∩ (εΓ′ ∪ εt′) ⊆ ε εΓ′ , ε fresh
Γ `′ λx :s.e⇒ λεx :t.e′ : t −→ε t′; ∅

(Lam′
a)

Γ `′ e1 ⇒ e′1 : t −→L t′;L1 Γ `′ e2 ⇒ e′2 : t2;L2 t = t2
Γ `′ e1 e2 ⇒ e′1 e′2 : t′;L1 ∪ L2 ∪ L

(App′a)

Γ, εΓ `′ e1 ⇒ e′1 : t1;L1 Γ′, εΓ′ `′ e2 ⇒ e′2 : t2;L2

Γ′ = Γ[x 7→ t1] εΓ ∪ εt1 ⊆ εΓ′ εΓ′ fresh
Γ, εΓ `′ letx = e1 in e2 ⇒ letx = e′1 in e′2 : t2;L1 ∪ L2

(Let′a)

Γ, εΓ `′ e⇒ e′ : t;L SI(ρ) = t εt ∪ ρ ⊆ εref (ρ) ρ fresh
Γ, εΓ `′ ref e⇒ ref ρe′ : ref (ρ);L ∪ al(ρ)

(Ref′a)

Γ, εΓ `′ e⇒ e′ : ref (ρ);L
Γ, εΓ `′ *e⇒ *e′ : SI(ρ);L ∪ rd(ρ)

(Deref′a)

Γ, εΓ `′ e1 ⇒ e′1 : ref (ρ);L1 Γ, εΓ `′ e2 ⇒ e′2 : t2;L2 SI(ρ) = t2
Γ, εΓ `′ e1 := e2 ⇒ e′1 := e′2 : SI(ρ);L1 ∪ L2 ∪ wr(ρ)

(Assign′a)

Γ, εΓ `′ e⇒ e′ : t;L
Γ, εΓ `′ annot(e,Q)⇒ annot(e′, Q) : t;L

(Annot′a)

Γ, εΓ `′ e⇒ e′ : t;L
Γ, εΓ `′ check(e,Q)⇒ check(e′, Q) : t;L

(Check′a)

Γ, εΓ `′ e1 ⇒ e′1; ref (ρ);L1 SI(ρ′) = SI(ρ)
Γ′ = Γ[x 7→ ref (ρ′)] εSI(ρ′) ∪ ρ′ ⊆ εref (ρ′) εΓ ∪ εref (ρ′) ⊆ εΓ′

Γ′, εΓ′ `′ e2 ⇒ e′2 : t2;L2

ρ 6∈ L2 ρ′ 6∈ εΓ ∪ εSI(ρ) ∪ εt2 εΓ′ , ρ′ fresh

Γ, εΓ `′ restrictx = e1 in e2 ⇒ restrict ρ′x = e′1 in e′2 : t2;L1 ∪ L2 ∪ ρ
(Restrict′a)

Figure 4.7: Alias and Effect Inference and Restrict Checking
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C ∪ {int = int} ⇒ C
C ∪ {ref (ρ) = ref (ρ′)} ⇒ C ∪ {ρ = ρ′} ∪ {SI(ρ) = SI(ρ′)}

C ∪ {t1 −→ε t2 = t′1 −→ε′ t′2} ⇒ C ∪ {t1 = t2} ∪ {t′1 = t′2} ∪ {ε = ε′}
C ∪ {ρ = ρ′} ⇒ C[ρ 7→ ρ′]
C ∪ {ε = ε′} ⇒ C[ε 7→ ε′]

(a) Type Unification

C ∪ {ρ 6∈ L} ⇒ C ∪ {ρ 6∈ ε} ∪ {L ⊆ ε} ε fresh
C ∪ {∅ ⊆ ε} ⇒ C

C ∪ {L1 ∪ L2 ⊆ ε} ⇒ C ∪ {L1 ⊆ ε} ∪ {L2 ⊆ ε}
C ∪ {∅ ∩ L ⊆ ε} ⇒ C
C ∪ {L ∩ ∅ ⊆ ε} ⇒ C

C ∪ {(L1 ∪ L2) ∩ L ⊆ ε} ⇒ C ∪ {ε′ ∩ L ⊆ ε} ∪ {L1 ∪ L2 ⊆ ε′} ε′ fresh
C ∪ {L ∩ (L1 ∪ L2) ⊆ ε} ⇒ C ∪ {L ∩ ε′ ⊆ ε} ∪ {L1 ∪ L2 ⊆ ε′} ε′ fresh

(b) Constraint Normalization

Figure 4.8: Alias and Effect Constraint Resolution

• (Let′a) is as before, with the added computation of εΓ′ .

• (Restrict′a) generates a fresh location ρ′ for x, and we set SI(ρ′) = SI(ρ). Notice that

we include ρ′, and not necessarily ρ, in εΓ′ . Finally, we generate two 6∈ constraints

requiring that ρ is not used in e2 and that ρ′ does not escape.

As in previous systems, after inference we are left with a system of constraints C

we need to solve. We split the resolution of C into two phases. First we apply unification

to solve the type equality constraints t1 = t2. Figure 4.8a gives the standard unification

algorithm as a series of left-to-right rewrite rules. Because we assume that the program we

are analyzing type checks with respect to the standard types, we know that none of the

structural matching cases in Figure 4.8a can fail.1 At this point, notice that we have assigned

locations to each expression in the program, thereby completing our flow-insensitive may

alias analysis.

After this first step, all that remain are effect constraints of the form L ⊆ ε and

ρ 6∈ L (recall that the latter is shorthand for rd(ρ) 6∈ L and wr(ρ) 6∈ L and al(ρ) 6∈ L).
1When we unify t and t′, we need not unify εt and εt′ , which represent the locations appearing in the

structure of t and t′. Resolving the constraint t = t′ unifies the locations appear in t and t’, and thus it also
unifies the locations contained in εt and εt′ .
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C ::= L ⊆ ε | ρ 6∈ ε
L ::= M |M ∩M

M ::= rd(ρ) | wr(ρ) | al(ρ) | ε

(a) Normal Form as Constraints

Constraints Edge(s)
M ⊆ ε M → ε
M ∩M ′ ⊆ ε M →1 ∩,M ′ →2 ∩,∩ → ε ∩ fresh

(b) Normal Form Inclusions as a Digraph

Figure 4.9: Effect Constraint Normal Form

Definition 4.6 A solution to a system of effect constraints C is a mapping σ from effect

variables to sets of locations such that for each L ⊆ ε in C we have σ(L) ⊆ σ(ε) and for

each ρ 6∈ L in C we have ρ 6∈ σ(L), where we extend σ from effect variables to arbitrary

effects in the natural way.

If σ is a solution to the constraints C, we write σ |= C. If there is a σ such that σ |= C, then

C is saitsfiable. Notice that abstract locations ρ are not in the domain of σ—intuitively,

after applying the rules of Figure 4.8a, we treat abstract locations as constants.

Definition 4.7 If σ |= C and σ′ |= C, then we define σ ≤ σ′ if for all effect variables ε we

have σ(ε) ⊆ σ′(ε). If σ |= C, then σ is a least solution if σ ≤ σ′ for any other solution σ′.

Lemma 4.8 If an effect constraint system C has a solution, then C has a least solution.

Proof: Let Σ be any non-empty set of solutions of C. Let σ =
⋂

σ′∈Σ σ′, where σ(ε) =⋂
σ′∈Σ σ′(ε). We claim that σ |= C. Suppose C contains a constraint ρ 6∈ L. Then by

assumption we know that for all σ′ ∈ Σ we have ρ 6∈ σ′(L), and therefore ρ 6∈ σ(L).

Suppose C contains a constraint L ⊆ ε. Then by assumption we know that for all σ′ ∈ Σ

we have σ′(L) ⊆ σ′(ε). But then σ(L) ⊆ σ(ε).

Clearly for and σ′ ∈ Σ we have σ ≤ σ′. Thus the set of all solutions of C has a

least element, and thus C has a least solution. 2

To test satisfiability of an effect constraint system, we first apply the rules in

Figure 4.8b to translate the constraints into the normal form shown in Figure 4.9a. Notice
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Effect-solve(C, ρ) =
for all nodes n ∈ C do σ(n)← ∅
for all intersection nodes ∩ ∈ C do σ1(∩)← σ2(∩)← ∅
let σ(rd(ρ))← {rd(ρ)}, σ(wr(ρ))← {wr(ρ)}, σ(al(ρ))← {al(ρ)}
let W = {rd(ρ),wr(ρ), al(ρ)}, the set of nodes to visit
while W 6= ∅ do

remove a node n from W
for each edge n→ ε do

if σ(n) 6⊆ σ(ε)
then σ(ε)← σ(ε) ∪ σ(n)

W ←W ∪ {ε}
for each edge n→i ∩ do

if σ(n) 6⊆ σi(∩)
then σi(∩)← σi(∩) ∪ σ(n)

if σ1(∩) ∩ σ2(∩) 6⊆ σ(∩)
then σ(∩)← σ(∩) ∪ (σ1(∩) ∩ σ2(∩))

W ←W ∪ {∩}
return σ

Figure 4.10: Solving Effect Constraint System with respect to Location ρ

that the rules in Figure 4.8b preserve least solutions but not arbitrary solutions. Also notice

that in Figure 4.8b we do not consider the cases (L1 ∩L2)∩L3 ⊆ ε and L1 ∩ (L2 ∩L3) ⊆ ε,

since inspection of the rules of Figure 4.7 shows that constraints with nested intersections

are never generated.

We view the inclusion constraints in a normal form effect constraint system as

a directed graph, as shown in Figure 4.9b. The nodes n of the digraph are basic effects

rd(ρ), wr(ρ), and al(ρ) (with in-degree 0), effect variables ε (with arbitrary in-degree), and

intersection nodes ∩ (with in-degree 2). We label the two edges into each ∩ node with

either 1 or 2, marking whether they represent the left of the intersection or the right of the

intersection. We generate a fresh ∩ node for each constraint M ∩M ′ ⊆ ε. Given a normal

form effect constraint system, we test satisfiability by checking, for each constraint ρ 6∈ ε,

whether rd(ρ) ∈ σ(ε), wr(ρ) ∈ σ(ε), or al(ρ) ∈ σ(ε) in the least solution σ.

Figure 4.10 gives our algorithm for computing the least solution σ of the inclusion

constraints for a particular location ρ. This algorithm is a simple extension of a standard

graph traversal. For each intersection node ∩ in the graph, the algorithm maintains two

sets σ1(∩) and σ2(∩) representing the current solution for the left and right parts of the
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intersection, respectively. Intuitively, the algorithm in Figure 4.10 pushes the three basic

effects rd(ρ), wr(ρ), and al(ρ) transitively forward through the digraph.

Given a normal form effect constraint system, we test satisfiability by computing

Effect-solve(C, ρ) for each constraint ρ 6∈ ε. The constraint ρ 6∈ ε is satisfiable if and

only if none of the effects rd(ρ), wr(ρ), and al(ρ) appear in σ(ε).

Let n be the size of a program in the source language of Figure 4.3a, and let k be

the number of occurrence of restrict in the program. Applying the type inference rules in

Figure 4.7 takes O(n) time and generates a system of constraints C of size O(n). Applying

the type unification rules in Figure 4.8a takes time O(nα(n)), where α(n) is the inverse

Ackerman’s Function. Applying the rules in Figure 4.8b to normalize C takes O(n) time

and yields a normal form constraint system C ′ of size O(n). Given that C ′ is size O(n),

the algorithm of Figure 4.10 takes O(n) time each time it is invoked, and it is run twice for

each restrict in the program, for a total of O(kn) time. Summing up, the running time

of the algorithm as a whole is O(nα(n) + kn).2 In Section 4.5 we also use this algorithm

to check whether ρ ∈ L. As indicated above, we can solve all such queries for location ρ in

O(n) time.

4.3.4 Subsumption on Effects

int ≤ int

ref (ρ) ≤ ref (ρ)

t′1 ≤ t1 t2 ≤ t′2 L ⊆ L′

t1 −→L t2 ≤ t′1 −→L′
t′2

Γ ` e⇒ e′ : t;L t ≤ t′

Γ ` e⇒ e′ : t′;L
(Suba)

Figure 4.11: Subsumption Rule for Effects

We can extend the type and effect system in Figure 4.4 to admit a form of sub-
2Our source language is annotated with standard types, but even if we were to remove the standard types

the running time of our algorithm is still the same—we can fold the rules of Figure 4.7 into standard type
inference, and that whole phase runs in O(nα(n)) time.
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τ ::= Q σ
σ ::= int | ref (ρ) | (S, τ) −→L (S′, τ ′)
S ::= {ρ1

η1 : τ1, . . . , ρn
ηn : τn}

η ::= 0 | 1 | ω

Figure 4.12: Flow-Sensitive Qualified Types

typing among function types [51, 110], as shown in Figure 4.11. These rules can easily be

incorporated into our inference algorithm. This form of subtyping increases the usefulness

of the type system by allowing more programs with restrict annotations to type check

with subtyping. To understand why, suppose we pass two functions f and g as parameters

to h, and suppose that f has an effect on location ρ. Then without (Suba), the effects of

f and g must be equal, meaning that g also appears to have an effect on ρ. But then we

cannot call g in any context in which location ρ has been copied to a restricted pointer,

even if it does not, in fact, access location ρ. With (Suba) we can avoid equating the effects

of f and g, and thus we can avoid this problem.

4.4 Flow-Sensitive Type Qualifier Checking

In the second stage of our system, we perform flow-sensitive analysis, either in-

ference or checking, on the qualifier-related annotations. In this section we present our

checking system, and in the next section we present inference.

We take as input the target language of Figure 4.3, which has been decorated with

types, locations, and effects. Throughout this stage we treat abstract locations ρ and effects

L from the first step as constants.

We check the input program using the qualified types shown in Figure 4.12. As

in Chapter 3, qualified types τ are standard types with qualifiers inserted at every level.

The flow-sensitive system associates a store S with each program point, in contrast to the

flow-insensitive alias and effect system, which uses a single global store SI to assign types

to locations. In Figure 4.12, function types are extended to (S, τ) −→L (S′, τ ′), where S

describes the store the function is invoked in and S′ describes the store when the function

returns. As in Section 4.3, L is the effect of the function.

As discussed in Section 4.1.1, each location in each store has an associated linearity
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η. In addition to the two linearities described before, 1 for linear locations (these admit

strong updates) and ω for non-linear locations (which admit only weak updates), we also use

a third linearity 0. In our system, the linearity 0 marks locations that are either unallocated

or are in unreachable code. The three linearities form a lattice 0 < 1 < ω, and we define

addition on linearities as expected: for any x we define 0+x = x, 1+1 = ω, and ω +x = ω.

An abstract store S is a vector assigning linearities and qualified types to the

abstract locations appearing in the translated input program. To distinguish this form of

store from the stores used in the next section, we refer to the stores in Figure 4.12 as ground

stores. If S is an abstract store, we write S(ρ) for ρ’s type in S, and we write Slin(ρ) for

ρ’s linearity in S.

In our system, abstract stores assign a type and linearity to every abstract location

in the target program, even if some of those locations are not directly accessible in the

current scope. We make this choice so that handling hidden state is particularly simple.

For example, consider the following program:

let f = (let x = ref 0 in λy.x :=x + 1) in

f(); f();

end

Here the function f increments x each time it is called and returns the new value of x. Thus

the two calls to f yield 1 and then 2, respectively. Suppose that we want to track the value

of x with a flow-sensitive analysis. Then although the name x is not visible outside the

scope of f , in order to communicate the value of x from one call to f to the other we need to

model the state of x at the top level, which our system does. As discussed in Section 4.1.2,

we use effects to hide state that does not escape the scope of a function (see discussion of

(Lamf ) below).

As in Chapter 3, we define a subtyping relation τ1 ≤ τ2 between types. Whenever

there is a control-flow branch from the state represented by abstract store S1 to the state

represented by abstract store S2, we require that the types of the corresponding locations in

S1 and S2 are compatible, which we write S1 ≤ S2. Figure 4.13 gives the complete definition

of τ1 ≤ τ2 and S1 ≤ S2, which are extensions of the rules of Figure 3.2. The rule (Intf ≤) is

as before. In (Reff ≤) we require that the locations on the left- and right-hand sides of the ≤
are the same. The translation step in Section 4.3 enforces this property, which corresponds

to the standard requirement that subtyping becomes equality below a ref constructor (see
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Q ≤ Q′

Q int ≤ Q′ int
(Intf ≤)

Q ≤ Q′

Q ref (ρ) ≤ Q′ ref (ρ)
(Reff ≤)

Q ≤ Q′ τ ′1 ≤ τ1 τ2 ≤ τ ′2 S′
1 ≤ S1 S2 ≤ S′

2

Q (S1, τ1) −→L (S2, τ2) ≤ Q′ (S′
1, τ

′
1) −→L (S′

2, τ
′
2)

(Funf ≤)

τi ≤ τ ′i ηi ≤ η′i i = 1..n

{ρ1
η1 : τ1, . . . , ρn

ηn : τn} ≤ {ρ′1
η′1 : τ ′1, . . . , ρ

′
n

η′n : τ ′n}
(Storef ≤)

Figure 4.13: Subtyping and Store Compatibility Rules

Figure 3.2). We emphasize that in this phase we treat abstract locations ρ as constants,

and we never attempt or need to unify two distinct locations to satisfy (Reff ≤). The rule

(Funf ≤) states that functions are contravariant in their domain type and initial store, and

covariant in their range type and final store. We require that the effects of the two function

types match exactly; it is also sound to allow the effect of the left-hand function to be

a subset of the effect of the right-hand function (Section 4.3.4). Finally, rule (Storef ≤)

says that two stores are compatible if their linearities and qualified types are compatible

point-wise. Notice that here we use the fact that every location appears in every store.

Figure 4.14 presents our flow-sensitive type qualifier checking system. In this type

system, judgments have the form Γ, S ` e : τ, S′, meaning that in type environment Γ and

in state S, evaluating e yields a result of type τ and a new state S′. In these rules, we

construct partial abstract stores of the form S|L. The partial store S|L maps all locations

in L to their types and linearities as in S and is undefined elsewhere; we consider location

ρ to occur in L if rd(ρ) ∈ L, wr(ρ) ∈ L, or al(ρ) ∈ L. We use ¬L for the complement of

the locations in L with respect to the set of all locations occurring in the input program.

We use the operation ⊕ to combine two partial stores, defined in Figure 4.15. Notice that

if we combine two partial stores using ⊕, the types of any common locations must match.

Finally, as before the rules use a function strip(·) for removing qualifiers and stores from
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x ∈ dom(Γ)
Γ, S ` x : Γ(x), S

(Varf )

Γ, S ` n : int , S
(Intf )

Γ[x 7→ τ ], Sλ ` e : τ ′, S′
λ strip(τ) = t

Γ, S ` λLx :t.e : (Sλ, τ) −→L (S′
λ, τ ′), S

(Lamf )

Γ, S ` e1 : Q (Sλ, τ) −→L (S′
λ, τ ′), S′ Γ, S′ ` e2 : τ, S′′

S′′|L ⊕ S′′′ ≤ Sλ

Γ, S `′ e1 e2 : τ ′, S′
λ|L ⊕ S′′|¬L

(Appf )

Γ, S ` e1 : τ1, S
′ Γ[x 7→ τ1], S′ ` e2 : τ2, S

′′

Γ, S ` letx = e1 in e2 : τ2, S
′′ (Letf )

Γ, S ` e : S′(ρ), S′

Γ, S ` ref ρe : ref (ρ), S′ ⊕ {ρ1 : S′(ρ)}
(Reff )

Γ, S ` e : Q ref (ρ), S′

Γ, S ` *e : S′(ρ), S′ (Dereff )

Γ, S ` e1 : Q ref (ρ), S′ Γ, S′ ` e2 : τ, S′′

η = S′′
lin(ρ) ω ≤ η =⇒ S′′(ρ) ≤ τ

Γ, S ` e1 := e2 : τ, S′′|¬ρ ⊕ {ρη : τ}
(Assignf )

Γ, S ` e : σ, S′

Γ, S ` annot(e,Q) : Q σ, S′ (Annotf )

Γ, S ` e : Q′ σ, S′ Q′ ≤ Q

Γ, S ` check(e,Q) : Q′ σ, S′ (Checkf )

Γ, S ` e1 : Q ref (ρ), S′

Γ[x 7→ Q ref (ρ′)], S′ ⊕ {ρ′η
′
: S′(ρ)} ` e2 : τ2, S

′′

η = S′′
lin(ρ) ω ≤ η =⇒ S′′(ρ) ≤ S′′(ρ′)

Γ, S ` restrict ρ′x = e1 in e2 : τ2, S
′′|¬ρ ⊕ {ρη : S′′(ρ′)}

(Restrictf )

Γ, S ` e : τ, S′ τ ≤ τ ′

Γ, S ` e : τ ′, S′ (Subf )

Figure 4.14: Flow-Sensitive Qualified Type Checking System
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S ⊕ S′(ρ) =


S(ρ) S(ρ) = S′(ρ)
S(ρ) ρ ∈ dom(S) ∧ ρ 6∈ dom(S′)
S′(ρ) ρ 6∈ dom(S) ∧ ρ ∈ dom(S′)

S ⊕ S′
lin(ρ) =


Slin(ρ) + S′

lin(ρ) ρ ∈ dom(S) ∧ ρ ∈ dom(S′)
Slin(ρ) ρ ∈ dom(S) ∧ ρ 6∈ dom(S′)
S′
lin(ρ) ρ ∈ dom(S′) ∧ ρ 6∈ dom(S)

Figure 4.15: ⊕ Operation on Partial Stores

flow-sensitive types:

strip(Q int) = int

strip(Q ref (ρ)) = ref (ρ)

strip(Q (S, τ) −→L (S′, τ ′)) = strip τ −→L strip τ ′

We discuss the rules in Figure 4.14:

• (Varf ) and (Intf ) are standard. As in Figure 3.5, when we assign a type to an integer

we leave off the outermost qualifier, which forces the programmer to add a qualifier

annotation (see (Annotf ) below).

• (Lamf ) type checks function body e in store Sλ with parameter x bound to a type

with the same shape as t. (Note that this last check is not strictly necessary.) As

with (Intf ), we leave the outermost qualifier off of the resulting function type, which

forces the programmer to add an explicit qualifier annotation.

• (Appf ) type checks e1 followed by e2—notice the left-to-right evaluation order enforced

by using e1’s final abstract store as the initial store for checking e2. We model the

function call by requiring that the actual argument e2 match the type of e1’s domain,

and that the current state S′′ is compatible with the initial state e1 expects. As

discussed in Section 4.1.2, we use the effect L of the function e1 to avoid conflating

hidden state. With the condition S′′|L ⊕ S′′′ ≤ Sλ, we require only that the locations

from S′′ that appear in L are compatible with the corresponding locations in Sλ. This

constraint has no effect on the locations not in L, since S′′′ can be chosen arbitrarily.

