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Abstract

A major goal of grounded language learning research is to
enable robots to connect language predicates to a robot’s
physical interactive perception of the world. Coupling object
exploratory behaviors such as grasping, lifting, and looking
with multiple sensory modalities (e.g., audio, haptics, and vi-
sion) enables a robot to ground non-visual words like “heavy”
as well as visual words like “red”. A major limitation of ex-
isting approaches to multi-modal language grounding is that
a robot has to exhaustively explore training objects with a va-
riety of actions when learning a new such language predicate.
This paper proposes a method for guiding a robot’s behavioral
exploration policy when learning a novel predicate based on
known grounded predicates and the novel predicate’s linguis-
tic relationship to them. We demonstrate our approach on two
datasets in which a robot explored large sets of objects and
was tasked with learning to recognize whether novel words
applied to those objects.

Introduction
The symbol grounding problem is that of connecting nat-
ural language phrases to objects in the real world (Harnad
1990). To perform this task, a robot must represent words
like “green” and “heavy” not in terms of other words (like
dictionary definitions), but in terms of its own sensory per-
ception. This is the task of grounded language learning. Past
work has demonstrated that using sensory data beyond vi-
sion to ground language predicates improves robotic perfor-
mance over using vision alone (Thomason et al. 2016). Non-
visual exploratory behaviors such as pushing, grasping, and
lifting the object can be costly in terms of time (e.g. localiz-
ing an object with a camera in order to press down on it) and
operator intervention (e.g. pushing a ball off a table, requir-
ing an operator to retrieve it).

In many settings, a robot needs to perform object explo-
ration for a specific grounding task. For example, if some-
one asks a household robot to “get the heavy mug from the
kitchen,” the robot may need to explore some novel objects
in the kitchen to determine which one satisfies “heavy” and
“mug.” If a dataset of unexplored objects labeled as “heavy”
(or not) and “mug” (or not) is available, the robot should
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be able to explore those objects quickly to learn the con-
cepts before traveling to the kitchen to identify the referent.
Exhaustively performing all actions when exploring new ob-
jects to learn a novel predicate will, in expectation, yield the
best accuracy, but scales poorly as the number of exploratory
behaviors and objects increases.

In this work, we investigate using exploratory behaviors
to learn a novel predicate on a time budget without sacrific-
ing grounding accuracy. We use two datasets of predicate-
object relationships that include both visual (“red,” “cylin-
der”) and non-visual (“heavy,” “full”) predicates that require
haptic and auditory feedback from an embodied robot. We
compare methods for deciding which behaviors to perform
when exploring objects in order to learn a new predicate, be-
yond the obvious time-consuming option of performing all
behaviors. One possibility is to utilize unsupervised infor-
mation in the form of word embeddings, such as those pro-
duced by Word2Vec (Mikolov et al. 2013). The distance be-
tween two words’ embedding vectors suggests their seman-
tic similarity. If “green” is close to “red” in the embedding
space, a robot may be able to learn “green” using just the
exploratory behaviors that determine whether an object is
“red.” Another possibility, if a robot is operating in a shared
space with humans, is to ask a human which behaviors they
would perform to evaluate the predicate.

We demonstrate that word embeddings help learn predi-
cates using fewer behaviors. Our approach is independent of
the embedding vectors, and we compare embeddings from
two different corpora, noting that as the categorical qual-
ity of the embeddings improve (e.g. colors close to colors,
weights close to weights), so should the gains achieved by
our approach. We also show that using them together with
human-provided behavior annotations speeds up learning in
a domain of real-world objects with predicates from organic
human descriptions in an embodied setting where behaviors
must be performed in a certain order (e.g. an object must be
grasped before it can be lifted).