The state after the function call is S′
λ|L⊕S′′|¬L, which combines S′

λ and S′′ according

to L. If e1 accessed a location ρ, then after the function call we take ρ’s linearity and
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qualified type from S′
λ. Otherwise, we take ρ’s linearity from S′′. We can actually

improve on this slightly by distinguishing the different kinds of effects in L; see the

discussion of Merge in the next section.

• (Letf ) is standard. Notice the left-to-right order of evaluation.

• (Reff ) type checks an allocation. The resulting store is the same as store S′, except

that location ρ has been allocated once more. The type of e is required to be com-

patible with ρ’s type in S′. We make this choice to simplify inference slightly; see the

discussion of (Ref′f ) in the next section.

• (Dereff ) type checks a memory read. The result of the dereference is ρ’s qualified

type in S′. As in Chapter 3, we allow any qualifier to appear on e’s type; qualifiers

are checked only be (Checkf ), below.

• (Assignf ) type checks a memory update. The store after the assignment matches the

store S′′ except that location ρ now has type τ . If ρ is non-linear in S′′ we require a

weak update with the constraint S′′(ρ) ≤ τ .

• (Annotf ) adds an outermost qualifier to a type, and (Checkf ) tests the outermost

qualifier of a type, just as in Chapter 3.

• (Restrictf ) type checks a restrict construct. First we evaluate e1, which must be

a pointer. Then we check e2 in an environment where x has been bound to location

ρ′, as specified in the translated program. We check e2 in a store like S′ except that

location ρ′ has also been allocated, and its initial value must be compatible with ρ’s

value. The initial linearity of ρ′ is η′, which may be linear or non-linear independently

of the linearity of ρ. When the scope of the restrict ends, we update ρ with the

final value of ρ′; this is either a weak update or a strong update, depending on the

linearity of ρ in S′′ (which is the same as ρ’s linearity in S′, since e2 cannot read,

write, or allocate location ρ).

• (Subf ) adds subsumption, as defined in Figure 4.13, to the system.
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4.5 Flow-Sensitive Type Qualifier Inference

In this section we give an efficient algorithm for flow-sensitive type qualifier infer-

ence. The key to efficiency is to choose our representation of stores carefully. The ground

stores in Figure 4.12 contain one occurrence of each location in the program. In a program

of size n, the alias and effect inference of Section 4.3.3 may produce an annotated program

with n locations. If we need to represent the type of n locations at n program points, that

alone would lead to at least an n2 algorithm.

Thus during inference, rather than explicitly associating a ground store with every

program point, we represent stores using a constraint formalism. As the base case, we model

an unknown store using a store variable ε. We define four store constructors that represent

the differences between states, yielding the following grammar for stores:

S ::= ε | Alloc(S, ρ) | Merge(S, S′, L) | Filter(S, L) | Assign(S, ρ :τ)

Intuitively, the four store constructors model exactly the operations on stores we use in

Figure 4.14. For example, in the rule (Reff ) we build a store S′ ⊕ {ρ1 : S′(ρ)}. We

represent this store during inference with the constructed store Alloc(S′, ρ).

Our type inference rules generate store constraints of the form S ≤ ε, as well as

the subtyping constraints and qualifier constraints we have seen in Chapter 3.

Definition 4.9 A solution to a system of store, type, and qualifier constraints is a mapping

σ from store variables to ground stores and from qualifier variables to qualifier constants

such that for each constraint S ≤ ε we have σ(S) ≤ σ(ε), for each constraint τ1 ≤ τ2 we

have σ(τ1) ≤ σ(τ2), and for each constraint Q1 ≤ Q2 we have σ(Q1) ≤ σ(Q2), as defined in

Figure 4.13.

If C is a system of store, type, and qualifier constraints, as before we write σ |= C if σ is a

solution to C.

The meaning of each store constructor is given in Figure 4.16 by showing how

a solution σ extends to constructed stores. Here the condition ρ ∈ L means rd(ρ) ∈ L,

wr(ρ) ∈ L, or al(ρ) ∈ L. We discuss the four store constructors:

• The store Alloc(S, ρ) is the same as store S, except that location ρ has been allocated

once more. Allocating location ρ does not affect the types in the store but increases

the linearity of location ρ by one. In Figure 4.14, we wrote this store as S⊕{ρ1 : S(ρ)}.
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σ(Alloc(S, ρ′))(ρ) = σ(S)(ρ)

σ(Merge(S, S′, L))(ρ) =

{
σ(S)(ρ) al(ρ) ∈ L ∨ wr(ρ) ∈ L
σ(S′)(ρ) otherwise

σ(Filter(S, L))(ρ) = σ(S)(ρ) ρ ∈ L

σ(Assign(S, ρ′ :τ))(ρ) =

{
τ ρ = ρ′

σ(S)(ρ) otherwise

(a) Types

σ(Alloc(S, ρ′))lin(ρ) =

{
1 + σ(S)lin(ρ) ρ = ρ′

σ(S)lin(ρ) otherwise

σ(Merge(S, S′, L))lin(ρ) =

{
σ(S)lin(ρ) al(ρ) ∈ L
σ(S′)lin(ρ) otherwise

σ(Filter(S, L))lin(ρ) =

{
σ(S)lin(ρ) ρ ∈ L
0 otherwise

σ(Assign(S, ρ′ :τ))lin(ρ) = σ(S)lin(ρ)

(b) Linearities

ω ≤ σ(S)lin(ρ) =⇒ σ(S)(ρ) ≤ τ for all stores Assign(S, ρ :τ)

(c) Weak Updates

Figure 4.16: Extending a Solution to Constructed Stores
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• The store Merge(S, S′, L) combines stores S and S′ according to effect L. If L contains

an allocation of location ρ, then Merge(S, S′, L) assigns ρ its type and linearity in S. If

L contains a write to but not an allocation of location ρ, then Merge(S, S′, L) assigns

ρ its type in S and its linearity in S′. Otherwise Merge(S, S′, L) assigns ρ its type and

linearity in S′. We use Merge to model the state after a function call. In Figure 4.14

we used the less precise form S|L⊕S′|¬L for a similar purpose. Merge is more precise

because it distinguishes different kinds of effects in L. See the discussion of (App′f )

below.

• The store Filter(S, L) assigns the same types and linearities as S to all locations in

L. The types of any locations not in L are unconstrained, and their linearities are 0

since they have not been allocated. In Figure 4.14 we wrote Filter(S, L) as S|L ⊕ S′,

where S′ is arbitrary. Note that because of the particular constraints our inference

algorithm generates, our solution σ need not assign types or linearities for S′, i.e., for

the locations not in L.

• Finally, the store Assign(S, ρ : τ) is the same as store S, except that location ρ has

been updated to type τ . If ρ is linear in S, then this is a strong update, so ρ’s new

type is τ . Otherwise, if ρ is non-linear in S, then in Figure 4.16c we require that

the type of ρ in Assign(S, ρ : τ) be at least its type in S; this corresponds to a weak

update.3

Figure 4.17 gives the rules for our flow-sensitive type qualifier inference system.

As discussed above, these rules use our four store constructors to represent changes in state.

We use our standard embed ′ function to add fresh qualifier variables and store variables to

types:

embed ′(int) = κ int κ fresh

embed ′(ref (ρ)) = κ ref (ρ) κ fresh

embed ′(t −→L t′) = κ (ε, embed ′(t)) −→L (ε′, embed ′(t′)) κ, ε, ε′ fresh

As in the previous inference systems, we assume that standard type inference has already

been performed on the program, and so we simplify some of the matching conditions on

the hypotheses of our type rules. We write S(ρ) for the type associated with ρ in store S.

If we wish to view our constraint generation algorithm as producing a linear-size system of
3In Cqual we require equality here (Chapter 5).
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x ∈ dom(Γ)
Γ, S `′ x : Γ(x), S

(Var′f )

κ fresh
Γ, S `′ n : κ int , S

(Int′f )

Γ[x 7→ τ ], ε `′ e : τ ′, S′ τ = embed ′(t) S′ ≤ ε′ ε, ε′, κ fresh
Γ, S `′ λLx :t.e : κ (ε, τ) −→L (ε′, τ ′), S

(Lam′
f )

Γ, S `′ e1 : Q (ε, τ) −→L (ε′, τ ′), S′ Γ, S′ `′ e2 : τ2, S
′′

τ2 ≤ τ Filter(S′′, L) ≤ ε

Γ, S `′ e1 e2 : τ ′,Merge(ε′, S′′, L)
(App′f )

Γ, S `′ e1 : τ1, S
′ Γ[x 7→ τ1], S′ `′ e2 : τ2, S

′′

Γ, S `′ letx = e1 in e2 : τ2, S
′′ (Let′f )

Γ, S `′ e : τ, S′ τ ≤ S′(ρ) κ fresh
Γ, S `′ ref ρe : κ ref (ρ),Alloc(S′, ρ)

(Ref′f )

Γ, S `′ e : Q ref (ρ), S′

Γ, S `′ *e : S′(ρ), S′ (Deref′f )

Γ, S `′ e1 : Q ref (ρ), S′ Γ, S′ `′ e2 : τ, S′′

τ ′ = embed ′(SI(ρ)) τ ≤ τ ′

Γ, S `′ e1 := e2 : τ ′,Assign(S′′, ρ :τ ′)
(Assign′f )

Γ, S `′ e : Q′ σ, S′ Q′ ≤ Q

Γ, S `′ check(e,Q) : Q′ σ, S′ (Check′f )

Γ, S `′ e1 : Q ref (ρ), S′ S′′ = Alloc(S′, ρ′) S′(ρ) ≤ S′′(ρ′)
Γ[x 7→ Q ref (ρ′)], S′′ `′ e2 : τ2, S

′′′

Γ, S `′ restrict ρ′x = e1 in e2 : τ2,Assign(S′′′, ρ :S′′′(ρ′))
(Restrict′f )

Figure 4.17: Flow-Sensitive Qualified Type Inference System
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constraints, then we add S(ρ) to our grammar for types, and instead of using the simpli-

fied matchings we should generate constraints to determine the shape of the hypothesis in

the type inference rules, as in Figure 2.5. Similarly we need to add the embed ′(SI(ρ)) in

(Assign′f ) (see below) to our type grammar. In practice we solve the constraints as they are

generated, so this is not a concern; we discuss the computation of S(ρ) in Section 4.5.1.

We discuss the rules in Figure 4.17:

• (Var′f ) and (Int′f ) are standard. As in Chapter 3, instead of using qualifier annotations

we make a fresh qualifier variable for the outermost qualifier of an int type.

• (Lam′
f ) makes fresh store variables to model the initial and final state of the function

being defined. We add fresh qualifiers and store variables to t to yield the type of

the parameter τ . Finally, we add a constraint that the state after e is evaluated is

compatible with the final state ε′ of the function. Notice that function types always

have store variables rather than arbitrary stores in their domain and range. As in Sec-

tion 4.3.3, this means that any generated subtyping constraints yield store constraints

only among store variables.

• (App′f ) models a function call. We require that the actual argument be compatible

with e1’s domain type, and we require that the state S′′ before the function call be

compatible with the state ε that the function expects. As in (Appf ), here we use Filter

so that only the types and linearities of locations appearing in L need be compatible.

We similarly use Merge to merge the state after the function call.

Recall that Merge is slightly refined over the construction used in (Appf ) from the

checking system. Using Merge in (App′f ), if the call to e1 allocates a location ρ,

then we must assume the worst, and after the function call we take ρ’s linearity and

qualified type from ε′. If e1 writes a location but does not allocate it, then we must

take ρ’s qualified type from ε′, but we can take ρ’s linearity from S′′. If neither of

those two conditions hold (for example, if ρ was not accessed at all or was only read

during the call), then we can take both ρ’s linearity and qualified type from S′′.

• (Let′f ), (Deref′f ), and (Check′f ) are straightforward.

• (Ref′f ) uses the Alloc constructor to build a new store in which location ρ has been

allocated once more. We require that the type of τ be compatible with ρ’s type in S′.
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κ0 int ≤ ε(ρx)
a int ≤ Alloc(ε, ρx)(ρy)
b int ≤ Alloc(Alloc(ε, ρx), ρy)(ρz)
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Figure 4.18: Store Constraints for Example in Figure 4.5

An alternative formulation would be to track the type τ as part of the constructed

Alloc and only constrain τ to be compatible with S′(ρ) if ρ is non-linear after the

allocation. Although recording types in Alloc would be slightly more precise, we do

not do so to make inference simpler: in the current system there is only one construct,

Assign, that interacts with linearities.

• (Assign′f ) computes the type τ of e2 and produces a new store representing the assign-

ment of τ ′ to location ρ, where τ ≤ τ ′. Notice that we perform a subtyping step here.

This corresponds to the subtyping in rule (Assign′q) of Figure 3.6. Our definition of

Assign in Figure 4.16 makes the assignment a strong or weak update, depending on

ρ’s inferred linearity in S′′.

• (Restrict′f ) is exactly like (Restrictf ), except we use store constructors Alloc and

Assign in the same way we do in (Ref′f ) and (Assign′f ).
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Example 7. Figure 4.18 shows in graph form the stores and store constraints generated for

the example program in Figure 4.5. This graph uses two kinds of edges. Store constructors

are represented by undirected edges from the constructor to its arguments, and the store

constraint S ≤ ε is represented with a directed edge from S to ε. We have slightly simplified

the graph for clarity. Here ε is f ’s initial store and ε′ is f ’s final store.

We step through constraint generation. We model the allocation of ρx with the

store Alloc(ε, ρx). Location ρx is initialized to 0, which is given the type κ0 int for fresh

qualifier variable κ0. (Ref′f ) generates the constraint κ0 int ≤ ε(ρx) to require that the

type of 0 be compatible with ε(ρx). We model the allocation and initialization of ρy and ρz

similarly. Then we construct three Assign stores to represent the assignment statements.

We give 3 and 4 the types κ3 int and κ4 int , respectively, where κ3 and κ4 are fresh qualifier

variables.

For the recursive call to f , we construct a Filter store and add a constraint on

ε. The Merge store represents the state when the recursive call to f returns. We join the

two branches of the conditional by making edges to ε′. Notice the cycle, due to recursion,

in which state from ε′ can flow to the Merge, which in turn can flow to ε′. Finally, the

qualifier check requires that ε′(ρy) has qualifier c . 2

4.5.1 Flow-Sensitive Constraint Resolution

As stated above, the rules of Figure 4.17 generate a constraint system C containing

three kinds of constraints: qualifier constraints Q ≤ Q′, subtyping constraints τ ≤ τ ′, and

store constraints S ≤ ε. In Chapter 3 we already discussed how to solve qualifier and

subtyping constraints (the addition of stores to types changes the algorithm trivially, as

shown in Figure 4.13). Thus in this section we focus on computing a solution σ to the store

constraints. We assume that the alias and effect inference rules of Figure 4.7 have already

been applied to the input program, and thus using the algorithm in Figure 4.10 we can ask

queries of the form ρ ∈ L in time O(n), where n is the size of the input program.

Our analysis is most precise if as few locations as possible are non-linear. Recall

that linearities naturally form a partial order 0 < 1 < ω. Thus, given a system of constraints

C, we perform a least fixpoint computation to determine the linearity σ(S)lin(ρ) for each

store S and location ρ in our solution σ. We initially assume that in every store, location
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ρ has linearity 0. Then we exhaustively apply the rules in Figure 4.16b and the rule

σ(ε)lin(ρ) = max
{S|S≤ε∈C}

σ(S)lin(ρ)

until we reach a fixpoint. This last rule is derived from Figure 4.13. In our implementation,

we compute σ(S)lin(ρ) in a single pass over the store constraints using Tarjan’s strongly-

connected components algorithm [2] to find cycles in the store constraint graph. For each

such cycle containing more than one allocation of the same location ρ, we set the linearity of

ρ to ω in all stores on the cycle. Since linearities only affect assignments, we only compute

σ(S)lin(ρ) if it is necessary to determine σ(S′)lin(ρ) for some Assign(S′, ρ :τ) ∈ C.

Given this algorithm to compute σ(S)lin(ρ), in principle we can then solve the

implied typing constraints using the following simple procedure. For each store variable ε,

initialize the type component σ(ε) of our solution σ to the map

{ρ1 :embed ′(SI(ρ1)), . . . , ρn :embed ′(SI(ρn))}

thereby assigning fresh qualifiers to the type of every location at every program point.

Replace uses of S(ρ) in C with σ(S)(ρ), using the logic in Figure 4.16. Then apply the

following two closure rules until no more constraints are generated:

C ∪ {S ≤ ε} =⇒ C ∪ {S ≤ ε} ∪ {σ(S)(ρ) ≤ σ(ε)(ρ)} for all ρ

C ∪ {ω ≤ σ(S)lin(ρ)} =⇒ C ∪ {ω ≤ σ(S)lin(ρ)} ∪ {σ(S)(ρ) ≤ τ} Assign(S, ρ :τ) ∈ C

Given a program of size n, in the worst case this naive algorithm requires at least n2 space

and time to build σ(·) and generate the necessary type constraints. This cost is too high

for all but small examples. We reduce this cost in practice by taking advantage of several

observations.

Many locations are flow-insensitive. If a location ρ never appears on the left-hand

side of an assignment, then ρ’s type cannot change. Thus we can give ρ one global type

instead of one type per program point. In imperative languages such as C, C++, and Java,

function parameters are a major source of flow-insensitive locations. In these languages,

because parameters are l-values, they have an associated memory location that is initialized

but then often never subsequently changed.
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Adding extra store variables trades space for time. To compute σ(S)(ρ) for a

constructed store S, we must deconstruct S recursively until we reach a store variable or an

assignment to ρ (see Figure 4.16a). Because the effect inference algorithm represents effect

constraints compactly, deconstructing Filter(·, L) or Merge(·, ·, L) may require a potentially

linear time computation to check whether ρ ∈ L (recall the algorithm in Figure 4.10).

We recover efficient lookups by replacing S with a fresh store variable ε and adding the

constraint S ≤ ε. Then rather than computing σ(S)(ρ) we compute σ(ε)(ρ), which requires

only a map lookup. Of course, we must use space to store ρ in σ(ε). However, as shown

below, we often can avoid this cost completely. We apply this transformation to each store

Merge(S, S′, L) constructed during constraint inference.

Not every store needs every location. Rather than assuming σ(ε) contains all loca-

tions, we add needed locations lazily. We add a location ρ to σ(ε) the first time the analysis

requests ε(ρ) and whenever there is a constraint S ≤ ε or ε ≤ S such that ρ ∈ σ(S). Stores

constructed with Filter and Merge tend to stop propagation of locations, saving space. For

example, if Filter(S, L) ≤ ε and ρ ∈ σ(ε), but ρ 6∈ L, then we do not propagate ρ to S.

We can extend this idea further. For each qualifier variable κ, the qualifier con-

straint resolution algorithm in Figure 3.8 maintains a set of possible qualifier constants that

are valid solutions for κ. If that set contains every qualifier constant, then κ is uninteresting

(i.e., κ is constrained only by other qualifier variables). Otherwise κ is interesting. A type

τ is interesting if any qualifier in τ is interesting, otherwise τ is uninteresting. We then

modify the closure rules as follows:

C ∪ {S ≤ ε} =⇒ C ∪ {S ≤ ε} ∪ {σ(S)(ρ) ≤ σ(ε)(ρ)}
for all ρ such that σ(S)(ρ) or σ(ε)(ρ) interesting

C ∪ {ω ≤ σ(S)lin(ρ)} =⇒ C ∪ {ω ≤ σ(S)lin(ρ)} ∪ {σ(S)(ρ) ≤ τ} Assign(S, ρ :τ) ∈ C

σ(S)(ρ) or τ interesting

In this way, if a location ρ is bound to an uninteresting type, then we need not propagate

ρ through the constraint graph.

Figures 4.19 and 4.20 give an algorithm for lazy location propagation. We associate

a mark with each ρ in each σ(ε) and with ρ in Assign(S, ρ : τ). Initially this mark is not

set, indicating that location ρ is bound to an uninteresting type. If a qualifier variable κ

appears in σ(ε)(ρ), we associate the pair (ρ, ε) with κ, and similarly for stores constructed
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Propagate(ρ, S) =
switch

case S = ε :
add ρ : embed ′(SI(ρ)) to σ(ε) if not already in σ(ε)
if ρ is not marked in σ(ε)

then mark ρ in σ(ε)
Forward-Prop(ε, ρ, σ(ε)(ρ))
for each S′ such that S′ ≤ ε do

Back-Prop(S′, ρ, σ(ε)(ρ))
case S = Assign(S′, ρ :τ) :

if ρ is not marked in σ(Assign(S′, ρ :τ))
then mark ρ in σ(Assign(S′, ρ :τ))

Forward-Prop(S, ρ, τ)

Figure 4.19: Lazy Constraint Propagation

with Assign. If during constraint resolution the set of possible solutions of κ changes, we

call Propagate(ρ, S) to propagate ρ, and in turn κ, through the store constraint graph.

If Propagate(ρ,C) is called and ρ is already marked in C, we do nothing. Other-

wise, Back-Prop() and Forward-Prop() make appropriate constraints between σ(S)(ρ)

and σ(S′)(ρ) for every store S′ reachable from S. This step may add ρ to S′ if S′ is a store

variable, and the type constraints that Back-Prop() and Forward-Prop() generate may

trigger subsequent calls to Propagate().

Example 8. Consider again the example from Figure 4.5. The constraints generated for

this program are shown in Figure 4.18. Figure 4.21 shows how locations and qualifiers

propagate through this store constraint graph. Dotted edges in this graph indicate inferred

constraints.

The four type constraints in Figure 4.17 are shown as directed edges in Figure 4.21.

For example, the constraint κ0 int ≤ ε(ρx) reduces to the constraint κ0 ≤ κx, which is

a directed edge κ0 → κx. Adding this constraint does not cause any propagation; this

constraint is among variables. Notice that the assignment of type κ3 int to ρx also does

not cause any propagation.