Related Work
Most past research in language grounding has focused on
using the visual sensory modality. Recent research has
demonstrated that non-visual modalities can also be used
to improve a robot’s ability to ground semantic information
(Araki et al. 2012; Chu et al. 2013; Silberer and Lapata 2014;



Kiela and Clark 2015; Thomason et al. 2016; Gao et al.
2016b; Alomari et al. 2017). For example, past work demon-
strated that when humans teach a robot words that describe
objects, learning performance is improved if the robot con-
siders non-visual sensory information (e.g. audio and hap-
tics) detected when manipulating the objects (Thomason et
al. 2016).

A major limitation of these approaches is that they re-
quire the robot to perform exhaustive object exploration, i.e.,
the robot must explore each object with some fixed num-
ber of exploratory actions (e.g., grasp, lift, shake, push, etc.)
during which it records non-visual sensory data. For ex-
ample, in past work on learning multi-modal classifiers for
a set of haptic adjectives, a robot performed seven differ-
ent exploratory behaviors on 51 objects for a total of five
times (Chu et al. 2013). While some methods have been
proposed for how a robot should sequence its behaviors
to minimize exploration time when classifying a novel ob-
ject, these approaches still require that exhaustive explo-
ration be performed during training (Sinapov et al. 2014;
Zhang et al. 2017).

One possible way to address this problem is to esti-
mate the relevance of each behavior for the task of learn-
ing a novel predicate or category. Sinapov et al. (Sinapov,
Schenck, and Stoytchev 2014) show that a robot’s learn-
ing performance on a novel predicate (e.g., “red”) can be
improved if the robot has some prior information about
the predicate’s similarity to known words (e.g., “blue” and
“green”). The paper stops short of exploring where such a
prior could originate. In this work, we answer this ques-
tion by using word embeddings to estimate the relevance of
known words to novel ones to be learned. Additionally, we
gather annotations from humans about which behaviors they
perceive as relevant for a given predicate (Figure 5). This is
related to past human annotations gathered for relevant sen-
sory modalities of words (Lynott and Connell 2009).

To guide the robot’s exploration when learning a new
word, we use distributional semantics to map words into
high-dimensional vector spaces where their vector distances
carry semantic information. Word2Vec uses a neural skip-
gram model to create an embedding space for words given
a large corpus (Mikolov et al. 2013). Related strategies
consider context embeddings of words as well (Melamud,
Levy, and Dagan 2015). Past work has created multi-modal
Word2Vec-style embeddings that consider textual context
together with visual (Silberer and Lapata 2014; Lazaridou,
Pham, and Baroni 2015; Kottur et al. 2016) or audio (Vi-
jayakumar, Vedantam, and Parikh 2017) context.

Recent work has used word embeddings to predict un-
seen verb causality information from seen verbs (Gao
et al. 2016a), and unseen noun affordances from seen
nouns (Fulda et al. 2017). These are similar in spirit to
our use of unsupervised word embeddings created from
large, unannotated text corpora to assist with a supervised
grounded language learning problem—predicting the multi-
modal representations most helpful for understanding a
novel predicate.

The problem we address bears some similarities to the
zero-shot learning problem (Xian, Schiele, and Akata 2017;

Fu et al. 2015; Kodirov et al. 2015). In zero-shot learning,
the task is to produce a classifier for a novel class label for
which labeled data is unavailable, given some descriptor of
that class label. In our case, the task for our robot is to pro-
duce a behavioral exploration policy when learning a new
word given an embedding that relates the novel word to ones
that are already learned. To our knowledge, this problem has
not been addressed in the zero-shot learning literature.

Methodology
Let P be a set of predicates and O be a set of objects. Let
the label function L(p, o) ∈ {−1, 1} indicate whether pred-
icate p ∈ P holds true for object o ∈ O. Let B be the set
of available exploratory behaviors and let C be a set of sen-
sorimotor contexts, such that each context corresponds to a
combination of a behavior (e.g., grasping an object) and a
sensory modality (e.g., auditory features extracted from the
sound detected during grasping).