The constraint a int ≤ Alloc(ε, ρx)(ρy) reduces to a int ≤ ε(ρy), which reduces

to a ≤ κy. This constraint does trigger propagation. Propagate(ρy, ε) first pushes ρy
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Back-Prop(S, ρ, τ) =
switch

case S = ε :
add ρ : embed ′(SI(ρ)) to σ(ε) if not already in σ(ε)
σ(ε)(ρ) ≤ τ

case S = Alloc(S′, ρ′) :
Back-Prop(S′, ρ, τ)

case S = Merge(S′, S′′, L) :
if ρ ∈ L

then Back-Prop(S′, ρ, τ)
else Back-Prop(S′′, ρ, τ)

case S = Filter(S′, L) :
if ρ ∈ L

then Back-Prop(S′, ρ, τ)
case S = Assign(S′, ρ′ :τ ′) :

if ρ = ρ′

then τ ′ ≤ τ
else Back-Prop(S′, ρ, τ)

Forward-Prop(S, ρ, τ) =
for each ε such that S ≤ ε do

add ρ : embed ′(SI(ρ)) to σ(ε) if not already in σ(ε)
τ ≤ σ(ε)(ρ)

for each S′ such that S′ is constructed from S do
switch

case S′ = Alloc(S, ρ′) :
Forward-Prop(S′, ρ, τ)

case S′ = Merge(S1, S2, L) :
if ρ ∈ L and S = S1

then Forward-Prop(S′, ρ, τ)
if ρ 6∈ L and S = S2

then Forward-Prop(S′, ρ, τ)
case S′ = Filter(S, L) :

if ρ ∈ L
then Forward-Prop(S′, ρ, τ)

case S′ = Assign(S, ρ′ :τ ′) :
if ρ 6= ρ′

then Forward-Prop(S′, ρ, τ)

Figure 4.20: Lazy Location Propagation Subroutines
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backward to the Filter store. But since ρy 6∈ L, propagation stops. Next we push ρy

forward through the graph and stop when we reach the store Assign(·, ρy : c int); forward

propagation assumes that this is a strong update.

Since Assign(·, ρy :c int) contains an interesting type, ρy is propagated from this

store forward through the graph. On one path, propagation stops at the Filter store. The

other paths yield a constraint c ≤ κ′y. Notice that the constraint κ′y ≤ c remains satisfiable.

The constraint b ≤ κz triggers a propagation step as before. However, this time

κz ∈ L, and during backward propagation when we reach Filter we must continue. Even-

tually we reach Assign(·, ρz :κ4 int) and add the constraint κ4 ≤ κz. This in turn triggers

propagation from Assign(·, ρz :κ4 int). This propagation step reaches ε′, adds ρz to S(ε′),

and generates the constraint κ4 ≤ κ′z.

Finally, we determine that in the Assign stores ρx and ρy are linear and ρz is

non-linear. Thus the update to ρz is a weak update, which yields a constraint κz ≤ κ4. 2

This example illustrates three kinds of propagation. The location ρx is never

interesting, so it is not propagated through the graph. The location ρy is propagated, but

propagation stops at the strong update to ρy and also at the Filter , because the (Downa)

rule in Figure 4.4 is able to prove that ρy is purely local to f . The location ρz, on the other

hand, is not purely local to f , and thus all instances of ρz are conflated, and ρz admits only

weak updates.

4.6 Related Work

In this section we discuss work related to our flow-sensitive type qualifier frame-

work and inference system. We delay discussion of most of the related program analysis

systems and tools until Section 5.6. The flow-sensitive type qualifier system presented here

was previously described by us [45].

The unification-based alias analysis we use in this chapter is particularly simple.

Many other, more precise alias analyses have been proposed in the literature, some of which

scale to large programs [5, 22, 32, 69, 70, 108, 119] (to list only a few). Because our

system includes restrict , we are able to recover from the relatively weak alias analysis

we use. Nevertheless, we believe that any alias analysis system can be incorporated into

our framework, at the cost of increased complexity. Research suggests that the usefulness
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of more precise alias analysis may be mixed [44, 96, 126]. The Lackwit [85] and Ajax [84]

tools use polymorphic unification-based alias analysis as the basis of program understanding

tools.

Our flow-sensitive type qualifier system differs from classical dataflow analysis

[3, 67] in several ways. First, we generate constraints over stores and use types to model

the program. Thus there is no distinction between forward and backward analysis; infor-

mation may flow in both directions during constraint resolution, depending on the specified

qualifier partial order. Second, we explicitly handle pointers, heap-allocated data, alias-

ing, and strong/weak updates. Third, there is no distinction between interprocedural and

intraprocedural analysis in our system.

Olender and Osterweil propose using dataflow analysis to check sequencing con-

straints [86]. Their system includes an interprocedural component but does not model

aliasing. Horwitz et al [61, 97] and Duesterwald et al [28, 29] have proposed frameworks for

demand-driven, interprocedural dataflow analysis. As we have also found, Horwitz et al and

Duesterwald et al discovered that demand-driven (in our case, lazy) analysis is significantly

more efficient than naive, exhaustive analysis.

The strong/weak update distinction was first described by Chase et al [17]. Several

researchers have proposed techniques that allow strong updates for dataflow-based analysis

of programs with pointers, among them Altucher and Landi [4], Emami et al [32], and

Wilson and Lam [119]. Jagannathan et al [66] present a system for must-alias analysis

of higher-order languages. The linearity computation in our system corresponds to their

singleness computation, and they use a similar technique to gain polymorphism by flowing

some bindings around function calls.

Our use of store constraints and linearities is inspired by the flow-sensitive type

system for the calculus of capabilities [21] and the subsequent work on alias types [104, 115,

116]. The key difference between these systems and ours is that they are designed primarily

for checking, while our system focuses on inference. Linearities have also been used to allow

in-place updates in purely functional languages [11, 112].

The alias analysis step in our system can be seen as a form of region inference [111].

Intuitively, each abstract location determined by our alias analysis represents a region, and

we can strongly update a location if it is linear, i.e., if its region contains only one run-time

location.

For a comparison of restrict to ANSI C’s type qualifier of the same name, see
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Section 5.5. The Vault programming language includes “adoption” and “focus” language

constructs, which are similar to a flow-sensitive version of restrict [36].

The type state system of NIL [109] is one of the earliest type systems to incorporate

flow-sensitivity. NIL forbids aliasing, making the task of checking flow-sensitive properties

somewhat different than in our system. Type systems for low-level programs [123] and for

Java byte code [83, 107] also incorporate flow-sensitivity to check for initialization before

use and to allow reuse of the same local variable at different types.

Igarashi and Kobayashi [65] propose a general framework for resource usage anal-

ysis, which associates a trace with each object specifying valid accesses to the object. The

resource usage problem is to check that the program satisfies the trace specifications. The

kinds of properties checkable in their framework [65] are similar to the checks possible with

flow-sensitive type qualifiers. Igarashi and Kobayashi provide an inference algorithm that

appears to be at least quadratic in practice. It also invokes as a sub-step an unspecified

algorithm to check that a trace set is valid.
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Chapter 5

CQual

To test the ideas described in the preceding chapters, we have built a tool called

Cqual that adds both flow-insensitive and flow-sensitive type qualifiers to the C pro-

gramming language. To use Cqual, programmers annotate their C programs with type

qualifiers, and then Cqual performs flow-insensitive and, if necessary, flow-sensitive type

qualifier inference. Inference results are presented to the user with an Emacs-based user

interface [56]. A web-based version of Cqual is also available. In this chapter we dis-

cuss the issues involved in analyzing C code and some of the choices we made in designing

Cqual. We believe that the lessons learned while developing Cqual are applicable to other

languages as well. Chapter 6 describes a series of experiments using Cqual.

Figure 5.1 gives an overview of the architecture of Cqual. The input program is

passed to a C front end that parses the program and performs standard C type checking.

Cqual uses the front-end from the RC region compiler [50]. The abstract syntax tree

and a configuration file (described below) are fed into the first, flow-insensitive phase of

the analysis, which performs flow-insensitive type qualifier inference (Section 3.4), alias

analysis, effect constraint generation, and restrict checking (Section 4.3). The second,

flow-sensitive phase of the analysis computes linearities and performs flow-sensitive type

qualifier inference (Section 4.5).

Although in Chapters 3 and 4 we describe constraint resolution as happening after

constraint generation, in practice we solve many of the constraints as they are generated.

The exception is that in the flow-sensitive phase, we delay inferring linearities, and the weak

update constraints produced for non-linear locations, until after all constraints have been

generated. Whenever we generate an inconsistent constraint while analyzing a particular



87

Source Files

��

Parsing
Standard Type Checking

��

Flow-Insensitive Type Qualifiers
Alias Analysis
Effects
Restrict Checking

// Linearities
Flow-Sensitive Type Qualifiers

Partial Order Configuration File

OO

44iiiiiiiiiiiiiiiiiiiiiiiiii

Figure 5.1: Cqual System Architecture

expression in the source code, we report an error at the position of the expression.

5.1 Syntactic Issues and Partial Order Configuration Files

The first issue in adding type qualifiers to any language is incorporating them into

the surface syntax. To avoid potential conflicts, we can require that all qualifiers begin

with a reserved symbol, so that the lexer can unambiguously tokenize qualifiers. In Cqual

we require that all qualifiers except those standard in ANSI C begin with a dollar sign

(for example, $YYYY, $tainted, $locked, etc.).1 Many C compilers do not allow identifiers

to begin with dollar signs, hence interpreting all such identifiers as qualifiers poses little

problem for most source programs. We extend the grammar for types in our source language

so that a set of qualifiers can appear on all levels of a type. (We allow a set instead of only

a single qualifier to make Cqual easier to use; see below.) For C adding qualifiers to types

is particularly easy, as ANSI C contains three built-in type qualifiers const, volatile, and

restrict already. Thus we simply extend the C grammar for qualifiers to include any

identifiers beginning with a dollar sign. If we want to apply a standard language tool such

as a compiler to a program annotated with qualifiers, we can simply remove, automatically,

all of the qualifiers beginning with dollar signs. In our exposition we omit the dollar signs
1An alternative approach would be to use compiler-specific source code extensions, for example, gcc’s

attribute syntax.
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to make the text more readable. Instead we continue to use slanted text to denote qualifiers

(for example, yyyy , tainted , locked , const, volatile, etc.)

In addition to adding qualifiers to the source language, we also add qualifier an-

notations and checks. Since C already requires that programs be annotated with types,

new qualifier annotations and checks are largely unnecessary. Qualifier annotations roughly

correspond to types in variable definitions. For example, a tainted integer x can be defined

with

tainted int x;

Formally, type qualifier inference associates a qualifier variable x with x,2 and we view the

occurrence of tainted as placing a constraint on qualifier variable x (see below). Checks

roughly correspond to type annotations on function parameters. For example, a function

that requires untainted data can be declared as

void f(untainted int y);

For flow-sensitive analysis, sometimes it is convenient to specify qualifier properties

at arbitrary program points in addition to declarations. We add two new kinds of statements

to the language to make this easier:

assert type(e, T);
change type(e, T);

The first statement checks that at the current program point e has type T. The second

statement models an assignment statement without giving a concrete right-hand side. The

statement change type(e, T) type checks exactly like the assignment e:=e′ where e′ is an

expression of type T. In particular, we use this form in Section 6.3 to annotate Linux kernel

locking functions, which are written with in-line assembly code.

Because all non-standard qualifiers must begin with a dollar-sign, it is easy to

remove them automatically from a program so that it can be accepted by a standard C

compiler. We can eliminate assert type(e, T) and change type(e, T) statements by

simply #define-ing them away when the input file is passed to a standard C compiler.

Usually this can be achieved with command-line options, requiring no changes to the actual

source code.
2The variable x may actually have two inferred qualifiers; see Section 5.2.
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po-defn ::= partial order [ po-opt∗ ]? { po-entry∗ }
po-opt ::= flow-insensitive

| flow-sensitive
| nonprop

po-entry ::= qual-name [ qual-opt∗ ]?

| qual-name < qual-name
qual-opt ::= color = "color-name"

| level = ref
| level = value
| sign = pos
| sign = neg
| sign = eq

Figure 5.2: Partial Order Configuration File Grammar

By itself, adding qualifiers to the surface syntax is not quite sufficient. We also

need to know the partial order among the qualifiers and how to interpret occurrences of

qualifiers in the surface syntax. For example, suppose we see a declaration a int x, where

a is some qualifier constant. If x is x’s associated qualifier variable, how should x and a

be related: x ≤ a or a ≤ x, or both? To use Cqual, the programmer must supply a

partial order configuration file listing the qualifiers and their partial order. The partial

order configuration file also declares, for each qualifier, its variance: whether it is positive,

negative, or non-variant. The declaration a int x yields a ≤ x if a is positive; x ≤ a if

a is negative; and x = a if a is non-variant. Intuitively, positive qualifiers are used for

annotations, and negative qualifiers are used for checks. Non-variant qualifiers may be used

for both.

The user may specify several orthogonal sets of qualifiers, each with their own

partial order, within the partial order configuration file. As mentioned in Chapter 3, we

can combine these into a single partial order by taking their cross product. Conceptually,

each qualifier variable x created during inference can be seen as a tuple with one component

xi for each of the specified partial orders. As mentioned above, we allow a set of qualifiers

to appear at each level of a type. Suppose that qualifier a comes from the ith specified

partial order. Then when we see a declaration a int x, we view the occurrence of a as

placing a constraint on xi, and placing no constraint on the other elements of the tuple.

Figure 5.2 gives the complete grammar for Cqual’s partial order configuration

files. In this grammar, x∗ means zero or more occurrences of x, and [ x ]? means either
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partial order {
const [level = ref, sign = pos]
$nonconst [level = ref, sign = neg]

$nonconst < const
}

partial order {
$untainted [level = value, color = "pam-color-untainted", sign = neg]
$tainted [level = value, color = "pam-color-tainted", sign = pos]

$untainted < $tainted
}

partial order [flow-sensitive] {
$locked [level = value, color = "pam-color-locked", sign = eq]
$unlocked [level = value, color = "pam-color-unlocked", sign = eq]

}

Figure 5.3: Example Partial Order Configuration File

zero or one occurrence of [ x ]. Each partial order can be declared to contain flow-insensitive

qualifiers (Chapter 3), flow-sensitive qualifiers (Chapter 4), or non-propagating qualifiers,

which should not be inferred. The canonical example of a non-propagating qualifier is

restrict, which has a special meaning in our system (see Section 5.5). For each partial order

the users lists the qualifiers and their options. The sign option specifies the variance of

a qualifier: positive (pos), negative (neg), or non-variant (eq). The level options are

explained in Section 5.2, and the color option in Section 5.4. Finally, the partial order is

specified by declarations a < b for each pair of qualifiers so related in the partial order. We

compute the reflexive transitive closure of the specified relations to yield the final partial

order. Figures 5.3 and 5.4 give a partial order configuration file for the qualifiers discussed

in Chapter 6.

5.2 Modeling C Types

In this section we discuss some of the issues in handling C types as they are used

in C programs, which is somewhat messier than the idealized types given in Chapters 3
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partial order [flow-sensitive] {
$readwrite unchecked [sign = eq, color = "pam-color-8"]
$read unchecked [sign = eq, color = "pam-color-8"]
$write unchecked [sign = eq, color = "pam-color-8"]
$open unchecked [sign = eq, color = "pam-color-8"]

$readwrite [sign = eq, color = "pam-color-8"]
$read [sign = eq, color = "pam-color-8"]
$write [sign = eq, color = "pam-color-8"]
$open [sign = eq, color = "pam-color-8"]

$closed [sign = eq, color = "pam-color-8"]

$readwrite unchecked < $read unchecked
$readwrite unchecked < $write unchecked
$read unchecked < $open unchecked
$write unchecked < $open unchecked

$closed < $readwrite unchecked

$readwrite < $read
$readwrite < $write
$read < $open
$write < $open

$open < $open unchecked
$read < $read unchecked
$write < $write unchecked
$readwrite < $readwrite unchecked

}

Figure 5.4: Example Partial Order Configuration File (continued)
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and 4.

L-Types and R-Types. In C there is an important distinction between l-values, which

correspond to memory locations, and r-values, which are ordinary values like integers. In

the C type system, l-values and r-values are given the same type. For example, consider

the following code:

int x;
x = ...;
... = x;

The first line defines the variable x as a location containing an integer. On the second line

x is used as an l-value: it appears on the left-hand side of an assignment, meaning that the

location corresponding to x should be updated. On the third line x is used as an r-value.

Here when we use x as an r-value we are not referring to the location x, but to x’s contents.

In the C type system, x is given the type int in both places, and the syntax distinguishes

integers that are l-values from integers that are r-values.

Cqual takes a slightly different approach in which the types distinguish l-values

and r-values. The variable x (ignoring qualifiers for a moment) is given the type ref (int),

meaning that the name x is a location containing an integer. When x is used as an l-value

its type stays the same—the left-hand side of an assignment is always a ref type. When x

is used as an r-value the outermost ref is removed, i.e., x as an r-value has the type int .

But now the question again arises of how to interpret qualifiers in the surface

syntax. Suppose we see a declaration a int x;. Then we assign x the type x ref (x′ int),

where x and x′ are qualifier variables. Should we interpret the occurrence of a as con-

straining x or as constraining x′? In Cqual, the user must specify this in the partial order

configuration file. The qualifier a may be declared to constrain x, i.e., the ref level (level

= ref in the configuration file), or it may be declared to constrain x′, i.e., the int level

(level = value). Most qualifiers constrain the value level of a type; for example, tainted

and untainted behave this way. The canonical example of a qualifier that constrains the ref

level of a type is const; see Section 6.1.

Finally, it is worth mentioning that arguments in C are passed by value, and

hence function types contain the r-types of their declared parameters, even though within

a function the parameter is treated as having an l-type. For example, given the declaration

void f(int x), we assign f the type x′ int −→ void (ignoring qualifiers except on x), and
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within the body of f the variable x has type x ref (x′ int).

Structures. Aside from deciding how to model l- and r-values, there are other important

considerations when modeling types in C programs. One of the key considerations in any

whole-program analysis of C code is how structures (record types) are modeled [16, 57, 125].

Suppose that the user declares a structure:

struct foo {
int x;

int *y;

...

}

Then in theory, if we see two definitions struct foo a and struct foo b we can simply

assign a and b two distinct copies of the type struct foo. Unfortunately, in practice this

turns out to be prohibitively expensive. If struct foo has n fields and we assign each

instance of struct foo fresh copies of the types of its fields, then we are doing O(n2)

work. Since many C programs contain extremely long structure type declarations, n can

be relatively large, causing a large slowdown in type qualifier inference. Instead, we choose

to share structure fields among different instances of the same struct. Given the above

declaration of struct foo and definitions struct foo a and struct foo b, we assign a

single type to a.x and b.x, and similarly to a.y and b.y.

On the other hand, typedefs, which allow the programmer to name specific types,

do not tend to be particularly large, and so we do not share qualifiers on typedef’d types.

Multiple Files. Very few C programs are contained within a single source file, thus

Cqual is designed to perform type qualifier inference on multiple files simultaneously. We

require that globals declared in multiple files have the same type, which can be achieved

by unifying their types. In ANSI C equivalence of struct types is by name; thus even if

struct foo and struct bar are declared in a file with exactly the same fields, they are

considered different types. In order to analyze multiple files, we must relax this restriction

across files, and so instead we perform structural matching on struct and union types to

determine equivalence. Note that we do not require that the programmer analyze all files

of a program together. However, to get sound results when analyzing a single file Cqual

must be supplied with full qualified type declarations for any undefined globals.
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Parametric Qualifier Polymorphism. Parametric polymorphism [77] is a powerful

technique for increasing the precision of a type system. As discussed in Section 4.1.2,

in our flow-sensitive analysis we use effects to gain some measure of polymorphism over

locations. Cqual also incorporates a limited form of polymorphism over type qualifiers,

though only for flow-insensitive type qualifier inference. To understand the benefit of poly-

morphism over qualifiers, suppose we have qualifier constants a and b with partial order

b < a, and consider the following two function definitions:

a int id1(a int x) { return x; }
b int id2(b int x) { return x; }

We would like to have only a single copy of this function, since both versions behave identi-

cally and in fact compile to the same code. Unfortunately, without polymorphism we need

both. An object of type b int can be passed to id1, but the return value has qualifier a.

An object of type a int cannot be passed to id2 without a type cast. The problem here is

that the type of the identity function on integer is Q int −→ Q int with Q appearing both

covariantly and contravariantly (recall our rule for subtyping function types in Figure 3.2).

We solve this problem by observing that the identity function behaves the same

for any qualifier Q. We specify this in type notation with the polymorphic type signature

∀κ.κ int −→ κ int . When we apply a function of this type to an argument, we first

instantiate its type at a particular qualifier, in our case either as a int −→ a int or

b int −→ b int . Intuitively instantiation corresponds exactly to function inlining, except

we perform the inlining in our type system rather than in the source language.

In Cqual, we allow the programmer to assign a flow-insensitive polymorphic type

signature to a function. The signature is ignored during flow-sensitive type qualifier in-

ference. The polymorphic type signature is assumed to be correct, and any function with

a polymorphic type signature is not type checked. In its most general form, a type with

polymorphic qualifiers is made up of a base type along with a set of subtyping constraints

on the qualifier variables in the base type. For example, consider the C standard library

function char *strcat(char *dest, char *src), which appends src to the end of dest

and returns dest. We can assign strcat the polymorphic type

∀κ, κ′. ref (κ char)× ref (κ′ char) −→ ref (κ char) where κ′ ≤ κ

which means that the qualifier on strcat’s second argument must be a subtype of its first

argument, and that its first argument is returned. We omit the top-level ref qualifiers for
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clarity. Here we use × to build a product type; we could also have written this as a curried

function.

In the surface syntax, we declare this function with

$ 1 2 char *strcat($ 1 2 char *, $ 1 char *);

The $ 1 2 and $ 1 are explicit qualifier variables represented as an unordered set of numbers.

We use the names of the qualifier variables to encode the subtyping constraints. We generate

the constraint κ ≤ κ′ if the set encoded in the name of κ is a subset of the set encoded in the

name of κ′. The existence of the Dedekind-MacNeille Completion [24] implies that any set

of subtyping constraints can be encoded this way. While this is not the most transparent

representation of subtyping constraints, it has the advantage of requiring no changes to the

surface syntax.

Note that these limitations on polymorphism for flow-insensitive type qualifiers are

not fundamental. By viewing type qualifiers as a label flow system, we can apply well-known

techniques [80, 92] to perform fully automatic polymorphic flow-insensitive type qualifier

inference. We defer such a system to future work.

Subtyping Under Pointer Types with const. In Section 3.6 we argued that if there are

no updates through a reference, we can use the deep subtyping rule (Ref′≤) in Figure 3.10

rather than the conservative (Ref≤) in Figure 3.2. In ANSI C, programmers use const

(Section 6.1) to annotate l-values that are never written. Thus in Cqual we perform deep

subtyping on locations explicitly annotated with const by the programmer. Although we

could do so, we do not use the effect inference of Section 4.3 or the const inference of

Section 6.1 to infer additional l-values that are not written to. Since const annotations are

not available during the flow-sensitive portion of the analysis in our implementation, we do

not apply this technique to flow-sensitive type qualifiers.

Flow-Sensitivity. We briefly mention a few special considerations in applying our flow-

sensitive type qualifier inference to C. First, in Cqual we do not allow strong updates

to locations containing functions. This improves the efficiency of inference. Without this

restriction, transforming a strong update on a location containing a function into a weak

update could generate a store constraint, since function types contain stores. Then we
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would need to recompute linearities (Section 4.5.1). By forbidding such strong updates, we

increase the efficiency of the algorithm at a slight cost in precision.

Second, C programs can contain definitions of global variables that are allocated

and initialized at load time. Thus our inference algorithm builds a global store SG modeling

the state of globals when the input program is loaded. If the programmer declares a main

function, which is called by the operating system when the program is executed, then we

generate a constraint SG ≤ S, where S is main’s initial store. If there is no such function,

Cqual prints a message warning that the initial state is discarded.

Third, recall that our alias and effect system in Figure 4.4 is more precise if we

can show disinclusions of the form ρ 6∈ loceff (Γ), where ρ is an abstract location and Γ is

a type environment. Unfortunately, in C there is a single top-level environment containing

the types of all functions declared in the program, and every statement of the program is

type checked in an environment that extends Γ. Thus in our system it seems we cannot

check ρ 6∈ loceff (Γ) for any location ρ that is passed to a function.

However, ANSI C does not contain closures: functions may only be defined in

the top-level scope, and not in internal scopes [6]. Intuitively, ρ 6∈ loceff (Γ) is satisfied

if none of the names in the domain of Γ provide a method for accessing location ρ. And

without closures, functions—whether or not they mention ρ in their argument, result types,

or effects—do not retain pointers to location ρ.3 Thus when checking ρ 6∈ loceff (Γ) in

Cqual, we safely ignore locations appearing in function types. We can formalize this by

observing that all C functions are fully polymorphic [104] in the locations appearing in their

type. Our system is monomorphic, however, in the sense that we always instantiate the

same bound location in a particular function type to the same location.

5.3 Unsafe Features of C

The C programming language contains many features that allow the programmer

to violate memory and type safety. Some of the major ones are type casts, unions, variable-

argument functions, and arbitrary pointer arithmetic. Cqual is based on the C types, and

as such Cqual obeys the type annotations in the program. As a result, Cqual is sound

only up to the unsafe features of C. For example, casting one type to another also casts

away any type qualifiers and the abstract locations used in the alias analysis of Chapter 4.
3Local variables defined as static are treated as globals.
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To be sound, the programmer should supply qualifier information whenever an

unsafe feature of C is used. For example, at a type cast the programmer should explicitly

annotate the cast-to type with qualifiers. For some qualifiers this is desirable behavior. For

example, some type casts are added to programs exactly to cast away const qualifiers; hence

it would be a bad idea to ignore such a cast. For other qualifiers, however, we should model

the unsafe features of C more conservatively. For example, if we are tracking taintedness of

data (see Section 6.2), tainting should not necessarily be removed at casts. In the remainder

of this section, we discuss some of the unsafe features of C, and some techniques to model

them more conservatively. Alternatively, Cqual could be made sound by combining it with

a system for enforcing memory safety, such as CCured [81].

Type Casts. Type casts allow a C programmer to treat a value as having any type they

choose, which lets the programmer bypass limitations of the C type system. For example,

a pointer to any type can legally be cast to and from a pointer to the special type void .

Such casts are commonly used for generic functions on data structures. For example, a

programmer may define a list data structure whose elements have type pointer to void , and

then the same code for list operations can be used for lists of pointers to objects of any

type.

The programmer can tell Cqual to model such type casts by propagating qualifiers

“through” the cast.4 For example, consider the following code:

a char *y;

void *x = (void *) y;

This code declares y to be a pointer to character, where the character has qualifier a, and

then initializes x, which is a pointer to void , with y. If the programmer tells Cqual to

propagate qualifiers through type casts, x is inferred to have type a void *. More generally,

if we cast type τ to type τ ′, we generate a constraint τ ≤ τ ′ to propagate qualifiers through

casts, where we allow matching between base types like void and char . If the programmer

does not enable qualifier propagation through casts, this constraint is not generated, and

type casts will then discard qualifiers.
4In Cqual this does not apply to abstract locations, and thus our implementation of the alias analysis

of Chapter 4 does not model casts. However, because all instances of the same struct type share field
types (Section 5.2), the common case of the same pointer-to-structure type being cast to and from void *

is modeled correctly.
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Recall, however, that any pointer type may legally be cast to void *. For example,

a programmer might write

a char **s;

char **t;

void *v = (void *) s;

t = (char **) v;

Here s and t are pointers to pointers to character. Notice that the type structure of v and

the type structures of s and t do not even have the same shape. To model these kinds of

casts, Cqual “collapses” the mis-matched levels at type casts by equating their qualifiers.

In resolving the constraint τ ≤ τ ′ generated at a cast from type τ to type τ ′, we allow τ

and τ ′ to have different shapes. We add rules to conservatively equate qualifiers at shape

mis-matches, such as
τ = Q′ void Q = Q′

Q ref (τ) ≤ Q′ void

For our example above, inference determines that v has type a void *, and both s and t

have type a char *a * (both levels of pointers get qualifier a).

Note that while this rule models casts to and from pointer types soundly, due

to standard subtyping rules it does not model casts to and from base types soundly. For

example, consider the following code:

char *x; /* x : x ref (x′ char) */

char *y; /* y : y ref (y′ char) */

int a; /* a : a int */

int b; /* b : b int */

a = (int) x; /* (1) */

b = a; /* (2) */

y = (char *) b; /* (3) */

We have given the qualified r-types for x, y, a, and b; we do not present the full l-types since

they do not matter for this example. From line (1), using our modeling of casts we generate

the constraints x = x′ = a. From line (2) we generate the constraint a ≤ b. Finally, from

line (3) we generate the constraints y = y′ = b. Putting these together, notice we have

x′ ≤ y′ but not y′ ≤ x′—yet our rule for subtyping updatable references requires both, since
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x and y refer to the same memory location. The problem is that we have cast an updatable

reference type char * to an atomic type int, and our standard rule for subtyping atomic

types assumes that ints do not allow indirect updates to memory. We could solve this

problem by requiring equality rather than standard inclusion for int types, i.e., generating

the constraint a = b instead of a ≤ b at line (2). However, we have found in practice that the

benefit of using standard inclusion for int types far outweighs the unsoundness introduced

by such casts.

By the same token, we do not extend our modeling of type casts to equate qual-

ifiers of structure fields at type casts, since if we do so the analysis becomes much too

conservative in practice. However, recall that instances of the same structure type share

fields (Section 5.2), hence casts to and from the same structure type are modeled soundly.

Sometimes casts to discard qualifiers are useful. We assume that any cast to a

type that contains an explicit qualifier should stop qualifier propagation. For example, in

the following code

a char *y;

void *x = (b void *) y;

the variable x is inferred to have qualifier b but not a. Such “trusted casts” are essential

for making Cqual usable in practice. There are always places where type systems are too

conservative, and it is important to allow the programmer some mechanism for bypassing

the type system.

Unions and Pointer Arithmetic. We make the same assumptions as the C standard

about unions and pointer arithmetic. Namely, we model unions in the same way we model

structures, and we assume that values of a union type are always accessed at the correct

type with the correct qualifiers. We assume that pointer arithmetic does not violate object

bounds, i.e., if p is a pointer to type τ , then we assume p + i for any integer i also has type

τ .

Libraries. Most C programs make some use of the extensive set of standard C libraries.

Unfortunately, we do not necessarily have source code for library functions. Thus we require

that the programmer supply a model for any library function that has an effect on the

qualifiers. This model is usually a small stub function that mimics the behavior of the
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library function with respect to the qualifiers. For flow-insensitive type qualifier inference,

programmers may also supply polymorphic type signatures (Section 5.2) for functions in lieu

of a stub function. In order to make it easy to identify library functions, Cqual provides

the programmer with a list of all globals that are used but never defined.

Variable-Argument Functions. In C, functions can be declared to take a variable num-

ber of arguments using the varargs language feature. One major problem with varargs func-

tions is that there is no way to specify types for the variable arguments. Cqual extends

the grammar for C types to allow a qualifier constant or a polymorphic qualifier variable

(Section 5.2) to be associated with the variable arguments. When the varargs function is

called, we make constraints between that qualifier constant or polymorphic qualifier variable

and all qualifiers on all levels of the actual arguments. To avoid unnecessary conservatism,

we only generate such constraints for varargs functions that have explicitly marked varargs

qualifiers. Cqual provides a list of all undefined varargs functions to the user.

5.4 Presenting Qualifier Inference Results

Unlike traditional optimizing compiler technology, in order to be useful the results

of the analysis performed by Cqual must be presented to the user. We have found that in

practice this often-overlooked aspect of program analysis is critically important—a user of

Cqual needs to know not only what was inferred but why it was inferred, especially when

the analysis detects an error. To address this issue, Cqual presents type qualifier inference

results to the user via Program Analysis Mode (PAM) for Emacs [56]. PAM was developed

concurrently with Cqual, based on an earlier version that was part of the BANE toolkit

[35]. PAM is a generic system for adding color markups and hyperlinks to program source

code in Emacs. The ideas behind PAM can be adapted to many environments, and an

experimental web-based client-server interface is also available.

After Cqual analyzes the source programs, the user is presented with a buffer

containing a list of the files that were analyzed and a list of any errors. Each file name in

the buffer is a hyperlink to the start of the source file, and each error is a hyperlink to the

line and column in the source code where the error was discovered, i.e., where the constraints

generated by inference became unsatisfiable. When the user clicks on a hyperlink to bring up

a file, the preprocessed source code of the file is colored according to the inferred qualifiers.
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Figure 5.5: Sample Run of Cqual

In particular, each qualifier can have an associated color in the partial order configuration

file. If an identifier is inferred to have a particular qualifier, it is given that qualifier’s color.

Cqual presents preprocessed source code because otherwise, due to C preprocessor macro

expansions, jumping to particular line and column positions and marking up identifiers

would not always be possible (for example, macro expansion can introduce new identifiers

not present in the original source).

For each identifier in the program, Cqual tries to show the user how its qualifiers
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were inferred. Clicking on an identifier brings up its type and qualifier variables. Assuming

the qualifier partial order is a lattice, clicking on a qualifier variable shows a path through

the qualifier constraint graph that entails the inference result. Figure 5.5 shows a screen

shot of Cqual displaying such a path. In this example the result of getenv is annotated as

tainted , and printf is annotated as taking an untainted first argument (see Section 6.2 for a

discussion of these particular qualifiers). The result of getenv is passed to s, which is copied

to t, which is passed as the first argument to printf. The screen shot in Figure 5.5 shows

what happens when the user clicks on one of t’s qualifier variables t′′: Cqual presents

the user with a path from tainted to t′′ and from t′′ to untainted . In this particular case

this path indicates an error, since tainted 6≤ untainted in our partial order. To make the

paths even more useful, in Cqual each element of the path, which represents a constraint,

is hyperlinked to the position in the source code where that constraint was generated. In

this way the programmer can step through a path one constraint at a time, viewing each

line of source code that led to a particular inference result.

In general, for a given qualifier variable x, Cqual presents the user with the

shortest transitive paths (possibly bidirectional for non-variant qualifiers) from x to any

qualifier constants appearing in x’s solution. Clearly there could be many paths, some of

which may be cyclic, from x to its bounds. We settled on presenting the shortest path as a

way of reducing the burden on the user. In our experience, this heuristic is very important

for usability.

One of the main problems in presenting analysis results is that for a large input

program, there is a correspondingly large amount of information we may wish to present

to the user. This information is usually represented compactly during analysis, but if

represented textually it becomes extremely unwieldy. Clearly this is the case here: the

constraint graph is relatively compact, but writing out all paths from qualifier variables to

their bounds would be prohibitively expensive.

PAM sidesteps this problem completely by using a client-server architecture. PAM

runs Cqual as a subprocess. As the user clicks on hyperlinks in PAM buffers, PAM passes

the click events to the Cqual subprocess, which then sends commands to PAM to move the

cursor position, display additional screens of information, and so on. In this way Cqual

maintains the inference results in its internal, compact form, and the results are presented

verbosely only on demand by the user.
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5.5 Comparison of Restrict to ANSI C

As mentioned earlier, our syntactic construct restrictx = e1 in e2 is inspired

by the ANSI C type qualifier of the same name. In this section we discuss the differences

between our construct and ANSI C’s.

In Cqual, we write restrictx = e1 in e2 using the same syntax as ANSI C:

{
T *restrict x = e1;

e2;

}

Here x is a pointer to type T. Note that this is why in Cqual the restrict qualifier is

non-propagating (Section 5.1)—it is really a kind of syntactic binding.

As described in Chapter 4, the user can add restrict to improve the precision

of flow-sensitive type qualifier inference. In the ANSI C standard, in contrast, restrict is

used to help the compiler optimize code [6]: if two pointers are declared restrict, they are

guaranteed never to point to the same object, and hence reads and writes through the two

pointers can be freely permuted.

The major difference between our type system and ANSI C is that in ANSI C

restrict is not checked—the programmer is assumed to have added the restrict qualifier

correctly. In addition to checking our version of restrict, the type system of Figure 4.4 can

be used to check restrict as described in the ANSI C standard. If we wish to do so, several

issues come up. Many of these issues have more to do with particular features of C than

with programming language fundamentals.

Names. In C, most names refer to l-values, that is, ref -types in our notation. For example,

if we declare

int *restrict p = ...;

then p may change during evaluation, which could change what object p points to. (Recall

that in lambda calculus notation, the name x in restrictx = e1 in e2 is an r-value.)

The standard is imprecise on this issue, suggesting that while it is invalid to update p to

point to a different restricted value, it may be permissible to update p to a different but

non-restricted value.
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There are several solutions to this problem. The simplest solution is to require

that all restrict-qualified pointers also be annotated with const, so that they cannot change.

This is the solution followed in Cqual. Equivalently, we can forbid writes to restrict-

qualified pointers with effect constraints of the form wr(ρ) 6∈ L. A third solution, and the

one most likely taken in a C compiler, is to perform a flow-sensitive analysis limited to a

single function body to determine whether p is updated to point within the same object or

whether it is updated with a new pointer (for example, p++ versus p = q). The former may

be allowed, and the latter should be forbidden.

Initialization. Our lambda calculus syntax for restrict forces the user to initialize re-

stricted pointers as soon as they are declared. ANSI C has no such requirement. However,

we feel that requiring restricted pointers to be initialized is not much of a burden, because

the common case when restrict is used is for function parameters, and function parameters

are always initialized.

Over-Estimation of Effects. The ANSI C standard defines restrict in a completely

dynamic fashion. The accesses to object X within a block B are those that occur at run-time

when B is executed. Since our analysis is static, we may over-estimate the set of locations

accessed during evaluation, and hence we may fail to type check a program that executes

correctly according to the standard.

Arrays. The ANSI C standard contains the following example of a valid use of restrict

([6], page 111):

void f(int n, int *restrict p, int *restrict q) {
while (n-- > 0)

*p++ = *q++;

}
void g(void) {

extern int d[100];

f(50, d + 50, d); // ok

}
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In this example, the user has implicitly split the array d into two disjoint smaller arrays,

and then called f knowing that as f traverses the arrays p and q it only accesses the first

50 elements of each. In our type system this program fails to type check, because this

property—accessing only 50 elements of each array—cannot be deduced from the type of

f. This application of restrict is useful in C and must be allowed. We feel that the best

way to handle this situation in a manner consistent with C is to force the programmer

to insert some kind of type cast at the call to f() to tell the compiler that d[0..49] and

d[50..99] should be treated as disjoint objects. In our implementation, for example, this

can achieved by calling f(50, (int *) d + 50, (int *) d), since our alias analysis for

checking restrict does not propagate abstract locations through type casts.

Escaping Pointers. The ANSI C standard explicitly allows certain pointers annotated

with restrict to escape the scope of their declaration. Specifically, a function whose body

declares a restricted pointer p may return the value of p. The only example of this in

the standard is the definition of a function that returns a pointer to a structure, one of

whose fields in annotated with restrict. Thus the motivation for allowing escaping restricted

pointers seems to be to handle this case of restrict in a structure declaration. We believe

that annotating structure fields with restrict is not well-defined in general (see below). Thus

we do not support this usage, and our type system forbids restricted pointers from escaping

entirely.

Data Structures. The ANSI C standard contains an example in which a struct contains

a restrict qualifier ([6], page 112):

typedef struct {int n; float *restrict v;} vector;

This particular use of restrict can be encoded in our system and is semantically well-defined.

The type vector is shorthand for a pair, and thus we can think of all operations on vectors

as syntactic sugar for operations on the individual elements of the pair. Thus we can rewrite

vector x = { 3, a };
... x.n ... x.v ...

as
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int x n = 3;

float *restrict x v = a;

... x n ... x v ...

On the other hand, uses of restrict in defining recursive data structures are prob-

lematic. For example, consider

struct list { int x; struct list *restrict next; };

What does restrict mean here? The problem is that the name next refers to a set of (possibly

distinct) objects rather than a single object in memory. For example, if we construct a

circular list p, then p->next and p->next->next may be the same. Is that forbidden by the

restrict annotation? It seems not, because both accesses go through the name next. Clearly,

though, a compiler cannot use the name next to infer anything about potential aliasing of

list elements. Thus we feel that restrict annotations on recursively-defined data structures

are not useful, and our implementation does not currently support restrict annotations on

structs.

A compiler needs stronger information than restrict to infer non-aliasing of heap

objects. One such property is uniqueness of list elements [11, 112]. A unique object has at

most one pointer to it at any time.5 Thus if the next field of struct list were annotated

as being unique, then a compiler could assume (and enforce) that each element of p is

distinct, and a cyclic struct list would be forbidden.

Modified Objects. Our definition of restrict is slightly different than ANSI C’s definition.

Suppose that p is declared int *restrict p and that p points to object X. Then the ANSI

C standard states that the restrict qualifier is only meaningful if X is modified within the

scope of p. We refer to this as the mod semantics of restrict.

We consider the mod semantics of restrict unnecessarily complicated. The main

reason we see to have the mod semantics is that for optimization purposes there is no benefit

to restrict for locations that are not modified—optimizations must preserve read-write and

write-write dependencies, but read-read dependencies can be safely ignored.
5This differs from the notion of a linear location defined in Chapter 4 because in our system the names

of abstract locations are global. Thus a location can be linear no matter how many pointers to it there are.
The downside is that the number of abstract locations in our system is finite.
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However, from a language design point of view, it is undesirable to have a construct

that is sometimes ignored. This is especially problematic if we think of restrict as an

annotation to aid the programmer. For example, suppose we have the C declaration f(int

*restrict a, int *restrict b). Is it safe to call f(x,x)? Under the mod semantics we

cannot tell without either knowing the effects of f() or looking at f()’s source code. We

believe that rather than use the mod semantics, we should use our semantics and simply

remove restrict qualifiers when they are unnecessary.

However, it is relatively easy to relax our type system in the case that a location is

restricted but not written to, resulting in a system similar to the mod semantics. We replace

the constraint ρ 6∈ L2 in Figure 4.4 with constraints wr(ρ) 6∈ L2 and wr(ρ′) ∈ L2 ⇒ ρ 6∈ L2.

The first constraint requires that ρ is never modified in e2. This is because in the mod

semantics if ρ is modified in e2 then we require ρ 6∈ L2, which is an immediate contradiction.

The second constraint is satisfiable if either wr(ρ′) 6∈ L2 or if ρ 6∈ L2. In other words, we

only require that ρ is not read in e2 if ρ′ is modified. Note that we still do not allow ρ′ to

escape the scope of e2, and note that ρ is still added to the effect of the restrict, so even with

this change restricting non-written locations is not a no-op, unlike in the mod semantics.

Type inference proceeds as before, with the addition of replacing the constraint

wr(ρ′) ∈ L2 ⇒ ρ 6∈ L2 by wr(ρ′) ∈ ε ⇒ ρ 6∈ ε and L2 ⊆ ε for fresh ε. After checking satis-

fiability of the ρ 6∈ ε constraints, we check the conditional constraints. For each constraint

wr(ρ′) ∈ ε ⇒ ρ 6∈ ε, we use the algorithm of Figure 4.10 to check whether wr(ρ′) reaches

ε. If it does not, then the constraint is satisfiable. Otherwise, we check ρ 6∈ ε with another

call to the algorithm of Figure 4.10. Since there are O(k) conditional constraints where k

is the number of occurrences of restrict in the program, this step takes time O(kn), where

n is the size of the input program, and as before inference as a whole takes O(nα(n) + kn)

time.

5.6 Related Work

In this section we discuss a number of related program analysis systems and tech-

niques for improving software quality.

Two recent language proposals, Vault [26, 36] and Cyclone [52, 53], are extended

safe variants of C that allow a programmer to enforce conditions on how resources are

used in programs. For example, Vault has been used to check the safety of a floppy disk
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driver [26]. Both Vault and Cyclone are inspired by the same flow-sensitive type systems

that our framework is inspired a body of work by Crary, Morrisett, Smith, and Walker

[21, 104, 115]. The key difference between our approach and Vault and Cyclone is that

the latter are based on type checking and require programmers to annotate their programs

with types. To make the annotation task easier, the languages are carefully designed to

include compact notations and useful default annotations. In contrast, we propose a simpler

and less expressive monomorphic type system that is designed for efficient type inference

of both new and legacy code. Our system uses effects (Section 4.1.2) to gain a measure of

polymorphism.

Several systems based on dataflow analysis have been proposed to statically check

properties of source code. Evans’s LCLint [34] introduces a number of additional qualifier-

like annotations to C as an aid to debugging memory usage errors, and Evans found LCLint

to be extremely valuable in practice [34]. LCLint has also been used to check for buffer

overruns [71]. LCLint uses intraprocedural dataflow to analyze a function, using the pro-

grammer’s annotations at function calls. LCLint uses a number of heuristics to model loops

[71].

Meta-level compilation [33, 54] is a system for finding bugs in programs. The

programmer specifies a flow-sensitive property as a finite state automaton. A program is

analyzed by traversing its control paths and triggering state transitions of the automata

on particular actions in program statements. The system warns of potential errors when

an automaton enters an error state. Meta-level compilation includes an interprocedural

dataflow component [54] but does not model aliasing. Meta-level compilation has been

used to find many different kinds of bugs in programs.

Neither LCLint nor meta-level compilation is designed to be sound or complete;

the goal of these tools is to find bugs, not prove the absence of bugs. In contrast, the

ESP system [23] is based on sound dataflow analysis. Similarly to our flow-sensitive type

qualifier system, ESP incorporates a conservative alias analysis. ESP also includes a path-

sensitive symbolic execution component to model predicates. ESP has been used to check

the correctness of C stream library usage in gcc [23]. See Section 6.4 for a discussion of

checking file operations using Cqual.

The Extended Static Checking (ESC) system [27, 42, 72] is a theorem-proving

based tool for finding errors in programs. Programmers add preconditions, postconditions,

and loop invariants to their program, and ESC uses sophisticated theorem proving tech-



109

nology to verify the annotations. ESC includes a rich annotation language; the Houdini

assistant [41] can be used to reduce the burden of adding annotations.

SLAM [8, 9] and BLAST [59] are tools that verify software using model checking

techniques. Both tools can track program state very precisely by modeling all paths sep-

arately. They are both based on predicate abstraction followed by successive refinement

to make this process more tractable. Both SLAM and BLAST have been used to check

properties of device drivers.

A number of techniques that are less easy to categorize have also been proposed.