The robot’s task is to learn predicate classification mod-
els that can predict whether or not a predicate holds true for
an object given its multi-modal behavioral observations of
that object. To learn such a model, in this work we adopt
the method proposed in (Sinapov, Schenck, and Stoytchev
2014), in which the robot learns an individual grounding
classifier Gp,c for each sensorimotor context c and predicate
p. To determine whether the predicate applies to object o ∈
O, the weighted combination of these context-specific clas-
sifier outputs gives a consensus decision d(p, o) ∈ {−1, 1}.
That is,

d(p, o) = sgn

(∑
c∈C

wp,cGp,c(o)

)
, (1)

where wp,c is the estimated reliability weight of context c
for estimating whether predicate p applies to a given object.

One possible way of setting the weight wp,c is to make
it proportional to the classification performance (e.g., Co-
hen’s κ) of the classification function Gp,c as estimated from
training data (Sinapov, Schenck, and Stoytchev 2014). Once
these reliability weights have been estimated, we hypothe-
size that the robot can then perform only a subset of its be-
haviors to achieve high classification performance on novel
objects. Below, we formulate the problem of how a robot
can estimate surrogate reliability weights for a novel predi-
cate for which no training data is available.

Problem Formulation. Given a set of known predicates
P , their labels on a set of explored objects OE ⊂ O, an
unseen predicate q to be learned, and an unexplored set of
objects OU ⊂ O (with OE ∩OU = ∅) labeled for predicate
q, we explore strategies for learning a classifier for q on an
exploration time budget without sacrificing accuracy.

The robot’s task is two-fold: 1) estimate surrogate weights
wq,c for the novel predicate q and each context c ∈ C; and 2)
determine the order(s) in which to perform behaviors b ∈ B
given their cost (e.g., time) and the estimated weights associ-
ated with their contexts on OU . Reliability weights for q can
then be re-estimated at test time from the newly explored,
labeled objects.



Estimating Unseen Predicate Context Reliability
Weights. A baseline strategy for estimating surrogate
wq,c is to assign a uniform weight per context. We can also
use word embedding distances to share context weights
from known predicates P to unknown predicate q. For every
pair of predicates p, q ∈ P with word embedding vectors
vp, vq we calculate the similarity as the positive cosine
distance:

poscos(p, q) =
1

2
(1 + cos(vp, vq)) ∈ [0, 1]. (2)

It is common to use cosine distance in high-dimensional em-
bedding spaces to measure word vector dissimilarities be-
cause it is independent of features’ magnitudes. We find the
top-k most lexically similar predicates to q in an embedding
space, Pq ⊆ P, |Pq| = k (allowing more than k in the event
of a tie) and take a similarity-weighted average of wp,c,

wq,c ≈
1

|Pq|
∑
p∈Pq

poscos(p, q)wp,c. (3)

Expected Values for Behaviors. Given a weight for ev-
ery context, we calculate weights wq,b at the behavior level.
These are obtained by calculating training object decisions
at the context level, aggregating them using weights wq,c

(for c a context of behavior b), and calculating κ confidences
based on those behavior-specific decisions across the train-
ing objects. Then we can calculate the expected value for
each behavior as:

v(b) = wq,b + ε, (4)

for some small ε such that behaviors with no confidence
weight are not zero valued at training time (since they may
yet prove useful at testing time).

Experiments
We performed experiments on two datasets. The first has a
small number of predicates and a representative set of ob-
jects that readily support effective learning, and thus clearly
demonstrates the utility of the proposed approach. The sec-
ond dataset has a large number of predicates that arose or-
ganically during human-robot interaction for a diverse set of
household objects, and thus learning the predicates is much
more challenging.

Experiment 1: Learning object colors, weights, and
contents
We demonstrate the effectiveness of surrogate reliability
weight estimation using word embeddings to predict rele-
vant contexts for a novel predicate given known predicates.