The AST toolkit provides a framework for posing user-specified queries on abstract syntax

trees annotated with type information. The AST toolkit has been successfully used to

uncover many bugs [118]. The PREfix tool [13], based on symbolic execution, is also highly

effective at finding bugs in practice [88].

A number of systems have been proposed to check that implementations of data

structures are correct. Graph types [68, 79] allow a programmer to specify the shape of

a data structure and then check, with the addition of pre- and postconditions and loop

invariants, that the shape is preserved by data structure operations. Shape analysis with

three-valued logic [98] can also model data structure operations very precisely. Both of

these techniques are designed to run on small inputs, and neither scales to large programs.
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Chapter 6

Experiments

In this chapter we describe a number of experiments applying Cqual to particular

analysis and checking problems.

6.1 Const Inference

In ANSI C, the const qualifier can be added to types to specify that certain up-

datable references cannot, in fact, be updated. For example, if the programmer defines

const int x = 42;

then any assignment to x, such as x = 3, is forbidden. In other words, the left-hand side of

an assignment must not be const. In this section we discuss checking and inferring ANSI C

const qualifiers with Cqual.

The main use of const is annotating the types of pointer-valued function parame-

ters. Below is a table listing which assignments are allowed by the four possible placements

of const on the type pointer to integer. Recall that C types are most easily read from right

to left; thus, for instance, the second example below can be read as defining a pointer to a

constant integer.

Definition p = ...; *p = ...;
int *p valid valid
const int *p valid invalid
int *const p invalid valid
const int *const p invalid invalid
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Suppose that the programmer declares a function void f(const int *p). Looking at our

table, we see that the caller of f knows that, up to casting, f does not write through its

argument p. This annotation is quite useful, since it means that one may freely pass pointers

as arguments to f without fearing that the data they point to will be modified through p.

Note that const does not guarantee that *p is not modified through other aliases, but only

that it is not modified through p. Thus annotating p with const is different than saying

there is no write effect (Section 4.3) on *p, since the latter does take aliasing into account.

To make const even more useful, ANSI C incorporates subtyping: non-const types

can be used where const types are expected. In our system we express this by choosing

nonconst < const as the qualifier partial order, where nonconst is an explicit qualifier con-

stant (written as whitespace in ANSI C) marking writable l-values. For example, consider

again the definition of f above. With subtyping, both a nonconst int * and a const int

* may be passed to f, and neither can be written to by f via p.

This subtyping on const pointer types is intuitive, but it seems quite suspicious on

closer examination. If we pass a nonconst int * to a const int * position, then it looks

like we are performing subtyping under a ref —and yet Section 3.1 contains a discussion

explaining why such subtyping is unsound. A related question is what exactly a const int

is. After all, 3 has type int, yet 3 cannot be updated; shouldn’t 3 also be a const int?

The key to clearing up this confusion is to realize that const is an annotation on l-

types (Section 5.2). Recall that if the programmer defines int x, then Cqual assigns x the

type (ignoring qualifiers) ref (int), meaning that x names an updatable reference containing

an integer. In our system, if the programmer defines const int x, then x is assigned the

type const ref (int)—not ref (const int). The const qualifier never appears on anything

other than a ref constructor. Expressions that are only r-values, like the integer 3, do not

have a ref type, and thus const does not apply to them.

With this understanding of const, we see that the suspicious-looking subtyping

under a pointer is completely standard. Figure 6.1 shows a small C program that assigns

a pointer to nonconst to a pointer to const and the program’s typing proof. Note that we

add an explicit dereference of x in the typing proof; this dereference is implicit in the C

program where x is used as an r-value. The main thing to observe in this proof is that in

the subtyping step, there is no subtyping under a ref constructor.

To enforce the semantics of const, we can transform the input program by replacing

each assignment statement e1 := e2 with check(e1, nonconst) := e2, which requires that the
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int *x;
const int *y;
y = x;

(a) Example C Program

Γ `q y : nc ref (c ref (int))

Γ `q x : nc ref (nc ref (int))
Γ `q *x : nc ref (int)

nc ≤ c int = int
Γ `q *x : c ref (int)

Γ `q y := *x : nc ref (int)

Γ = {x 7→ nc ref (nc ref (int)), y 7→ nc ref (c ref (int))}
c = const, nc = nonconst

(b) Typing Proof

Figure 6.1: Const Subtyping with Pointers

left-hand side of every assignment is not const. Alternatively, we can modify the rule for

assignment to require the same thing; here we present the modified inference rule:

Γ `′q e1 : Q ref (τ) Γ `′q e2 : τ ′ τ ′ ≤ τ Q ≤ nonconst

Γ `′q e1 := e2 : τ

The latter is in fact what we do in Cqual.

6.1.1 Experiments

Given an input program, we can assume that every position without a const qual-

ifier has an implicit nonconst qualifier, just like a C compiler, and using our new rule for

assignment Cqual can check that a program uses const correctly. Unlike an ordinary C

compiler, however, Cqual can do better: we can use flow-insensitive type qualifier inference

to infer const annotations.

A system that performs const inference has many benefits for the programmer.

Although use of const is considered good programming style, it is well-known folklore that

const is difficult to use in practice. Often an attempt to add a single const annotation to a

program requires adding many other consts throughout the code. For the same reason, it
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Name Description Lines Preproc. Declared Inferred Max
woman-3.0a Manual page viewer 1496 8611 50 67 95
patch-2.5 Apply a diff 5303 11862 84 99 148
m4-1.4 Macro preprocessor 7741 18830 88 249 370
diffutils-2.7 Find diffs between files 8741 23237 153 209 372
ssh-1.2.262 Secure shell 18620 127099 147 316 547
uucp-1.04 Unix to unix copy 36913 272680 433 1116 1773

Figure 6.2: Const Inference Results

can be difficult to mix code that uses const with code that does not. The result is that it

is often easiest to simply omit const annotations altogether.

To perform const inference using Cqual, we do not assume that any position

without a const qualifier is nonconst. Instead we make no constraint on the qualifier variables

in such positions. Then, given our new rule for assignment, we infer which qualifier variables

must be nonconst. All of the remaining qualifier variables may be set to const. Note that

we are actually computing the greatest solution of the generated qualifier constraints, since

nonconst < const.

In Section 5.3 we describe some techniques for handling unsafe features of C.

For purposes of these experiments we simply model unsafe features unsafely. We allow

type casts to remove const qualifiers—we must do this, since many such casts are added

precisely to remove const–and we do not perform any type checking on the extra arguments

passed to varargs functions. We supply program stubs for library functions, and we make

the conservative assumption that positions not marked const are indeed nonconst for such

functions, and all fields of structures used by library functions as nonconst. In general

library functions are annotated with as many consts as possible,1 and so lack of const

really does mean nonconst. We did not use any polymorphic qualifier annotations for these

experiments, since our goal is to infer const annotations that can be checked by an ordinary

C compiler.

We performed our const inference experiments using an earlier version of Cqual

based on the BANE constraint resolution library [35]. We selected six programs, listed to the
1. . .and sometimes more. For example, the strchr function is declared char *strchr(const char *s,

int c). The call strchr(s, c) returns a pointer somewhere in s, and yet the return type lacks const. This
implicit cast is a way to emulate parametric qualifier polymorphism.

2The ssh distribution also includes a compression library zlib and the GNU MP library (arbitrary
precision arithmetic). We treated both of these as unanalyzable libraries; zlib contains certain structures
that are inconsistently defined across files, and the GNU MP library contains inlined assembly code.
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Figure 6.3: Graph of Const Inference Results

left in Figure 6.2, that make a significant effort to use const. Several of these “programs”

are actually collections of programs that share a common code base. We analyzed each

set of programs simultaneously, which occasionally required renaming as distinct certain

functions that were defined in several files. For each benchmark, we measured the number

of interesting consts inferred by Cqual, where an interesting const is one that decorates

a pointer r-type of a function parameter or result—these are the const annotations most

likely to be useful to a programmer. For example, the function int foo(int x, int *y)

has one interesting location where a const may be inferred, namely on the contents of y.

Figure 6.3 shows our results, which are tabulated in Figure 6.2. The fourth col-

umn of the table in Figure 6.2 lists the number of consts declared by the programmer in

interesting positions. The fifth column lists the number inferred by const inference (which

includes the explicitly specified ones), and the last column lists the total number of inter-

esting positions. These measurements show that many more consts can be inferred than

are typically present in a program, even one that makes a significant effort to use const.

For some programs the results are quite dramatic, notably for uucp-1.04, which can have

2.5 times more consts than are actually present. An inspection of the code suggests that

const is used consistently only in certain portions of the code, and that other parts of the

code make no use of const. Additionally, the program uses several typedefs to define new



115

names for pointer types. Because we allow different instances of the same named type to

have different qualifiers, we are able to infer that some uses of those pointer types can have

const annotations. Clearly this is a case where const inference is very desirable. Faced

with a program that heavily uses a single named type, few programmers would attempt to

introduce a new type name with const annotations, but inference makes that process easy.

6.2 Format-String Vulnerabilities

Systems security is an ever more important problem as more critical services are

connected to the Internet. Systems written in C are a particularly fruitful source of security

problems, due to the tendency of C programmers to sacrifice safety for efficiency and the

sometimes subtle interactions of C language and library features. One recently discovered

class of C security problems is the so-called format-string vulnerability, which arises from

the combination of unchecked variable argument (varargs) functions and standard C library

implementations.

The standard ANSI C libraries contain a number of varargs functions that take as

an argument a format specifier that gives the number and types of the additional arguments.

For example, the standard printing function is declared as

int printf(const char *format, ...);

When printf(format, a1, a2, ...) is called, the string format is displayed with the

ith format specifier replaced by extra argument ai. For example, here is the typical, correct

way to print a string buf:

printf("%s", buf);

But for simply printing a string, the above construction appears at first to be unneces-

sarily verbose. A programmer can save themselves five characters—and possibly some

whitespace—if they instead write

printf(buf); /* may be incorrect */

Unfortunately, this innocuous-looking change may lead to security problems. If buf contains

a format specifier (for example, %s or %d), perhaps supplied by a malicious adversary,

printf attempts to read the corresponding argument off of the stack. Since there is no
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char *getenv(const char *name);
int printf(const char *fmt, ...);

int main(void)
{

char *s, *t;
s = getenv("LD LIBRARY PATH");
t = s;
printf(t);

}

Figure 6.4: Program with a Format-String Vulnerability

corresponding argument, printf will mostly likely crash, either when reading off the end

of the stack or when it incorrectly interprets the garbage in the extra argument position as

a pointer to a string in memory and attempts to display the string.

It turns out that format-string vulnerabilities are even worse than they first ap-

pear. Many implementations of the C standard libraries support the %n format specifier,

which is now part of the ANSI C standard [6]. When a printf-like function encounters a %n

format specifier, it writes through the corresponding argument, which must be a pointer, the

number of characters printed so far. Given the ability to write to memory, a clever adver-

sary can often exploit format-string vulnerabilities to completely compromise security—for

example, to gain remote root access [82]. Since the ability to exploit format-string vulner-

abilities was discovered in 2000, security experts and malicious attackers have discovered

many such vulnerabilities in widely deployed, security-critical systems. Unfortunately, it

is too restrictive to merely forbid non-constant format-strings, and clearly the %n specifier

cannot be eliminated.

Format-string vulnerabilities are one of a wider class of security bugs that can

occur in any language. When programmers write security-conscious programs, they should

distinguish two different classes of data: untrusted data read from the network should never

be passed unchecked to functions requiring trusted data. In our case, untrusted data should

never be used directly as a format specifier. We can track the trust level of data in Cqual

by introducing the qualifier tainted to mark untrusted data and untainted to mark trusted

positions. It is safe to interpret untainted data as tainted but not vice-versa, hence we

choose untainted < tainted as our partial order.
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As an example use of these qualifiers, consider the following simple program shown

in Figure 6.4. This program calls getenv to return the value of an environment variable,

which is then stored successively in s and then t, and finally is passed as a format specifier

to printf. Assuming we do not trust the user’s environment variables, this program has a

format-string vulnerability. Indeed, on the author’s system, setting LD LIBRARY PATH to a

string of eight %s’s causes this program to have a segmentation fault.

To detect this format-string vulnerability, we annotate this program as shown in

the top half of Figure 5.5 on page 101. Since tainted is positive, marking the result of

getenv with tainted produces the constraint tainted ≤ getenv ret ′. Since untainted is neg-

ative, marking the format-string argument of printf as untainted produces the constraint

printf arg0 ′ ≤ untainted . Notice that we need not annotate the types of s or t. When

Cqual performs inference on this program, the generated qualifier constraints are inconsis-

tent, meaning that tainted data is passed to an untainted argument, i.e., that this program

may have a format-string vulnerability. The bottom half of Figure 5.5 displays the set of

inconsistent constraints, and as mentioned before the user can explore this error path to

discover why type qualifier inference failed.

6.2.1 Experiments

We used Cqual to check for format-string vulnerabilities in ten popular C pro-

grams. For this experiment, we enable flow of qualifiers through casts (Section 5.3) to model

taint propagation conservatively. We add tainted and untainted to programs by supplying

a header file that contains declarations of the standard C library functions with the appro-

priate qualifiers and the appropriate parametric polymorphic types (Section 5.2). We use

the same file of annotated library functions for all of our benchmarks. For one benchmark

we also annotated two application-specific memory allocation and deallocation functions as

polymorphic.

Figure 6.5 lists our benchmarks. All of these programs read data from the network,

possibly controlled by a malicious adversary, and hence all could potentially have format-

string vulnerabilities. For each program we list the numbers of lines of source code, both

before and after preprocessing. The results of applying Cqual are shown in Figure 6.6. In

this figure, the second column lists the analysis time on a 550MHz dual processor Pentium

III Xeon with 2GB of memory. The third column lists the memory usage, and the last
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Name Description Lines Preproc.
identd-1.0.0 Network id service 223 1224
mingetty-0.9.4 Remote terminal controller 270 1599
bftpd-1.0.11 FTP server 2323 6032
muh-2.05d IRC proxy 3039 19083
cfengine-1.5.4 Sysadmin tool 26852 141863
imapd-4.7c UW IMAP4 server 21796 78049
ipopd-4.7c UW POP3 server 20159 78056
mars nwe-0.99 Novell Netware emulator 21199 72954
apache-1.3.12 HTTP server 32680 135702
openssh-2.3.0p14 Secure shell 25907 218947

Figure 6.5: Format-String Vulnerability Detection Benchmarks

column lists the number of warnings reported by Cqual and the number of actual format-

string bugs discovered.

For most of these programs Cqual issues no warning, indicating that the presence

of a format-string bug is unlikely. This is especially interesting for two of our test cases,

mars nwe and mingetty, which contain suspicious looking calls to a function that accepts

format-strings [63, 64]. Since we originally studied these programs, the mars nwe code

has been patched, and the suspicious looking call has been said to be fully exploitable [46].

Because Cqual does not model internal compiler functions to read variable arguments,3 we

believe Cqual may be wrong in this case, though the patch for mars nwe did not give any

details about an exploit and stated there were no working exploits yet [47]. The mingetty

program has also been patched in some distributions, although at least one patch says that

the code cannot be abused “to the best of [the writer’s] knowledge” [62].

Cqual finds potential format-string vulnerabilities in three of the programs. Be-

cause of the nature of the constraint resolution algorithm, once Cqual finds an inconsistent

constraint it is likely to produce a large number of warnings, as can be seen in the cfengine

case.

For muh, we knew beforehand [58] that these vulnerabilities were present in the

code. In the cases of cfengine [100] and bftpd [7], the vulnerabilities were unknown to

us at the time, although we subsequently discovered that these bugs had been previously

reported. Nevertheless, this suggests that our tool is effective in finding unknown format-
3In gcc the important function is builtin next arg; in other compilers different techniques, such as

pointer arithmetic, are used to access varargs.
4We checked for vulnerabilities in the SSH daemon portion of the code.
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Name Time (s) Mem (kB) Warn./Bugs
identd-1.0.0 0.087 6444 0/0
mingetty-0.9.4 0.114 7228 0/0
bftpd-1.0.11 0.429 12292 2/1
muh-2.05d 1.093 24252 54/2
cfengine-1.5.4 8.782 132020 >1000/3
imapd-4.7c 7.426 113912 0/0
ipopd-4.7c 7.262 113908 0/0
mars nwe-0.99 4.445 71112 0/0
apache-1.3.12 8.793 139928 0/0
openssh-2.3.0p1 13.952 221828 0/0

Figure 6.6: Format-String Vulnerability Detection Results

string vulnerabilities.

For muh and bftpd, fixing the format-string vulnerabilities also eliminates all warn-

ings from Cqual. For cfengine, after fixing the format-string vulnerabilities, we needed

to do a little more work to eliminate the remaining warnings. We needed to fix an incorrect

call to sprintf that was simply a bug. We also needed to make two functions take const

parameters, declare one function to be polymorphic, and add three typecasts removing

tainting from a single character extracted from a tainted string

6.2.2 Related Work

Using Cqual to find format-string vulnerabilities was first described by us [101].

Our approach to finding format-string vulnerabilities is conceptually similar to Perl’s taint

mode [117], but with a key difference: unlike Perl, which tracks tainting dynamically, Cqual

checks tainting statically without ever running the program. Moreover, Cqual’s results are

conservative over all possible runs of the program. This gives us a major advantage over

dynamic approaches for finding security flaws. Often security bugs are in the least-tested

portions of the code, and a malicious adversary is actively looking for just such code to

exploit. Using static analysis, we conceptually analyze all possible runs of the program,

providing complete code coverage.

Several lexical techniques have been proposed for finding security vulnerabilities.

Pscan [25] searches the source code for calls to printf-like functions with a non-constant

format string. Thus pscan cannot distinguish between safe calls when the format string is

variable and unsafe calls. Lexical techniques have also been proposed to find other security
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vulnerabilities [12, 113]. The main advantage of lexical techniques is that they are extremely

fast and can analyze non-preprocessed source files. However, because lexical tools have no

knowledge of language semantics there are many errors they cannot find, such as those

involving aliasing or function calls.

Another approach to eliminating format-string vulnerabilities is to add dynamic

checks. The libformat library intercepts calls to printf-like functions and aborts when

a format string contains %n and is in a writable address space [94]. A disadvantage to

libformat is that, to be effective, it must be kept in synchronization with the C libraries.

Another dynamic system is FormatGuard, which injects code to dynamically reject bad calls

to printf-like functions [20]. The main disadvantage of FormatGuard is that programs must

be recompiled with FormatGuard to benefit. Another downside to both techniques is that

neither protect against denial-of-service attacks.

It is important to realize that while Cqual is successful at finding format-string

vulnerabilities, it can never find all such bugs. One reason is that, as discussed in Sec-

tion 5.3, Cqual is sound only up to certain features of C (recall, for example, that while

we flow taintedness through casts, this is not sound for casts to integers). However, there

is a more fundamental reason that Cqual can never find “all” security bugs. For example,

suppose the programmer performs a branch based on a tainted value. Then conceptually

the program counter has become tainted, and any result computed by the rest of the com-

putation is suspect. There is a large body of work on a dual problem to tainting called

secure information flow, which attempts to prevent just these kinds of security problems

[1, 105, 114]. We feel that trying to model all possible information flow can often lead to

an overly conservative analysis. For example, the sendmail program is a network daemon

that waits for data from the network and then performs various tasks depending on the

data. If taint propagates to the program counter, then all of sendmail’s computation must

be tainted, which, while sound, is not a useful result.

6.3 Linux Kernel Locking

Locking is a basic technique for building multi-threaded programs, but it is well-

known that locking is easy to get wrong. In this section, we describe experiments using

flow-sensitive type qualifiers to prevent a particular problem with locks. We look at simple

deadlocks that occur when a thread attempts to acquire the same lock twice in sequence
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without an intervening release. Suppose that lock and unlock are functions that acquire and

release locks, respectively. Then we introduce two qualifiers to track the state of locks. We

use locked to annotate locks that the current thread owns, and we use unlocked to annotate

locks that may be owned by another thread. Let τ be the type of locks. Using notation

from flow-sensitive type qualifier inference (Section 4.5), we assign the following types to

the primitive locking functions:

lock : (S, ref (ρ)) −→ρ (Assign(S, ρ : locked τ), void)

where S(ρ) ≤ unlocked τ

unlock : (S, ref (ρ)) −→ρ (Assign(S, ρ :unlocked τ), void)

where S(ρ) ≤ locked τ

Here we omit uninteresting qualifiers. The function lock takes a pointer to a lock as a

parameter and requires that the lock have the unlocked qualifier in the initial state. The

function lock changes its parameter to have the locked qualifier upon returning. The type

of unlock is the dual. With these two type signatures we can use our system to statically

discover simple deadlocks. Note that although we are describing locking, which is used in

multi-threaded code, our system models only a single thread.

There are two natural choices for the partial order on our qualifiers. We can

choose the discrete partial order, in which case locked and unlocked are incomparable. In

such a system we signal an error whenever we attempt to join two states in which a lock is

inconsistent. Alternatively, we can introduce a third qualifier > to stand for a lock in an

unknown state, with partial order locked < > and unlocked < >. In this case we do not

signal an error at inconsistent joins, and instead we signal an error if we attempt to acquire

or release a lock in the > state.

6.3.1 Experiments

We used Cqual to check for simple deadlocks in the Linux kernel device drivers.

We can apply the system described above by annotating two primitive locking functions in

the Linux kernel:
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void spin lock(unlocked spinlock t *lock) {
/* inline assembly code */

change type(*lock, locked spinlock t);

}

void spin unlock(locked spinlock t *lock) {
/* inline assembly code */

change type(*lock, unlocked spinlock t);

}

Here we insert explicit change type statements because the body of these functions is inline

assembly code, which Cqual cannot analyze. We also add an annotation so that locks are

initially unlocked .

Because our flow-sensitive type qualifier system is monomorphic, while our anno-

tations are correct they lead to an extremely conservative analysis. Since every lock in the

program is passed to spin lock and unlock, given the above definitions our alias analysis

determines that all locks may alias a single location ρ. But then our linearity computation

determines that ρ is non-linear, and thus ρ cannot be strongly updated, making it unlikely

we could type check any realistic kernel code. Thus in practice we replace the above function

definitions with macros, effectively inlining the functions.

With the inlined definitions of spin lock and spin unlock, we used Cqual to

check for simple deadlocks in the device drivers in a standard build of the Linux 2.4.9 kernel.

Each driver in the Linux kernel is made up of a number of files linked together to form a

driver module,5 which is an object that can be loaded dynamically by the kernel [95]. We

performed two experiments on the drivers. In both cases, we do not collapse qualifiers at

casts, i.e., we trust the C types.

In the first experiment, we analyzed each of 892 compiled driver source files sep-

arately. We chose the discrete partial order for locked and unlocked , with no > qualifier;

in this model, an attempted join of locked and unlocked results in a type qualifier error.

We make optimistic assumptions about the environment in which each file is invoked. In

particular, we assume that the body of each undefined function is empty. As a result our

effect inference determines that calls to undefined functions have no effect on the state, and
5A few drivers do not come in modular form.
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hence the state of all locks flows “around” undefined functions (Section 4.1.2). Finally, we

need some mechanism to connect the initial state of locks with the initial state of the ap-

propriate functions. We assume that any function that is either extern (has global scope)

or has its address taken in a non-calling context is an interface function, meaning it may be

called directly from the kernel. Let SG be the initial top-level environment modeling any

allocations and initializations of globals in the driver file (Section 5.2). For each interface

function f of type (S, τ) −→L (S′, L′), we generate the constraints SG ≤ S and S′ ≤ SG,

i.e., each interface function may be called from the top level environment and must leave

the state of locks as they found it.

In the second experiment, we analyzed 513 device driver modules, which are made

up of the 892 individual files plus some other files linked in from different parts of the

kernel. For this experiment we chose the three-point partial order with locked < > and

unlocked < >; thus we allow locks to enter the unknown state, but any such lock cannot

be used later. In each case, we simultaneously analyze all files linked together to form a

module m and any modules m depends on. Note that this definition of a whole module

means that there are many overlapping files between different whole modules. To model the

kernel, we construct a main function that first invokes the module initialization function,

then non-deterministically loops calling each possible driver function, and finally calls the

module cleanup function.

We examined the results for all of the 892 separately analyzed driver files and for 64

of the 513 whole modules. In total we found 14 apparently new locking bugs, including one

which spans multiple files. In five of the apparent bugs, a particular function is sometimes

called with a lock held and sometimes without. For example, the emu10k1 module contains

the following deadlock:
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void emu10k1 mute irqhandler(struct emu10k1 card *card) {
struct patch manager *mgr = &card->mgr;

... spin lock irqsave(&mgr->lock, flags);

emu10k1 set oss vol(card, ...); ...

}
void emu10k1 set oss vol(struct emu10k1 card *card, ...) {

... emu10k1 set volume gpr(card, ...); ...

}
emu10k1 set volume gpr(struct emu10k1 card *card, ...) {

struct patch manager *mgr = &card->mgr;

... spin lock irqsave(&mgr->lock, flags); ...

}

Here &mgr->lock is acquired in the topmost function, which calls the middle functions,

which calls the bottom function, which attempts to acquire &mgr->lock again. Notice that

detecting this error requires interprocedural analysis. The remaining bugs are cases when

the programmer forgot to release a lock on a particular path, which causes a deadlock the

next time the lock is acquired.

As described by us previously [45], we discussed these 14 bugs with others quite

extensively, and all appear to be real problems. The bugs were reported on the Linux kernel

mailing list, and as a result at least two were fixed, including the bug shown above (which we

reported directly to the author of the module). We suspect that social reasons prevented all

of the bugs from being fixed. First, convincing someone to look at 14 somewhat tricky bugs

is difficult. Second, if a bug fix is not obvious, developers are reluctant to make changes.

For example, in the emu10k1 code shown above, fixing the deadlocks requires deciding why

the set volume gpr function is sometimes called with a lock and sometimes not. Finally,

some of the deadlocks could be in code that is already scheduled for removal or a major

overhaul, hence fixing such bugs may not be a kernel developer’s top priority.

One of our goals is to understand how often, and why, our system fails to type

check real programs. We have categorized every type qualifier error in the separate files

analysis of the 892 driver files. In this experiment, of the 52 files that fail to type check,

11 files have locking bugs (sometimes more than one) and the remaining 41 files have type

errors. Half of these type errors are due to our model of interface functions. Recall that we
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generate constraints that require that all interface functions leave locks in the same state. It

turns out, however, that for a class of driver files this requirement is simply not met—some

of the functions in a file assume that locks are unlocked on entry, and some assume the

opposite. These type errors are eliminated by moving to whole module analysis.

The remaining type errors in the individual driver file analysis fall into two main

categories. In many cases the problem is that our alias analysis is not strong enough to type

check the program. Another common class of type errors arises when locks are conditionally

acquired and released. In this case, a lock is acquired if a predicate P is true. Before the

lock is released, P is tested again to check whether the lock is held. Our system is not path

sensitive, and since for these experiments locked and unlocked are incomparable, our tool

signals a type error at the point where the path on which the lock is acquired joins with

the path on which the lock is not acquired. (In the whole module analysis, this error is

detected later on, when there is an attempt to acquire or release the a lock in the > state.)

Many of these examples could be rewritten with little effort to pass our type system. In our

opinion, this would usually make the code clearer and safer—the duplication of the test on

P invites new bugs when the program is modified.

Of the 513 whole modules, 196 contain type errors, many of which are duplicates

from shared code. We examined 64 of the type error-containing modules and discovered

that a major source of type errors is when there are multiple aliases of a location, but only

one alias is actually used in the code of interest. Not surprisingly, larger programs, such

as whole modules, have more problems with spurious aliasing than the optimistic single-file

analysis. To overcome this limitation restrict was added by hand to the 64 modules we

looked at, including the emu10k1 module, which yielded the largest number of such false

positives. Using restrict eliminated all of the type errors that occurred in these modules

because non-linear locations could not be strongly updated. This supports our belief that

restrict is the right tool for dealing with (necessarily) conservative alias analysis. Currently

adding restrict by hand is burdensome, requiring a relatively large number of annotations.

We leave the problem of automatically inferring restrict annotations as future work.

Finally, the algorithm for flow-sensitive type qualifier inference described in Sec-

tion 4.5.1 is carefully designed to limit resource usage. Figure 6.7 shows the running time

and Figure 6.8 shows the memory usage of the whole module analysis versus preprocessed

lines of code for the 513 whole Linux kernel modules. All experiments were done on a dual

processor 550 MHz Pentium III with 2GB of memory.
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We divide the resource usage into three components: C parsing and type checking,

flow-insensitive analysis, and flow-sensitive analysis (see Figure 5.1). In the graphs, the

reported time and space for each phase includes the time and space for the previous phases.

The graphs show that the space overhead of flow-sensitive analysis is relatively small and

appears to scale well to large modules. For all modules the space usage for the flow-sensitive

analysis is within 35% of the space usage for the flow-insensitive analysis. The running time

of the analysis is more variable, but the absolute running times are within a factor of 1.5

of the flow-insensitive running times.

6.3.2 Related Work

The difficulty of using locks correctly is well-known, and a number of techniques

have been developed to check lock usage. The Eraser system [99] and Choi et al [18] can

check whether locks are correctly acquired and released dynamically at run time. As with

any dynamic technique, these tools can find errors only on particular test cases.

Flanagan and Abadi have proposed type systems for checking correct use of locks

statically [38, 39]. Flanagan and Freund [40] use a type checking system to verify Java lock-

ing behavior. In all three of these type systems, locks are acquired and released according

to a lexical discipline. To model locking in the Linux kernel, we must allow non-lexically

scoped lock acquires and releases.

Meta-level compilation [33, 54] has been used to find a number of locking bugs

in the Linux kernel, including the same kind of simple deadlocks found by our tool. The

Linux kernel we analyzed above was a newer version than that checked by Engler et al [33],

and many of the deadlocks discovered by meta-level compilation had been removed, so a

direct comparison is not possible. Our tool found a bug previously found by meta-level

compilation but not yet fixed, and the remaining bugs were found in code that had been

changed enough to make a comparison difficult. We believe that, because our system is

sound, our approach can find strictly more bugs than meta-level compilation.

6.4 File Operations

Virtually all operating systems include a file system interface. One of the critical

features of this interface is that certain functions must be called in a particular order. For

example, a file must be opened for reading before it is read, it must be opened for writing
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Figure 6.9: Subtyping Relation among C Stream Library Qualifiers

before it is written to, and once closed a file cannot be accessed. We can enforce these

rules using flow-sensitive type qualifiers. We introduce five qualifiers to track the state of

files. We use qualifiers open, read , write, and readwrite to mark files that are open for,

respectively, undetermined access, reading, writing, and both reading and writing. We use

the qualifier closed to mark files that are not open. We also need to account for the fact

that opening a file may fail. In particular, in ANSI C the result of a call to the file opening

function fopen may return NULL. Thus we introduce four additional qualifiers open′, read′,

write′, and readwrite′, to stand for files that the programmer attempted to open but have

not yet been checked again NULL.

Our nine qualifiers naturally form the partial order shown in Figure 6.9. In this

partial order, files open for reading and writing are a subtype of files open only for a single

kind of access, and all three are a subtype of files opened for undetermined access. We have

a similar partial order for files opened but unchecked, and a closed file can be considered a

file open in any state but not yet checked.

We give the expected types to functions that manipulate files. For example, let τ

be the type of files. Then the type signature for the function fclose to close a file is

fclose : (S, ref (ρ)) −→ρ (Assign(S, ρ :closed τ), int)

where S(ρ) ≤ open τ

Here, as below, we omit uninteresting qualifiers. The function fclose takes a pointer to a

file that must be open, and when the function returns the file is closed. Similarly, the type

signature for fopen is

fopen : (S, · · · ×mode) −→ρ (Assign(Alloc(S, ρ), ρ :mode τ), ref (ρ))

where S(ρ) ≤ closed τ
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We require that initially the file not be open, and upon returning we return a pointer to

a new file whose qualifier is specified by mode. In practice the mode is usually a constant

string, and therefore we can determine the correct qualifier, read′, write′, or readwrite′, by

a simple syntactic comparison. If we cannot determine the mode qualifier syntactically, we

issue a warning and use the open′ qualifier.

We assign similar types to functions that read and write files. Cqual contains code

to handle comparisons of files against NULL, the special value that indicates an unsuccessfully

opened file. For example, consider the following C code:

if ((file = fopen(filename, "r")) != NULL) {
... fgetc(file); ...

fclose(file);

} else {
printf("Failed to open %s", filename);

}

At the call to fopen, we syntactically recognize the string "r" and determine that the file

is being opened for reading. Let ρ be the abstract location for the file. In the state S

immediately following the call to fopen, we assign ρ the type read′ τ , where τ is the type

of files. Next we see a comparison again NULL. Intuitively, this is a kind of type case. For

this example we analyze the true branch with initial store Assign(S, ρ :read τ) and the false

branch with initial store Assign(S, ρ :closed τ). We use conditional constraints to relate the

read′ qualifier in S to read on the true branch.

Note that unlike Das [23], we do not model arbitrary predicates to keep track

of the state of files. For the examples we looked at, modeling file pointer comparisons as

described above was usually sufficient—for our examples, typically a file pointer would first

be tested against NULL and then used. In contrast, in Das’s examples instead of checking

a file pointer directly for NULL before accessing a file, often a separate, global boolean flag

would be tested.

The class of file operation usage errors we can detect with this technique includes

files used without having been opened and checked against NULL, files accessed in a mode

incompatible with how they were opened, and files accessed after being closed. ANSI C

specifies that files open for both reading and writing switch into read-only (write-only) mode

after the first read (write) until a call to certain functions or until end-of-file is encountered
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[6]; we did not model this rule in our experiments.

Finally, because our system is monomorphic, as in Section 6.3 if we simply assigned

the above types to the C file operations we would not be able to check many programs. Hence

we again replace library function definitions with macro expansions, effectively inlining the

function calls. In practice this is achieved by taking a suitably modified stdio.h file and

dropping it in the directory containing the application.

6.4.1 Experiments

We applied Cqual to check file usage in two application programs, man-1.5h1 and

sendmail-8.11.6. We were primarily interested in the performance of our tool on a more

complex application, as we did not expect to find any latent file operation usage bugs in such

mature programs. However, we did find one minor bug in sendmail-8.11.6, in which an

opened log file is never closed in some circumstances. On a 550 MHz dual processor Pentium

III Xeon with 2GB of memory, the analysis of sendmail-8.11.6, with 175,193 preprocessed

source lines, took 22.853 seconds and 273MB; man-1.5h1, with 16,411 preprocessed source

lines, took 1.729 seconds and 36MB. These results suggest that our algorithm also behaves

efficiently when checking C stream library usage.
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Chapter 7

Conclusion

In this dissertation, we have presented type qualifiers, a lightweight, specification-

based technique for improving software quality. To use our system, the programmer supplies

three components: a set of qualifiers, a partial order among the qualifiers, and a source

program with a few key type qualifier annotations. The partial order on type qualifiers

is extended to a subtyping relation among qualified types. Constraint-based type qualifier

inference takes as input the source program, determines the remaining qualifiers, and checks

for consistency. Any inconsistent qualifiers indicate potential bugs in the program.

The basic type qualifier system is flow-insensitive, meaning that a variable’s qual-

ifiers are fixed throughout execution, just as standard types are. An important feature of

our system is that type qualifiers may also be flow-sensitive, i.e., the type qualifiers as-

sociated with a particular memory location may change from one point to the next. We

presented a lazy, constraint-based flow-sensitive type qualifier inference algorithm that runs

in two phases. In the first phase, we perform flow-insensitive alias analysis and effect in-

ference. In the second phase, we use the resulting set of abstract locations and effects to

infer flow-sensitive linearities, which we use to distinguish strong and weak updates, and

flow-sensitive type qualifiers. A linear location supports strong updates, and a non-linear

locations supports only weak updates. We also use effects to gain a measure of polymor-

phism by propagating the state of any locations not used by a function “around” rather

than “through” the function call. By combining this technique with a rule for effect hid-

ing, we can precisely track states of purely local variables even in the presence of recursive

functions.

We have introduced a new language construct restrictx = e1 in e2 that may
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be of independent interest. The restrict construct allows programmers to express their

intentions about aliasing. In this construct, the name x, bound in e2, is initialized to e1,

which must be a pointer. Suppose x and e1 point to object o. Then within e2, only the

name x and copies of x may be used to access o. Dually, outside the scope of e2 the

name x and values copied from x may not be used to access o (they may not escape). This

information often enables a flow-sensitive analysis to track the state of o precisely within e2.

In our system, programmers add restrict to their programs whenever flow-sensitive type

qualifier inference fails because a non-linear location cannot be strongly updated. Internally

this works because only x may be used within e2 and only e1 may be used outside of e2;

thus x can be bound to a different abstract location than e1, and x may be linear even if

e1 is non-linear.

We have described a tool Cqual that implements both flow-insensitive and flow-

sensitive type qualifier inference for C. An important component of our tool is a user inter-

face for presenting analysis results. In this interface, the source code is colored according

to the inferred qualifiers. Additionally, the user can click on any qualifier variable to see a

set of constraints showing how the solution for that qualifier variable was inferred. Clicking

on the constraints jumps to the source line where the constraint was generated, and this

allows a programmer to trace through the source code to find the cause of an error.

Finally, we presented a number of experiments using Cqual that suggest that

type qualifiers are useful in practice. We presented four separate studies. In the first, we

performed const inference for C programs, and we discovered that inference can add many

more consts to existing programs, even ones whose authors make a significant effort to use

const. In the second, we used Cqual to find a number of format-string bugs in popular

programs; several of these bugs were unknown to us at the time. In the third, we found

new deadlocks in the Linux kernel using Cqual’s flow-sensitive type qualifier inference,

including one that spanned multiple files. In the last experiment, we used Cqual to check

the use of file operations in two C programs.

In conclusion, we believe we have shown that type qualifiers are lightweight and

easy to use because they are natural extensions of type systems and because of constraint

visualization; that type qualifiers are practical, because of efficient inference algorithms

that scale to large programs; and that type qualifiers are useful for a number of realistic

applications.
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Appendix A

Soundness of Flow-Insensitive

Type Qualifiers

In this appendix we present a complete proof of soundness for the flow-insensitive

type qualifier checking system of Figure 3.5. In the main exposition of this dissertation,

we present the semantics of type qualifiers using a big-step semantics (Figure 3.9). We can

prove soundness of our type qualifier checking system under these semantics using the same

technique we use in Appendix B to prove soundness of restrict . However, rather than

present a nearly similar proof twice, for variety in this appendix we instead prove that our

type qualifier checking system is sound with respect to a small-step operational semantics

that is equivalent to our big-step semantics for terminating programs. Our soundness proof

uses techniques from Wright and Felleisen [122] and Eifrig et al [31].

A.1 Small-Step Semantics

In a big-step semantics, a reduction step runs a computation to completion. In

a small-step semantics, we instead perform only a single “unit” of computation at a time,

and each reduction may produce an intermediate state rather than a final result. In our

small-step semantics, values are of the form (v,Q), where v is either a location, an integer,

or a syntactic function. We begin by defining a reduction context R, which is an expression
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〈S, R[annot(n, Q)]〉 → 〈S, R[(n, Q)]〉
〈S, R[annot(λx.e, Q)]〉 → 〈S, R[(λx.e, Q)]〉

〈S, R[annot(ref (v,Q), Q′)]〉 → 〈S[l 7→ (v,Q)], R[(l, Q′)]〉 l 6∈ dom(S)
〈S, R[(λx.e, Q′) (v,Q)]〉 → 〈S, R[e[x 7→ (v,Q)]]〉

〈S, R[letx = (v,Q) in e]〉 → 〈S, R[e[x 7→ (v,Q)]]〉
〈S, R[*(l, Q)]〉 → 〈S, R[S(l)]〉 l ∈ dom(S)

〈S, R[(l, Q′) := (v,Q)]〉 → 〈S[l 7→ (v,Q)], R[(v,Q)]〉 l ∈ dom(S)
〈S, R[check((v,Q′), Q)]〉 → 〈S, R[(v,Q′)]〉 Q′ ≤ Q

Figure A.1: Small-Step Operational Semantics with Qualifiers

containing a hole []:

R ::= [] | R e | (v,Q) R | letx = R in e | annot(refR,Q) | *R
| R := e | (v,Q) :=R | check(R,Q)

We write R[e] to mean reduction context R with R’s hole replaced by e. A reduction context

fixes the left-to-right ordering of evaluation and tells us, for a given expression, where the

“next” reduction must occur. For example, by the above grammar we see that we may

only evaluate the right-hand side of an assignment if the left-hand side has already been

evaluated to a value.

Figure A.1 presents our small-step operational semantics. We define a configura-

tion 〈S, e〉 to be a pair where e is the expression that is being evaluated and S is the current

store, a mapping from locations to values just as in the big-step semantics. Our small-step

semantics defines a reduction relation 〈S, e〉 → 〈S′, e′〉 that shows how the configuration

changes with a single step of execution. We write →∗ for the reflexive, transitive closure of

→. Notice that, just as in our big-step semantics, we discard the outermost qualifier on a

value except when we encounter a qualifier check. Note that in these semantics, as in the

rest of this section, we ignore the standard type annotation on function definitions λx.e;

they are unnecessary for this proof, and they simply add clutter.

Definition A.1 A configuration 〈S, e〉 is stuck if no reductions in Figure A.1 are applica-

ble.

In the next section, we prove that well-typed programs do not get stuck.

The connection between the small-step semantics of Figure A.1 and the big-step

semantics of Figure 3.9 should be clear. We formally state the correspondence with the
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following lemma.

Lemma A.2 If S `q e → (v,Q);S′, then 〈S, e〉 →∗ 〈S′, (v,Q)〉. If S `q e → err, then

〈S, e〉 →∗ 〈S′, e′〉 where 〈S′, e′〉 is stuck.

A.2 Soundness

Recall that values in our semantics are of the form (v,Q). We use the following

rule to assign types to such values:

Γ `q v : σ

Γ `q (v,Q) : Q σ
(Valueq)

Recall that our type system in Figure 3.5 assigns integers and functions types σ without

top-level qualifiers; hence the above rule. In our proof, variables are used for two purposes.

Semantic locations l are represented as free variables, and their unqualified types σ are

stored in Γ. Functions in our semantics are represented not as closures but as syntactic

functions, which is a standard technique [31, 122]. Thus evaluated functions are type

checked using (Lamq), in which case type environments Γ bind program variables (i.e.,

function parameters) to qualified types τ . Therefore Γ may map program variables to both

qualified and unqualified types—qualified types for program variables, unqualified types for

locations.

As evaluation progresses, we extend a type environment with the types of new

locations.

Definition A.3 (Extension) We say that Γ′ is an extension of Γ, written Γ ⇒ Γ′, if

Γ′|dom(Γ) = Γ.

Here Γ′|dom(Γ) is the restriction of Γ′ to the domain of Γ. We define a compatibility relation

that says when a type environment gives a valid type to a store.

Definition A.4 (Compatibility) We say that Γ is compatible with store S, written Γ ∼
S, if dom(Γ) = dom(S) and for all l ∈ dom(S) there exists a τ such that Γ(l) = ref (τ) and

Γ ` S(l) : τ .

In other words, Γ ∼ S means that type environment Γ assigns each location l in S a type

compatible with the value stored at l. Notice that, as mentioned above, Γ(l) has no top-level

qualifier.
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We need several lemmas to show our main result. We use the first lemma without

comment during our proof.

Lemma A.5 A proof Γ `q e : τ can be rewritten to use at most one application of (Subq)

in sequence.

Proof: By transitivity of ≤. 2

Lemma A.6 If Γ `q e : τ and Γ⇒ Γ′, then Γ′ `q e : τ .

Lemma A.7 (Substitution) If Γ[x 7→ τ ] `q e : τ ′ and Γ `q (v,Q) : τ , then Γ `q e[x 7→
(v,Q)] : τ ′.

Note that for the substitution lemma to hold we implicitly assume that we rename any bound

variables in e to avoid capturing any free variables (i.e., locations) in v, as is standard.

Theorem A.8 (Subject Reduction) If Γ `q e : τ and Γ ∼ S, then either e is a value

(v,Q), or there exist S′, e′, and Γ′ such that

1. 〈S, e〉 → 〈S′, e′〉,

2. Γ′ `q e′ : τ ,

3. Γ′ ∼ S′, and

4. Γ⇒ Γ′.

Proof: By induction on the structure of e.

Case n, λx.e, ref e

There are no typing rules that assign qualified types to unannotated integers, functions, or

references, so this cannot occur.

Case x

This case cannot happen. By Γ ∼ S, we have Γ(x) = ref (τ ′), and ref (τ ′) is not a qualified

type τ .

Case annot(n, Q)

By assumption we have Γ ∼ S, and our typing proof must be of the form

Γ `q annot(n, Q) : Q int Q ≤ Q′

Γ `q annot(n, Q) : Q′ int
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Then by examination of the reduction rules in Figure A.1, we can apply the reduction

〈S, annot(n, Q)〉 → 〈S, (n, Q)〉. Let S′ = S and Γ′ = Γ. Then we can show Γ′ `q (n, Q) :

int Q, and by (Subq), since Q ≤ Q′, we can show Γ′ `q (n, Q) : int Q′.

Case annot(λx.e, Q)

Similar to the case for annotated integers.