Dataset Description. We first used the dataset described
by (Sinapov, Schenck, and Stoytchev 2014), in which a
robot explored 36 different objects using 11 prototypical
exploratory behaviors: look, grasp, lift, shake, shake-fast,
lower, drop, push, poke, tap, and press to gather sensory in-
formation from: proprioceptive joint-torque sensors for all

7 joints, audio from an Audio-Technica U853AW cardioid
microphone, and vision from a Microsoft Kinect sensor. The
objects were identical containers except along 3 different at-
tributes: 1) color: red, green, blue; 2) weight: light, medium,
heavy; and 3) contents: beans, rice, glass, screws. These
variations resulted in 3 × 3 × 4 = 12 total predicates in
the set P that the robot was tasked with learning.

During the execution of the look behavior, the robot per-
ceived 2 different sensory modalities, one corresponding
to a color histogram of the object in the foreground, and
the other comprising of a reduced size 10 × 10 RGB im-
age of the object. For the remaining interactive behaviors,
the robot recorded 2 types of sensory features, auditory
and haptic, produced by the interaction with the objects.
Thus, the robot’s set of sensorimotor contexts was of size
|C| = 11× 2 = 22.

Sample Predicate Embeddings. Figure 1 (a) shows a
sample 2D projection of the Google News Word2Vec em-
beddings1 corresponding to the 10 predicates in this dataset.
Figure 1 (b) shows the 2D projection for the lexical
substitution-focused embeddings that consider context em-
beddings (Melamud, Levy, and Dagan 2015). The projec-
tion was computed using Multi-Dimensional Scaling (MDS)
(Kruskal and Wish 1978).

Figure 1 (c) shows an embedding based on each predi-
cate’s reliability weights estimated as agreement κ associ-
ated with each sensorimotor context in C. For each predi-
cate p ∈ P , a feature vector fp of size |C| was computed
such that the ith entry corresponded to the confidence κi
for context ci ∈ C. These vectors were used to compute a
|P |×|P | distance matrix using Euclidean distance. Notably,
the visualizations show that there is some shared structure
between the lexical embeddings and this sensorimotor em-
bedding. In particular, attributes of similar types (e.g. colors)
appear close together in both embedding types. We show
that exploiting this shared structure can be used to improve
learning novel predicates.

Evaluation and Results. The proposed methodology was
evaluated using a “leave one predicate out” approach: during
each run, the robot learned multi-modal grounded classifiers
for 10 of the 11 total predicates P , using 12 fully explored
and labeled objects that were randomly sampled from the
entire set of 36 objects. When learning the remaining predi-
cate, the robot was given a budget ofN behaviors to use dur-
ing both training and testing. The robot estimated the con-
text reliability weights for the novel predicate using the lexi-
cal substitution-focused word embeddings (Melamud, Levy,
and Dagan 2015) via Eq. 3, with k = 7, and propagated
these to the behavior level. These estimates were then used
to compute a distribution over behaviors B, which was used
to sample a subset of size N (the budget) used for both

1https://github.com/mmihaltz/
word2vec-GoogleNews-vectors
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Figure 1: a) 2D projection of the Google News Word2Vec embedding of the 10 predicates used in the first experiment; b) 2D
projection of the lexical substitution-focused embedding; c) 2D projection of an embedding constructed based on the relevant
sensorimotor contexts for each of the 10 predicates. Shared structure can be seen between the word embeddings (a,b) and the
sensorimotor embeddings of robot experience (c), which we leverage for learning novel predicates.

training and testing. In this experiment, we do not explic-
itly model behavior transitions, but instead assume that any
behavior can be performed at any time and that all behav-
iors have equal cost. The context-specific predicate recogni-
tion models were implemented by a Support Vector Machine
(SVM) with an RBF kernel.

The results of this test are shown in Figure 2. Each of the
three plots contains the average κ recognition rates for the
three types of predicates. The proposed method is compared
against the baseline approach of randomly selecting b behav-
iors using a uniform prior. Given sufficient budget, all meth-
ods perform all behaviors and achieve identical accuracy;
examining these reduced budgets shows the effectiveness of
our approach under exploration time constraints.