Case e1 e2

By induction we have a typing proof

Γ `q e1 : Q′′ (τ ′′ −→ τ ′) Γ `q e2 : τ ′′

Γ `q e1 e2 : τ ′ τ ′ ≤ τ

Γ `q e1 e2 : τ
(A.1)

There are three sub-cases. If e1 is not a value, then by induction there exist Γe′ , Se′ , and

e′1 such that 〈S, e1〉 → 〈S′, e′1〉, Γ⇒ Γe′ , Γe′ ∼ S′, and

Γe′ `q e′1 : Q (τ ′′ −→ τ ′) (A.2)

Thus 〈S, e1 e2〉 → 〈S′, e′1 e2〉. Picking Γ′ = Γe′ , we already know Γ′ is an extension of Γ

and is compatible with S′. By Lemma A.6 we can show Γ′ `q e2 : τ ′′. Then since τ ′ ≤ τ ,

combining this with (A.2) we have Γ′ `q e′1 e2 : τ , which proves our conclusion.

If e2 is not a value, then by similar reasoning we can show our conclusion. So the

last case we need to check is when both e1 and e2 are values. Examination of the type rules

in Figure 3.5 shows that the only rules that can assign a function type to e1 are (Lamq)

(followed by (Valueq)) and (Varq). But since locations are all assigned ref types by Γ, we

know that only (Lamq) could have been applied. Thus our typing proof must be of the form

Γ[x 7→ τx] `q e : τe

Γ `q λx.e : τx −→ τe

Γ `q (λx.e, Q′) : Q′ (τx −→ τe)
Q′ ≤ Q′′ τ ′′ ≤ τx τe ≤ τ ′

Γ `q (λx.e, Q′) : Q′′ (τ ′′ −→ τ ′) Γ `q (v,Q) : τ ′′

Γ `q (λx.e, Q′) (v,Q) : τ ′ τ ′ ≤ τ

Γ `q (λx.e, Q′) (v,Q) : τ
(A.3)

Therefore e1 e2 must be of the form (λx.e, Q′) (v,Q), and hence we can apply the reduction

〈S, (λx.e, Q′) (v,Q)〉 → 〈S, e[x 7→ (v,Q)]〉.
Then since Γ `q (v,Q) : τ ′′ and τ ′′ ≤ τx, by (Subq) we have Γ `q (v,Q) : τx. Then

by the topmost hypothesis of (A.3) and by Lemma A.7 we have Γ `q e[x 7→ (v,Q)] : τe.
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And since τe ≤ τ ′ ≤ τ , by (Subq) we have Γ `q e[x 7→ (v,Q)] : τ . Then letting Γ′ = Γ, we

clearly have Γ⇒ Γ′, Γ ∼ S (by assumption), and Γ′ `q e[x 7→ (v,Q)] : τ , which proves our

conclusion.

Case letx = e1 in e2

In a monomorphic type system letx = e1 in e2 is equivalent to (λx.e2) e1, so we can simply

apply the proof steps for application and abstraction.

Case annot(ref e,Q′)

If e is not a value, then by reasoning similar to the first sub-case for e1 e2 we can prove

our conclusion. Otherwise, suppose e is a value (v,Q). Then examination of the reduction

rules in Figure A.1 shows that we can apply the reduction 〈S, annot(ref (v,Q), Q′)〉 →
〈S′, (l, Q′)〉 where S′ = S[l 7→ (v,Q)] and l 6∈ dom(S). Our typing judgment must be of the

form
Γ `q (v,Q) : τ

Γ `q ref (v,Q) : ref (τ)
Γ `q annot(ref (v,Q), Q′) : Q′ ref (τ) Q′ ≤ Q′′

Γ `q annot(ref (v,Q), Q′) : Q′′ ref (τ)
(A.4)

Let Γ′ = Γ[l 7→ ref (τ)]. Then clearly Γ′ `q (l, Q′) : Q′′ ref (τ) since Q′ ≤ Q′′. Since

l 6∈ dom(S) and Γ ∼ S by assumption, we know l 6∈ dom(Γ) and therefore Γ ⇒ Γ′ and

dom(Γ′) = dom(S′) Finally, to see Γ′ ∼ S′, pick any location l′ ∈ dom(S′). If l′ 6= l, then by

construction of Γ′ and S′ and since Γ ∼ S, clearly there exists a τ ′ such that Γ′(l′) = ref (τ ′)

and Γ′ `q S′(l′) : τ ′ since Γ⇒ Γ′. If l′ = l, then Γ′(l) = ref (τ), and from (A.4) and Γ⇒ Γ′

we know Γ′ `q S′(l) : τ , since S′(l) = (v,Q). Thus our conclusion holds.

Case *e

If e is not a value, then by reasoning similar to the first sub-case for e1 e2 we can prove

our conclusion. Otherwise, suppose e is a value. Then we must assign e a ref type, and

examination of the typing rules in Figure 3.5 reveals that only (Varq) (followed by (Valueq))

can assign such a type to a value. Thus our typing proof must be of the form

Γ `q l : ref (τ ′)
Γ `q (l, Q) : Q ref (τ ′) Q ≤ Q′

Γ `q (l, Q) : Q′ ref (τ ′)
Γ `q *(l, Q) : τ ′ τ ′ ≤ τ

Γ `q *(l, Q) : τ
(A.5)

Since l ∈ dom(Γ) by (A.5) and Γ ∼ S, we know l ∈ dom(S). Therefore we can perform a
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reduction 〈S, *(l, Q)〉 → 〈S, S(l)〉. Let Γ′ = Γ. Then clearly Γ ⇒ Γ′, and by assumption

Γ′ ∼ S. By the latter and (A.5), we know Γ′ `q S(l) : τ ′. Then since τ ′ ≤ τ , by (Subq) we

have Γ′ `q S(l) : τ . Thus our conclusion holds.

Case e1 := e2

If either e1 or e2 is not a value, then by reasoning similar to the first sub-case for e1 e2 we

can prove our conclusion. Otherwise, suppose both are values. Then we must assign e a ref

type, and examination of the typing rules in Figure 3.5 reveals that only (Varq) (followed

by (Valueq)) can assign such a type to a value. Thus our typing proof must be of the form

Γ `q l : ref (τ ′)
Γ `q (l, Q′) : Q′ ref (τ ′) Q′ ≤ Q′′

Γ `q (l, Q′) : Q′′ ref (τ ′) Γ `q (v,Q) : τ ′

Γ `q (l, Q′) := (v,Q) : τ ′ τ ′ ≤ τ

Γ `q (l, Q′) := (v,Q) : τ
(A.6)

Since l ∈ dom(Γ) by (A.6) and since Γ ∼ S, we know l ∈ dom(S). Therefore we can perform

a reduction 〈S, (l, Q′) := (v,Q)〉 → 〈S′, (v,Q)〉 where S′ = S[l 7→ (v,Q)]. Let Γ′ = Γ. Then

clearly Γ⇒ Γ′, and from (A.6) we see Γ′ `q (v,Q) : τ since τ ′ ≤ τ . To see Γ′ ∼ S′, pick any

l′ ∈ dom(S′). If l′ 6= l then by Γ ∼ S and Γ⇒ Γ′ there exists a τl′ such that Γ′(l′) = ref (τl′)

and Γ′ `q S′(l′) : τl′ . If l′ = l, then Γ′(l′) = ref (τ ′) by (A.6), and S′(l′) = (v,Q). But also

by (A.6) and Γ⇒ Γ′ we have Γ′ `q (v,Q) : τ ′. Thus our conclusion holds.

Case check(e,Q)

If e is not a value, then by reasoning similar to the first sub-case for e1 e2 our conclusion

holds. Otherwise suppose e is a value (v,Q′). Then our typing proof must be of the form

Γ `q v : σ

Γ `q (v,Q′) : Q′ σ Q′ ≤ Q′′

Γ `q (v,Q′) : Q′′ σ Q′′ ≤ Q

Γ `q check((v,Q′), Q) : Q′′ σ Q′′ σ ≤ τ

Γ `q check((v,Q′), Q) : τ
(A.7)

Then since Q′ ≤ Q′′ ≤ Q, we can apply a reduction 〈S, check((v,Q′), Q)〉 → 〈S, (v,Q′)〉.
Let Γ′ = Γ. Then clearly Γ ⇒ Γ′, and Γ′ ∼ S by assumption. Finally, from (A.7) we have

Γ′ `q (v,Q′) : τ , since Q′′ σ ≤ τ . Thus our conclusion holds. 2

Theorem A.9 If ∅ `q e : τ , then either 〈∅, e〉 diverges or 〈∅, e〉 →∗ 〈S, (v,Q)〉.
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Proof: Suppose ∅ `q e : τ . We can trivially show ∅ ∼ ∅. Therefore by subject reduction

we can reduce 〈∅, e〉 either indefinitely or until it reduces to a value. 2

Corollary A.10 If ∅ `q e : τ and ∅ `q e→ r;S′, then r is not err.

Proof: By Lemma A.2. 2
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Appendix B

Soundness of Restrict

In this appendix we give the complete proof of soundness for restrict ; we

sketched this proof in Section 4.3.2. For reference, Figure B.1 combines Figures 2.2 and 4.6

to give the complete semantics of our source language with restrict . As before, we im-

plicitly assume we have error reductions when the rules in Figure B.1 cannot be applied.

For the sake of completeness, Figure B.2 gives the new error rules; recall that S ` e→ err

is shorthand for S ` e→ err;S′ for arbitrary S′.

We give a proof of soundness of the rules of Figure 4.4 with respect to the semantics

of Figure B.1. We allow subsumption of effects, as discussed briefly in Section 4.3.4. Our

proof is deliberately designed to resemble the proof of Appendix A, with somewhat more

complicated details due to the semantics of restrict . This appendix and Appendix A may

be read independently.

In our proof we have no need for the translation of expressions. Thus we abbreviate

the judgment Γ ` e⇒ e′ : t;L by Γ ` e : t;L. We ignore qualifier annotations and assertions,

since they do not affect the correctness of restrict . Locations l are represented in the

proof as free variables, and thus their types are stored in Γ and they type check using

(Vara). We implicitly treat evaluated and unevaluated integers identically and use (Inta) to

type check both. Functions are represented not as closures but as syntactic functions, as in

standard small-step semantics subject-reduction proofs [31, 122]. Thus evaluated functions

are type checked using (Lama).

To show soundness we first show a subject-reduction result. We begin by intro-

ducing a notion of compatibility to capture when it is safe to evaluate an expression.
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l ∈ dom(S)
S ` l→ l;S

[Var]

S ` n→ n;S
[Int]

S ` λx.e→ λx.e;S
[Lam]

S ` e1 → λx.e;S′ S′ ` e2 → v;S′′ S′′ ` e[x 7→ v]→ v′;S′′′

S ` e1 e2 → v′;S′′′ [App]

S ` e1 → v1;S′ S′ ` e2[x 7→ v1]→ v2;S′′

S ` letx = e1 in e2 → v2;S′′ [Let]

S ` e→ v;S′ l 6∈ dom(S′)
S ` ref e→ l;S′[l 7→ v]

[Ref]

S ` e→ l;S′ l ∈ dom(S′)
S ` *e→ S′(l);S′ [Deref]

S ` e1 → l;S′ S′ ` e2 → v;S′′ l ∈ dom(S′′) S′′(l) 6= err
S ` e1 := e2 → v;S′′[l 7→ v]

[Assign]

S ` e1 → l;S′ S′[l 7→ err, l′ 7→ S′(l)] ` e2[x 7→ l′]→ v, S′′

l ∈ dom(S′) l′ 6∈ dom(S′)
S ` restrictx = e1 in e2 → v;S′′[l 7→ S′′(l′), l′ 7→ err]

[Restrict]

Figure B.1: Complete Big-Step Operational Semantics for Restrict

S ` e1 → l;S′ S′ ` e2 → v;S′′ l ∈ dom(S′′) S′′(l) = err
S ` e1 := e2 → err

[Assign]

S ` e1 → r;S′ r is not of the form l

S ` restrictx = e1 in e2 → err
[Restrict]

S ` e1 → l;S′ l 6∈ dom(S′)
S ` restrictx = e1 in e2 → err

[Restrict]

S ` e1 → l;S′ S′[l 7→ err, l′ 7→ S′(l)] ` e2[x 7→ l′]→ err
l ∈ dom(S′) l′ 6∈ dom(S′)

S ` restrictx = e1 in e2 → err
[Restrict]

Figure B.2: Error Rules for Restrict
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Definition B.1 (Compatibility) We say Γ and L are compatible with store S, written

(Γ, L) ∼ S, if

1. dom(Γ) = dom(S) and

2. for all l ∈ dom(S), there exists ρ such that Γ(l) = ref (ρ) and Γ ` S(l) : CI(ρ); ∅ if S(l) 6= err

ρ 6∈ L if S(l) = err

Intuitively, (Γ, L) ∼ S means an expression e that type checks in environment Γ and has

effect L can execute safely in store S. Notice that the definition of compatibility requires

dom(Γ) = dom(S), i.e., that expressions typed in environment Γ contain locations but not

other free variables. This property is maintained during evaluation because in [App] we

implement function calls with substitution.

Lemma B.2 If (Γ, L ∪ L′) ∼ S then (Γ, L′) ∼ S.

As evaluation progresses in our proof we extend Γ with new locations allocated by

ref expressions.

Definition B.3 (Extension) We say that (Γ′, S′) is an extension of (Γ, S) if

1. dom(Γ) = dom(S) and dom(Γ′) = dom(S′) and

2. Γ′|dom(Γ) = Γ

Here Γ′|dom(Γ) is the restriction of Γ′ to the domain of Γ. It is a property of our semantics

and type system that these extensions are safe, in the following sense:

Definition B.4 (Safe Extension) We say that (Γ′, S′) is a safe extension of (Γ, S), writ-

ten (Γ, S)⇒ (Γ′, S′), if

1. (Γ′, S′) is an extension of (Γ, S),

2. for all l ∈ dom(S′) − dom(S), if S′(l) = err and Γ′(l) = ref (ρ), then ρ 6∈ loceff (Γ),

and

3. for all l ∈ dom(S), if S′(l) = err then S(l) = err.
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Intuitively, (Γ, S)⇒ (Γ′, S′) means the err-bound locations in S′ are either also err-bound

in S, or if they are fresh (do not appear in Γ).

Lemma B.5 If dom(Γ) = dom(S), then (Γ, S)⇒ (Γ, S).

Lemma B.6 If (Γ, S)⇒ (Γ′, S′) and (Γ′, S′)⇒ (Γ′′, S′′), then (Γ, S)⇒ (Γ′′, S′′).

Lemma B.7 (ρ-Renaming) If Γ ` e : t;L and ρ′ 6∈ (loceff (Γ) ∪ loceff (t) ∪ L), then

RΓ ` e : Rt;RL for substitution R = [ρ 7→ ρ′].

Proof: The assumption ρ′ 6∈ (loceff (Γ) ∪ loceff (t) ∪ L) means that ρ′ is completely fresh:

it is does not appear anywhere in the proof of Γ ` e : t;L. 2

Lemma B.8 If Γ′|dom(Γ) = Γ and Γ ` e : t;L, then Γ′ ` e : t;L′ where L′ ⊆ L

Proof: By induction on the structure of the proof Γ ` e : t;L. For all cases except

(Restricta) and (Downa) this is trivial, since adding new bindings to an environment does

not affect typability. For (Restricta) and (Downa), given an assumption that a location

ρ 6∈ loceff (Γ), we need to show ρ 6∈ loceff (Γ′), which clearly does not hold for arbitrary Γ′.

But we observe that if we construct a typing proof with assumptions Γ and ρ 6∈ loceff (Γ),

then the name ρ was arbitrary. Thus we can rename location ρ to a fresh location ρ′ 6∈
loceff (Γ′) and repeat our proof. We also use this observation in the subject reduction proof

(Theorem B.10).

Suppose the last rule applied is (Downa):

Γ ` e : t;L ρ 6∈ loceff (Γ) ∪ loceff (t)
Γ ` e : t;L− ρ

(B.1)

Pick a completely fresh ρ′, that is, a ρ′ 6∈ loceff (Γ′)∪loceff (t)∪L, and let CI(ρ′) = CI(ρ) and

R = [ρ 7→ ρ′]. Then since Γ′|dom(Γ) = Γ, by (B.1) and Lemma B.7 we have RΓ ` e : Rt;RL

or Γ ` e : t;RL. Then by induction we have Γ′ ` e : t;L′′ where L′′ ⊆ RL. Now by

construction of ρ′, we can apply (Downa) to get Γ′ ` e : t;L′′ − ρ′ and L′′ − ρ′ ⊆ L − ρ,

proving our conclusion.

Suppose that the last rule applied is (Restricta):

Γ ` e1 : ref (ρ);L1 CI(ρ′) = CI(ρ)
Γ[x 7→ ref (ρ′)] ` e2 : t2;L2

ρ 6∈ L2 ρ′ 6∈ loceff (Γ) ∪ loceff (CI(ρ)) ∪ loceff (t2)
Γ ` restrictx = e1 in e2 : t2;L1 ∪ L2 ∪ ρ

(B.2)
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By induction, we have Γ′ ` e1 : ref (ρ);L′
1 where L′

1 ⊆ L1. Pick a completely fresh ρ′′, that

is, a ρ′′ 6∈ loceff (Γ′)∪loceff (CI(ρ′))∪loceff (t2)∪L2∪ρ′∪ρ, and let R = [ρ′ 7→ ρ′′] and CI(ρ′′) =

CI(ρ′)(= CI(ρ)). Then by (B.2) and Lemma B.7 we have R(Γ[x 7→ ref (ρ′)]) ` e2 : Rt2;RL2

or Γ[x 7→ ref (ρ′′)] ` e2 : t2;RL2. By induction we have Γ′[x 7→ ref (ρ′′)] ` e2 : t2;L′
2 where

L′
2 ⊆ RL2. Also, we know ρ 6∈ L2, and since by construction ρ′′ 6= ρ we know that

ρ 6∈ L′
2. Further, by construction ρ′′ 6∈ loceff (Γ′) ∪ loceff (CI(ρ)) ∪ loceff (t2). Thus we can

apply (Restricta) to our transformed hypotheses to show that Γ′ ` restrictx = e1 in e2 :

t2;L′
1 ∪ L′

2 ∪ ρ Now there’s a small hitch, because the transformed effect of restrict

may contain ρ′′. But since ρ′′ 6∈ loceff (Γ′) ∪ loceff (t2), we can apply (Downa) to yield

Γ′ ` restrictx = e1 in e2 : t2; (L′
1 ∪L′

2 ∪ ρ)− ρ′′ It is easy to see that (L′
1 ∪L′

2 ∪ ρ)− ρ′′ ⊆
L1 ∪L2 ∪ ρ. By induction we know L′

1 ⊆ L1 and L′
2 ⊆ RL2. Since ρ′′ 6= ρ the latter implies

L′
2 − ρ′′ ⊆ L2, proving our conclusion. This removal of ρ′′ from the effect set is the reason

that the conclusion of our lemma is that L′ ⊆ L and not necessarily L′ = L. 2

Lemma B.9 (Substitution) If Γ ` v : t; ∅ and Γ[x 7→ t] ` e : t′;L, then Γ ` e[x 7→ v] :

t′;L.

Note that for the substitution lemma to hold we implicitly assume that we rename any bound

variables in e to avoid capturing any free variables (i.e., locations) in v, as is standard.

With these definitions we can prove our subject reduction theorem. We use r to

stand for a semantic reduction result, either a value v or err.

Theorem B.10 (Subject Reduction) If Γ ` e : t;L and S ` e → r;S′, where (Γ, L ∪
L′) ∼ S for some L′, then there exists Γ′ such that

1. Γ′ ` r : t; ∅ (which implies r 6= err),

2. (Γ′, L′) ∼ S′, and

3. (Γ, S)⇒ (Γ′, S′)

Proof: By induction on the structure of the proof S ` e → r;S′. Recall that for each

rule of Figure B.1 there are corresponding reductions to err for cases for invalid programs.

Thus for each case below, we first reason based on the shape of e to decide which possible

rule we used and then show that r is not err.

Before beginning the case analysis, we first perform some generic reasoning to

eliminate uses of (Suba) and (Downa) at the end of the proof of Γ ` e : t;L.
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Case (Suba)

Observe that we may have applied (Suba) as the last step of our typing proof:

Γ ` e : t;L t ≤ t′

Γ ` e : t′;L
(B.3)

By assumption we also know

S ` e→ r;S′ (B.4)

(Γ, L ∪ L′) ∼ S (B.5)

Then by applying our reasoning for (Suba) and (Downa) as many times as necessary, and

by (B.3), (B.4), (B.5), and the case analysis below, there exists a Γ′ such that

Γ′ ` r : t; ∅ (B.6)

(Γ′, L′) ∼ S′

(Γ, S)⇒ (Γ′, S′)

Then by combining (B.6) and (B.3) we have

Γ′ ` r : t′; ∅

and thus our conclusion holds.

Case (Downa)

Observe that we may have applied (Downa) as the last step of our typing proof:

Γ ` e : t;L ρ 6∈ loceff (Γ) ∪ loceff (t)
Γ ` e : t;L− ρ

(B.7)

By assumption we also know

S ` e→ r;S′ (B.8)

(Γ, (L− ρ) ∪ L′) ∼ S (B.9)

Pick a fresh ρ′, that is,

ρ′ 6∈ loceff (Γ) ∪ loceff (t) ∪ L ∪ L′ ∪ ρ (B.10)

Let R = [ρ 7→ ρ′]. Then from (B.7) and Lemma B.7 we have

RΓ ` e : Rt;RL
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Then by (B.10) we derive

Γ ` e : t;RL (B.11)

In other words, because ρ did not escape the scope of e, its name was arbitrary, and we can

repeat the typing proof of e with any choice of name.

Now we want to show

(Γ, RL ∪ L′) ∼ S (B.12)

Clearly from (B.9) we have dom(Γ) = dom(S), and for all m ∈ dom(S) there is a ρm

such that Γ(m) = ref (ρm). If S(m) 6= err then we are done, since also from (B.9) we

have Γ ` S(m) : CI(ρm); ∅. So suppose that S(m) = err. Then from (B.9) we know

ρm 6∈ (L − ρ) ∪ L′. But since ρm ∈ loceff (Γ) and ρ′ 6∈ loceff (Γ) from (B.10) we know that

ρ′ 6= ρm. Thus

ρm 6∈ (L− ρ) ∪ ρ′ ∪ L′

and therefore ρm 6∈ RL ∪ L′. Thus (B.12) holds.

Then by applying our reasoning for (Suba) and (Downa) as many times as nec-

essary, and by (B.11), (B.8), (B.12), and the case analysis below, there exists a Γ′ such

that

Γ′ ` r : t; ∅

(Γ′, L′) ∼ S′

(Γ, S)⇒ (Γ′, S′)

Thus our conclusion holds.

In the remaining cases, we assume that the last rule applied in the typing proof

was neither (Suba) nor (Downa).