The proposed method enables the robot to reach good
recognition rates (κ > 0.95) faster than random explo-
ration, with the difference especially noticeable for color-
and contents-related predicates. Figure 3 shows recognition
results using a budget of N = 1 behavior for two dif-
ferent embeddings: lexical substitution and Google News.
For some of the predicates, the lexical substitution embed-
ding performs substantially better; in particular, the Google
News embeddings links the word light with the colors and
thus, the first behavior chosen when learning it tends to be
look, which does not provide informative signals regarding
the weight of the object (they all have the same size). On
the other hand, the lexical substitution embedding puts light
closer to the other two weight-related predicates and thus
achieves the best performance.

Below, we evaluate the proposed method on a much more
challenging dataset in which the robot was tasked with learn-
ing words provided by everyday human users, and con-
strained to perform behaviors in a realistic order while con-
sidering the time it takes to perform each behavior.

Experiment 2: Learning words from everyday
human users
We use feature representations from multiple behaviors and
modalities for 32 objects using 8 exploratory behaviors

grasp (22s) lift (11.1s) lower (10.6s)

drop (9.8s) push (22s) press (22s)

Figure 4: The behaviors used to explore objects and the time
in seconds for each. In addition, the hold (5.7s) behavior was
performed by holding the object in place. The look (0.8s)
behavior was also performed.

(Figure 4), collected by researchers for an object ordering
task (Sinapov et al. 2016). For every object, there are fea-
tures from every sensorimotor context. For the grasp, lift,
lower, drop, press, push, and hold behaviors, audio (discrete
fourier transform using 65 frequency bins) and haptic (joint
efforts and joint positions for 6 joints) information is avail-
able. For the look behavior, color (RGB color histogram us-
ing 8 bins per channel), shape (fast point feature histogram
(fpfh)), and deep (VGG (Simonyan and Zisserman 2014))
features are available (the latter drawn from the features
added by (Thomason et al. 2016) for language grounding).
These modalities result in |C| = 7×2+1×3 = 17 contexts.

Predicate Annotations. We consider 81 predicates avail-
able from a human-robot interaction dataset in which hu-
mans gave unrestricted natural language descriptions of ob-
jects (Thomason et al. 2016). In this work, we gathered full
annotations between those 81 predicates and the 32 objects
in (Sinapov et al. 2016) (defining L(p, o) for every predicate
p and object o). We gathered 3 annotators’ opinions about
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Figure 2: Test-time κ performance of classifiers for learning a new predicate based on the reliability weight estimation strategy
used at test time as more behaviors are allowed. random chooses the next exploratory behavior at random, while guided uses
word embeddings to select known neighbor predicates from which to estimate reliability weights for behaviors. The dotted lines
denote the variance over 75 simulation runs.

Figure 3: Recognition results for all 10 predicates using just 1 exploratory behavior selected according to three different condi-
tions: guided with lexical substitution predicate embedding, guided with Google News predicate embedding, and random. The
bars denote standard error.

whether each predicate applied to each object. We took a
majority vote between the 3 annotators when there was a
disagreement. To reduce annotator fatigue, each annotator
labeled predicates for 8 of the 32 total objects, requiring 12
annotators in total to gather labels. The average pairwise κ
agreement between annotators was 0.576 (reasonable agree-
ment). Figure 5 shows all the predicates given positive labels
for a sample object.

Behavior Annotations. For each of the 81 predicates, we
gathered annotations in order to create a distribution over
behaviors relevant for that predicate. Annotators were asked
to mark which exploratory behaviors they would engage in
to determine whether a given predicate applied to a novel
object. Annotators could mark as many behaviors as they
wanted for each predicate, but were required to choose at
least one.

We gathered annotations from 14 people, then discarded
the annotations from those whose average pairwise κ agree-
ment with all other annotators was less than 0.4. This cut-
off left us with 8 annotators whose average agreement was

text, bright, cup, large,
round, heavy, container,
red, full, water, cylindri-
cal, colored, thing, hol-
low, top, plastic, white,
cap, cylinder, medium-
sized, tall, liquid, object,
bottle

Figure 5: Predicates with positive labels for the object in the
picture, from annotations gathered in this work.
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Figure 6: Behavior annotations for three predicates in the
dataset: “cylindrical”, “heavy” and “squishy”. Scores corre-
spond to the number of times annotators rated the behavior
as relevant for recognizing whether the predicate applied to
an arbitrary object.

κ = .475. We assign each behavior a value for each predi-
cate of the ratio of annotators (out of these 8) who marked
it relevant, so that for every p ∈ P, b ∈ B we have an an-
notation score A(p, b) ∈ [0, 1]. Figure 6 shows the behav-
ior annotation scores for three predicates. We release the
predicate-object labels and predicate behavior annotations
as a supplementary dataset.2

In addition to estimating wq,c from Eq. 3 (e.g. top-k near-
est word embedding lexical neighbor predicates), we esti-
mate it from behavior annotations alone (Eq. 5) and from an
interpolation of behavior annotations those semantic neigh-
bors (Eq. 6). For Cb the set of contexts for behavior b and bc
the behavior associated with context c:

wq,c ≈
1

|Cb|
A(q, bc); (5)

wq,c ≈
1

|Cb|
A(q, bc) ∗

1

|Pq|
∑
p∈Pq

poscos(p, q)wp,c. (6)

Choosing an Exploration Policy. Given the values of
each behavior (Eq. 4) for an unknown predicate q, the pre-
suppositions of each behavior, the time to perform each be-
havior t(b), and a time limit per object for exploration T ,
we can sample a sequence of behaviors to use when evalu-
ating predicate q. Figure 7 describes the effects of behaviors
on the object being explored, while Figure 4 gives the time
in seconds to perform each. Because there are 5 observa-
tions per behavior per object available, each behavior can be
performed in an exploration policy up to five times, making
enumerating all policies intractable.

We take a Monte-Carlo-style approach, sampling a large
number of behavior sequences through weighted random
walks, then choosing one sequence among those that maxi-
mize reliability weight while minimizing time. To sample a

2[[URL redacted for anonymous review]]

sequence of behaviors, we start at the “on table” state (Fig-
ure 7), choosing any available behavior with probability pro-
portional to v(b) (Eq. 4) with respect to other available be-
haviors. For example, from the “on table” state, the proba-
bility of choosing press is

p(press) =
v(press)

v(look) + v(press) + v(push) + v(grasp)
,

assuming press, look, push, and grasp have each been per-
formed fewer than 5 times and there is enough remaining
time in the budget given the sequence so far to execute each
alone (e.g. t(press) ≤ T ). A sampled sequence ends when
these constraints are met by no outgoing behaviors.

In our experiments, we sample 100 sequences S for every
training trial. Of those sampled, we first select the subset Ŝ
of sequences with the highest value, then randomly choose
one with the shortest exploration time,

Ŝ = set-argmaxs∈S

(∑
b∈s

v(b)

)
;

s∗ ∈ argminS∈Ŝ

(∑
b∈S

t(b)

)
.

The chosen sequence s∗ is used to explore the unseen objects
OU , extracting features for training classifiers for predicate
q.

Experiments and Results We randomly split the 32 ob-
jects into 16 explored objects OE and 16 unexplored objects
OU . We then perform leave-one-predicate-out cross valida-
tion, holding predicate q out. For predicate q, we are given
the labels L(q, o) for o ∈ OU . We then perform leave-one-
object-out cross validation, deciding on a training behavior
sequence for q, using it to explore 15 of the unexplored ob-
jects, re-estimating context reliability weights as κ agree-
ment, and finally exploring the held-out object and assigning
a label for q based on these new reliability weights. In this
way, we can obtain agreement statistics with true labels for
every held-out predicate, aggregating these to compare dif-
ferent surrogate reliability weight estimations for choosing
an exploration policy.