Case x

By assumption we have
x ∈ dom(Γ)

Γ ` x : Γ(x); ∅
(B.13)

S ` x→ r;S′ (B.14)

(Γ, ∅ ∪ L′) ∼ S (B.15)

By (B.15), dom(Γ) = dom(S), so by (B.13) we know x ∈ dom(S). Therefore we must have

used the reduction
x ∈ dom(S)
S ` x→ x;S

(B.16)
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Thus r = x and S′ = S. Let Γ′ = Γ. Then our conclusion trivially holds:

Γ′ ` x : Γ(x); ∅

(Γ′, L′) ∼ S′

(Γ, S)⇒ (Γ′, S′)

The last conclusion holds by Lemma B.5.

Case n

Trivial (see proof for x).

Case λx.e

Trivial (see proof for x).

Case e1 e2

By assumption we have

Γ ` e1 : t −→L t′;L1 Γ ` e2 : t;L2

Γ ` e1 e2 : t′;L1 ∪ L2 ∪ L
(B.17)

S ` e1 e2 → r;S′ (B.18)

(Γ, L1 ∪ L2 ∪ L ∪ L′) ∼ S (B.19)

By (B.18) and inspection of the semantic rules, we must have applied a reduction for e1:

S ` e1 → re1 ;S
′
e1

(B.20)

By (B.17), (B.20), (B.19), and induction, there exists a Γ′e1
satisfying

Γ′e1
` re1 : t −→L t′; ∅ (B.21)

(Γ′e1
, L2 ∪ L ∪ L′) ∼ S′

e1
(B.22)

(Γ, S)⇒ (Γ′e1
, S′

e1
) (B.23)

By (B.21) we know that re1 is a value and is not err. By inspection of the type rules we see

that the only type rules that can assign a value the type t −→L t′ are (Vara) and (Lama).

But by (B.22) we know that Γ′e1
assigns only reference types. Thus the proof (B.21) must

in fact be
Γ[x 7→ ts] ` e : t′s;Ls

Γ ` λx.e : ts −→Ls t′s; ∅ t ≤ ts t′s ≤ t′ Ls ⊆ L

Γ ` λx.e : t −→L t′; ∅
(B.24)
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where re1 = λx.e (we can assume that (Suba) was only used once by transitivity of ≤).

Further, by inspection of the semantic rules, in (B.18) we must also have applied

a reduction for e2:

S′
e1
` e2 → re2 ;S

′
e2

(B.25)

By (B.17), (B.23), and Lemma B.8, we have

Γ′e1
` e2 : t;L′

2 (B.26)

where L′
2 ⊆ L2. Then by (B.26), (B.25), (B.22), and induction, there exists a Γ′e2

such that

Γ′e2
` re2 : t; ∅ (B.27)

(Γ′e2
, L ∪ L′) ∼ S′

e2
(B.28)

(Γ′e1
, S′

e1
)⇒ (Γ′e2

, S′
e2

) (B.29)

From (B.27) we know that re2 is not err. Thus by inspection of the semantic rules, in (B.18)

we must also have applied a reduction for e[x 7→ re2 ]:

S′
e2
` e[x 7→ re2 ]→ re;S′

e (B.30)

Combining (B.23) and (B.29) we see

(Γ, S)⇒ (Γ′e2
, S′

e2
) (B.31)

Now by (B.24) and (B.31) with Lemma B.8, we see that

Γ′e2
[x 7→ ts] ` e : t′s;L

′
s (B.32)

where L′
s ⊆ Ls ⊆ L. By (B.27) and t ≤ ts from (B.24) we see that

Γ′e2
` re2 : ts; ∅ (B.33)

Then by (B.32), (B.33), and Lemma B.9 we have

Γ′e2
` e[x 7→ re2 ] : t′s;L

′
s (B.34)

Since L′
s ⊆ Ls ⊆ L, from (B.28) and Lemma B.2 we have

(Γ′e2
, L′

s ∪ L′) ∼ S′
e2

(B.35)
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Now by (B.34), (B.30), (B.35), and induction, there exists a Γ′e such that

Γ′e ` re : t′s; ∅ (B.36)

(Γ′e, L
′) ∼ S′

e (B.37)

(Γ′e2
, S′

e2
)⇒ (Γ′e, S

′
e) (B.38)

where r = re and S′ = S′
e (see (B.18)). Let Γ′ = Γ′e. Then clearly since t′s ≤ t′ by (B.24)

we have

Γ′ ` r : t′; ∅

from (B.36). Then we also have

(Γ′, L′) ∼ S′

from (B.37). Finally, we get

(Γ, S)⇒ (Γ′, S′)

by combining (B.31) with (B.38). Thus our conclusion holds.

Case letx = e1 in e2

In a monomorphic type system letx = e1 in e2 is equivalent to (λx.e2) e1, so we can simply

apply those the proof steps for application and abstraction.

Case ref e

By assumption we have
Γ ` e : t;L SI(ρ) = t

Γ ` ref e : ref (ρ);L ∪ al(ρ)
(B.39)

S ` ref e→ r;S′ (B.40)

(Γ, L ∪ al(ρ) ∪ L′) ∼ S (B.41)

By (B.40) and inspection of the semantic rules, we must have applied a reduction for e:

S ` e→ re;S′
e (B.42)

By (B.39), (B.42), (B.41), and induction, there exists a Γ′e satisfying

Γ′e ` re : t; ∅ (B.43)

(Γ′e, al(ρ) ∪ L′) ∼ S′
e (B.44)
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(Γ, S)⇒ (Γ′e, S
′
e) (B.45)

By (B.43), re is not err. Thus the reduction (B.40) must in fact be

S ` e→ re;S′
e l 6∈ dom(S′

e)
S ` ref e→ l;S′

e[l 7→ re]
(B.46)

with S′ = S′
e[l 7→ re] and r = l (see (B.40)). Let

Γ′ = Γ′e[l 7→ ref (ρ)]

Clearly

Γ′ ` l : ref (ρ); ∅

Further, since by (B.46) we have l 6∈ dom(S′
e), we also have l 6∈ dom(Γ′e) by (B.44), and

therefore l 6∈ dom(Γ) by (B.45). Thus (Γ′, S′) is an extension of (Γ, S). Further, since

S′(l) = re 6= err we have

(Γ′e, S
′
e)⇒ (Γ′, S′) (B.47)

Combining (B.47) and (B.45) by Lemma B.6, we have

(Γ, S)⇒ (Γ′, S′)

Finally, by (B.44) and Lemma B.2 we also have

(Γ′, L′) ∼ S′

since l 6∈ dom(S′
e) and re 6= err, and by (B.39) we know SI(ρ) = t. Thus our conclusion

holds.

Note that we did not need to use the fact that the effect al(ρ) is safe after evaluating

e. Intuitively this is because allocation writes to a known location—the one that was

allocated—before that location can be conflated with any other location by our abstract

location approximation. This implies that allocation does not need to be treated as an

effect in order to ensure the correctness of restrict , though we use allocation effects to

improve the precision of the flow-sensitive type qualifier system.

Case *e

By assumption we have
Γ ` e : ref (ρ);L

Γ ` *e : SI(ρ);L ∪ rd(ρ)
(B.48)
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S ` *e→ r;S′ (B.49)

(Γ, L ∪ rd(ρ) ∪ L′) ∼ S (B.50)

By (B.49) and inspection of the semantic rules, we must have a reduction for e:

S ` e→ re;S′
e (B.51)

By (B.48), (B.51), (B.50), and induction, there exists a Γ′e satisfying

Γ′e ` re : ref (ρ); ∅ (B.52)

(Γ′e, rd(ρ) ∪ L′) ∼ S′
e (B.53)

(Γ, S)⇒ (Γ′e, S
′
e) (B.54)

By (B.52) we know re is a value and is not err. By inspection of the type rules we see that

the only type rule that can assign a value the type ref (ρ) is (Vara). (As an aside, notice

that any uses of (Suba) in the proof (B.52) must be trivial, since there is no subtyping under

a ref type constructor.) Therefore we see that re ∈ dom(Γ′e), hence re is in fact a location

and re ∈ dom(S′
e) by (B.53). Therefore the reduction (B.49) must in fact be

S ` e→ re;S′
e re ∈ dom(S′

e)
S ` *e→ S′

e(re);S′
e

(B.55)

with S′ = S′
e and r = S′

e(re) (see (B.49)). Let Γ′ = Γ′e. Then clearly

(Γ′, L′) ∼ S′

by (B.53) and Lemma B.2, and

(Γ, S)⇒ (Γ′, S′)

by (B.54). Further, by (B.52) we know Γ′(re) = ref (ρ). Then since rd(ρ) ∈ rd(ρ) ∪ L′,

by (B.53) we know S′(re) 6= err and

Γ′ ` S′(re) : SI(ρ); ∅

Thus our conclusion holds.

Case e1 := e2

By assumption we have

Γ ` e1 : ref (ρ);L1 Γ ` e2 : SI(ρ);L2

Γ ` e1 := e2 : SI(ρ);L1 ∪ L2 ∪ wr(ρ)
(B.56)
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S ` e1 := e2 → r;S′ (B.57)

(Γ, L1 ∪ L2 ∪ wr(ρ) ∪ L′) ∼ S (B.58)

By (B.57) and inspection of the semantic rules, we must have applied a reduction for e1:

S ` e1 → re1 ;S
′
e1

(B.59)

By (B.56), (B.59), (B.58), and induction, there exists a Γ′e1
satisfying

Γ′e1
` re1 : ref (ρ); ∅ (B.60)

(Γ′e1
, L2 ∪ wr(ρ) ∪ L′) ∼ S′

e1
(B.61)

(Γ, S)⇒ (Γ′e1
, S′

e1
) (B.62)

By (B.60) we see that re1 is not err. Thus we must also have applied a reduction for e2

in (B.57), by inspection of the semantic rules:

S′
e1
` e2 → re2 ;S

′
e2

(B.63)

By (B.56), (B.62), and Lemma B.8 we have

Γ′e1
` e2 : SI(ρ);L′

2 (B.64)

where L′
2 ⊆ L2. Since L′

2 ⊆ L2, by (B.61) and Lemma B.2 we have

(Γ′e1
, L′

2 ∪ wr(ρ) ∪ L′) ∼ S′
e1

(B.65)

Then by (B.64), (B.63), (B.65), and induction, there exists a Γ′e2
satisfying

Γ′e2
` re2 : SI(ρ); ∅ (B.66)

(Γ′e2
,wr(ρ) ∪ L′) ∼ S′

e2
(B.67)

(Γ′e1
, S′

e1
)⇒ (Γ′e2

, S′
e2

) (B.68)

By (B.60) we know that re1 is a value and is not err. By inspection of the type rules we

see that the only type rule that can assign a value the type ref (ρ) is (Vara). (As an aside,

notice that any uses of (Suba) in the proof (B.60) must be trivial, since there is no subtyping

under a ref type constructor.) Therefore we see that re1 ∈ dom(Γ′e1
), hence re1 is in fact a

location and re1 ∈ dom(S′
e1

) by (B.61).
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Then by (B.68) we know that re1 ∈ dom(S′
e2

) and Γ′e2
` re2 : ref (ρ); ∅. Then

since wr(ρ) ∈ wr(ρ) ∪ L′, by (B.67) it must be that S′
e2

(re1) is not err. Therefore the

reduction (B.57) must in fact be

S ` e1 → re1 ;S
′
e1

S′
e1
` e2 → re2 ;S

′
e2

re1 ∈ dom(S′
e2

) S′
e2

(re1) 6= err
S ` e1 := e2 → re2 ;S

′
e2

[re1 7→ re2 ]
(B.69)

where S′ = S′
e2

[re1 7→ re2 ] and r = re2 (see (B.57)). Let Γ′ = Γ′e2
. Clearly we have

Γ′ ` re2 : SI(ρ); ∅

by (B.66). Combining (B.68) and (B.62) we have

(Γ, S)⇒ (Γ′e2
, S′

e2
) (B.70)

Clearly, then, (Γ′, S′) is an extension of (Γ, S). And since S′(re1) = re2 6= err by (B.66), we

have

(Γ, S)⇒ (Γ′, S′)

Finally, since re2 6= err, re1 ∈ dom(S′
e2

), and Γ′ ` re1 : ref (ρ), from (B.67) and (B.66) we

can conclude

(Γ′, L′) ∼ S′

Thus our conclusion holds.

Case restrictx = e1 in e2

By assumption, we know

Γ ` e1 : ref (ρ);L1 SI(ρ′) = SI(ρ)
Γ[x 7→ ref (ρ′)] ` e2 : t2;L2

ρ 6∈ L2 ρ′ 6∈ loceff (Γ) ∪ loceff (SI(ρ)) ∪ loceff (t2)
Γ ` restrictx = e1 in e2 : t2;L1 ∪ L2 ∪ ρ

(B.71)

S ` restrictx = e1 in e2 → r;S′ (B.72)

(Γ, L1 ∪ L2 ∪ ρ ∪ L′) ∼ S (B.73)

By (B.72) and inspection of the semantic rules, we must have applied a reduction for e1:

S ` e1 → re1 ;S
′
e1

(B.74)

By (B.71), (B.74), (B.73), and induction, there exists a Γ′e1
such that

Γ′e1
` re1 : ref (ρ); ∅ (B.75)
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(Γ′e1
, L2 ∪ ρ ∪ L′) ∼ S′

e1
(B.76)

(Γ, S)⇒ (Γ′e1
, S′

e1
) (B.77)

By (B.75) we see that re1 is a value and is not err. By inspection of the type rules we see

that the only type rule that can assign a value the type ref (ρ) is (Vara). (As an aside,

notice that uses of (Suba) in the proof (B.75) must be trivial, since there is no subtyping

under a ref type constructor.) Therefore we see that re1 ∈ dom(Γ′e1
), hence re1 is in fact a

location and re1 ∈ dom(S′
e1

) by (B.76). Thus by inspection of the semantic rules, in (B.72)

we must also have applied

S′
e1

[re1 7→ err, l′ 7→ S′
e1

(re1)] ` e2[x 7→ l′]→ re2 ;S
′
e2

(B.78)

with

l′ 6∈ dom(S′
e1

) (B.79)

Before we can apply induction to e2, we need to do a little more work. We know that ρ′

does not appear in Γ, but by coincidence it may appear in Γ′e1
. So before we proceed, we

need to rename ρ′ to avoid meaningless collisions. Pick a fresh ρ′′, that is, pick a ρ′′ such

that

ρ′′ 6∈ loceff (Γ′e1
) ∪ loceff (SI(ρ)) ∪ loceff (t2) ∪ L2 ∪ L′ ∪ ρ (B.80)

and set SI(ρ′′) = SI(ρ′). Let R = [ρ′ 7→ ρ′′]. Then by Lemma B.7 and (B.71), we have

R(Γ[x 7→ ref (ρ′)]) ` e2 : Rt2;RL2

which by (B.80) is equivalent to

Γ[x 7→ ref (ρ′′)] ` e2 : t2;RL2

Combining this with (B.77), by Lemma B.8 we have

Γ′e1
[x 7→ ref (ρ′′)] ` e2 : t2;L′

2

where L′
2 ⊆ RL2. Then by α-conversion, since l′ 6∈ dom(S′

e1
) implies l′ 6∈ Γ′e1

by (B.76), we

can rename x to l′ and derive

Γ′e1
[l′ 7→ ref (ρ′′)] ` e2[x 7→ l′] : t2;L′

2 (B.81)

Finally, before we can apply induction, we need to show compatibility between the type

environment in (B.81) and the store in (B.78). But which effect set should we use for
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compatibility? Clearly the set we choose cannot contain ρ, because the store in (B.78)

contains a location corresponding to ρ that maps to err. Thus we use the following set Le2 :

Le2 = L′
2 ∪ (L′ − ρ)

Also let

Γe2 = Γ′e1
[l′ 7→ ref (ρ′′)]

Se2 = S′
e1

[re1 7→ err, l′ 7→ S′
e1

(re1)]

where Γe2 is from (B.81) and Se2 is from (B.78). Notice that Γe2 is an extension of Γ′e1
,

since by (B.79) and (B.76) l′ 6∈ Γ′e1
. We want to show

(Γe2 , Le2) ∼ Se2 (B.82)

To see (B.82), first observe that re1 ∈ dom(S′
e1

) by (B.75) and (B.76), and observe that

dom(Γ′e1
) = dom(S′

e1
) by (B.76), and therefore dom(Γe2) = dom(Se2).

For the second component of compatibility, pick any m ∈ dom(Se2), and suppose

Γe2(m) = ref (ρm), which holds trivially by (B.76) and construction of Γe2 . There are three

cases:

1. Suppose m = re1 . Then ρm = ρ, and by construction of Se2 we have Se2(m) = err.

But ρ 6∈ L2 by (B.71), and since ρ′′ 6= ρ by (B.80) and L′
2 ⊆ RL2, we have ρ 6∈ Le2 .

2. Suppose m = l′. Then ρm = ρ′′. By construction of Se2 we have Se2(m) = S′
e1

(re1).

But by (B.75) and (B.76) we have S′
e1

(re1) 6= err and Γ′e1
` S′

e1
(re1) : SI(ρ). But then

since Γe2 is an extension of Γ′e1
and SI(ρ′′) = SI(ρ) by (B.71) and construction of ρ′′

we also have Γe2 ` S′
e1

(re1) : SI(ρ′′); ∅.

3. Suppose m 6= re1 and m 6= l′. Then Se2(m) = S′
e1

(m) and Γe2(m) = Γ′e1
(m).

By (B.80), it must be that ρm 6= ρ′′. If S′
e1

(m) 6= err, then by (B.76) we have

Γ′e1
` S′

e1
(m) : SI(ρm); ∅, and since Γe2 is an extension of Γ′e1

we also have Γe2 `
S′

e1
(m) : SI(ρm); ∅. Otherwise, suppose S′

e1
(m) = err. Then by (B.76) we have

ρm 6∈ L2 ∪ ρ ∪ L′. Thus clearly ρm 6∈ L′ − ρ. Since ρm 6∈ L2 and ρ′′ 6= ρm, we have

ρm 6∈ RL2 and thus ρm 6∈ L′
2. Therefore ρm 6∈ Le2 .

Thus (B.82) holds.
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Then by (B.81), (B.78), (B.82), and induction, there exists a Γ′e2
such that

Γ′e2
` re2 : t2; ∅ (B.83)

(Γ′e2
, L′ − ρ) ∼ S′

e2
(B.84)

(Γe2 , Se2)⇒ (Γ′e2
, S′

e2
) (B.85)

Now we’re almost done. Combining (B.75) and (B.76) with (B.74), (B.78), and (B.79), we

see that the reduction (B.72) must have been

S ` e1 → re1 ;S
′
e1

S′
e1

[re1 7→ err, l′ 7→ S′
e1

(re1)] ` e2[x 7→ l′]→ re2 ;S
′
e2

re1 ∈ dom(S′
e1

) l′ 6∈ dom(S′
e1

)
S ` restrictx = e1 in e2 → re2 ;S

′ (B.86)

with r = re2 and

S′ = S′
e2

[re1 7→ S′
e2

(l′), l′ 7→ err]

(see (B.72)). Let Γ′ = Γ′e2
. We show the conclusions of the inductive hypothesis one by

one.

First, by (B.83) we have

Γ′ ` re2 : t2; ∅ (B.87)

Next we need to show

(Γ′, L′) ∼ S′ (B.88)

We proceed as in the proof of (B.82). Clearly dom(Γ′) = dom(S′
e2

) by (B.84). And by

construction of Se2 we have re1 , l
′ ∈ dom(Se2). Then by (B.85) we see re1 , l

′ ∈ dom(S′
e2

).

Thus dom(S′) = dom(S′
e2

) = dom(Γ′).

For the second component of compatibility, pick any m ∈ dom(S′), and suppose

Γ′(m) = ref (ρm), which holds trivially by (B.84). There are three cases:

1. Suppose m = re1 . Then S′(m) = S′
e2

(l′). Since Se2(l
′) = S′

e1
(re1) 6= err by (B.75)

and (B.76), then by (B.85) we see that S′
e2

(l′) 6= err. By the construction of Γe2

and (B.85) we see that Γ′e2
(l′) = ref (ρ′′). But then by (B.84) we have Γ′e2

` S′
e2

(l′) :

SI(ρ′′); ∅, and hence Γ′ ` S′(re1) : SI(ρ′′); ∅.

2. Suppose m = l′. Then ρm = ρ′′ and S′(l′) = err. But then by (B.80) we know

ρ′′ 6∈ L′.
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3. Suppose m 6= re1 and m 6= l′. Then S′(m) = S′
e2

(m). Suppose S′
e2

(m) 6= err. Then

from (B.84) we know Γ′ ` S′(m) : SI(ρm); ∅. Otherwise, suppose S′(m) = S′
e2

(m) =

err. There are two cases. If m ∈ dom(Se2), then by (B.85) Se2(m) = err. By

construction of Se2 , we then have S′
e1

(m) = err. Then by (B.76) we know ρm 6∈ L′.

Otherwise, suppose m 6∈ dom(Se2). Then by (B.85) ρm 6∈ loceff (Γe2). But since

ρ ∈ loceff (Γe2) (which we can conclude from (B.75), (B.77), and the construction of

Γe2), we know that ρm 6= ρ. By (B.84) we have ρm 6∈ L′ − ρ, and since ρm 6= ρ we see

that ρm 6∈ L′.

Thus (B.88) holds. Finally, we need to show

(Γ, S)⇒ (Γ′, S′) (B.89)

Clearly by (B.88) we have dom(Γ′) = dom(S′), and by assumption (B.73) we have dom(Γ) =

dom(S). Also by (B.77) and (B.85) and the construction of Γe2 we see that (Γ′, S′) is an

extension of (Γ, S). So we just need to show that it’s a safe extension.

Pick any m ∈ dom(S′). If S′(m) 6= err then we’re done. Otherwise suppose

S′(m) = err and Γ′(m) = ref (ρm). Then there are three cases:

1. Suppose m = re1 . This is impossible, since S′(re1) = S′
e2

(l′) 6= err by the same

reasoning used to show (B.88).

2. Suppose m = l′. Then l′ 6∈ dom(S) by (B.79) and (B.77). So we need to show

ρm 6∈ loceff (Γ). But ρm = ρ′′ by construction of Γe2 and (B.85). And ρ′′ 6∈ loceff (Γ)

by (B.80) and (B.77).

3. Suppose m 6= re1 and m 6= l′. Then S′(m) = S′
e2

(m). If m ∈ dom(S′
e2

)−dom(Se2) then

by (B.85) we see that ρm 6∈ loceff (Γe2). But then by construction of Γe2 and (B.77)

we see ρm 6∈ loceff (Γ).

Otherwise if m ∈ dom(Se2) then by (B.85) we see that Se2(m) = err. But Se2(m) =

S′
e1

(m). Then there are again two cases. If m ∈ dom(S′
e1

)− dom(S), then by (B.77)

we see that ρm 6∈ loceff (Γ). Otherwise if m ∈ dom(S) then by (B.77) we see that

S(m) = err.

Thus (B.89) holds. Combining (B.87), (B.88), and (B.89) we see that our conclusion holds.

2
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