Our leave-one-predicate-out experiment operates over the
48 predicates for whichOU had at least 2 positive and 2 neg-
ative object examples for the predicate. We calculate word
embedding distance (Eq. 2) using Google News Word2Vec
embeddings,3 use linear SVMs as context-level classifiers,
set k = 3 (Eq. 3), and set ε = 0.001 (Eq. 4). For every
time budget T and surrogate reliability estimate compared,
the behavior sequence sampling and leave-one-object-out
cross validation was repeated 100 times to get average per-
formance. Figure 8 shows these average performances. The
time budgets are chosen so that each behavior has time to
be performed one, two, and three times each, if the policy
chooses homogeneously.4

3The alternative, lexical substitution-focused embeddings (Mo-
han, Mininger, and Laird 2013) perform similarly.

4With sufficient time, all methods are able to perform all behav-
iors five times (the maximum), achieving convergent performance.



Figure 7: Exploratory behavior actions as transitions in an object state graph.
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Figure 8: Test-time κ performance of classifiers for learn-
ing a new predicate based on reliability weight estimation
strategy used at test time for three time budgets. uniform
assigns reliability 1

|C| to each context, lex (Eq. 3) estimates
reliability weights from neighbor predicates, ba (Eq. 5) from
behavior annotations alone, and ba+lex (Eq. 6) from be-
havior annotations interpolated with lex, respectively. The
dotted lines denote the variance over 100 simulation runs.
Across all predicates, lex alone does not outperform the uni-
form baseline, but when combined with behavior annota-
tions ba+lex achieves the best performance overall.

Figure 8 shows the average κ agreement achieved
by grounding classifiers trained under different surrogate
weight estimation strategies. In this more difficult set of ob-
jects and predicates, borrowing weights from nearest lexi-
cal neighbors in word embedding space (lex) is insufficient
to improve grounding accuracy on a behavior time budget.
Unlike the clear-cut predicates of Experiment 1, the predi-
cates arising from human users in this dataset do not form as
clearly defined semantic clusters as those visible in Figure 1.

However, behavior annotations (ba) improves perfor-
mance, and the best performance for grounding classifiers
is achieved when considering these together with lexical
neighbor information (ba+lex). We postulate that this oc-
curs because there is a slight mismatch between the behav-
iors that humans would use to determine properties versus
what is actually helpful to a robot. Conversely, human in-

tuitions about which behaviors are relevant help prune out
information from erroneous lexical neighbors in this more
complicated set of predicates.

These results demonstrate that gathering behavior annota-
tions for an unseen predicate can improve grounding perfor-
mance on a time budget, and performance is further boosted
by using word embeddings to share neighboring predicates’
reliability weights.

Conclusions
Current methods for grounding object concepts in behav-
ioral exploration and multi-modal perception suffer from the
limitation that a robot needs to exhaustively perform all of
its actions to figure out which ones are useful for learning
the target concept. To address this problem, this paper pro-
posed a framework for guiding a robot’s behavioral explo-
ration of objects when learning new words. In the proposed
framework, given a novel word, the robot computes an ex-
ploration policy specific to that word by relating it via word
embeddings to words that have already been learned.

Our first experiment demonstrated that our method al-
lows the robot to learn new words faster, in terms of the
number of different behaviors the robot needs to perform
on objects to learn the target word. In our second experi-
ment, we also demonstrated that behavior annotations gath-
ered from human users can be integrated into the framework
to further improve predicate recognition performance under
a time budget as well as physical and temporal constraints.

In future work, behavior annotations could be gathered
from human users on-the-fly in an embodied dialog setting,
using a learned human-robot dialog policy to know when
behavior annotation questions are warranted. Using modal-
ity annotations (Lynott and Connell 2009) may further boost
performance. Additionally, rather than deciding on a static
exploration policy, in the future we would like to determine
an exploration policy dynamically, given that some behav-
iors can change the state of the object unexpectedly (e.g.
if push knocks an object off a table). In Experiment 1, we
compared different word embeddings and their relationship
to sensorimotor embeddings; in the future, it may be worth-
while to store multiple word embedding options and learn
which embedding space to use given a novel predicate.
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