
Creative Problem Solving by Robots Using Action Primitive Discovery

Evana Gizzi1, Mateo Guaman Castro2 and Jivko Sinapov1

Abstract— Humans and many other species have the re-
markable ability to innovate and creatively problem solve on-
the-fly. Inspired by these abilities, we propose a framework
for action discovery in problem solving scenarios similar to
puzzle-boxes used to evaluate intelligence in animal species.
The proposed framework assumes that the robot starts with
a knowledge base including predicates and actions, which,
however, are insufficient to solve the problem faced by the robot.
We describe a method for discovering new action primitives
through object exploration and action segmentation, which is
able to iteratively update the robot’s knowledge base on-the-
fly until the solution becomes feasible. We implemented and
evaluated the framework using a 3D physics-based simulated
object retrieval task for the Baxter bi-manual robot. Results
suggest that action segmentation is one viable path towards
enabling autonomous agents to adapt on-the-fly and in short
amounts of time to new situations that were unforeseen by their
programmers and engineers.

I. INTRODUCTION

Creative problem solving is a fascinating skill harbored by
both human and non-human species alike [1], [2], [3], [4].
These abilities enable us to find new ways of solving old
problems as well as to find solutions to new problems. In day
to day lives, humans often augment the way they achieve a
goal – for example, to open a tightly closed jar, we may put a
towel between our hand and the lid before twisting. In other
cases, we find new ways of using available objects, as is the
case of using a mug, an object for storing liquids, as a paper-
weight when an actual paper weight is not present. Research
has documented such abilities in a variety of animals other
than humans, ranging from primates to birds, indicating that
the ability to vary behavior and explore objects is crucial for
adaptation to novel problems [5].

In robotics, problem solving is often achieved through
the use of planning over a knowledge base with specified
predicates, actions, pre-conditions, and effects [6], [7]. While
such methods can often find counter-intuitive (from a hu-
man’s point of view) ways to achieve a goal, they implicitly
assume that the existing actions are sufficient to find a
solution. In other words, these methods lack the ability to
discover new actions at the lowest level (what we call, action
primitives) and instead can only sequence and compose
existing actions. Other approaches to solving novel tasks
involving object manipulation include reinforcement learning
[8] which, despite showing impressive and promising results,
require long-lasting interaction with the environment that is
prohibitively expensive in many real-world domains.

1Department of Computer Science, Tufts University, Medford MA,
02155, {Evana.Gizzi|Jivko.Sinapov}@tufts.edu

2Department of Electrical and Computer Engineering, Tufts University,
Medford MA, 02155, Mateo.Guaman@tufts.edu

Fig. 1. System diagram of the Action Primitive Discovery Framework.
The agent starts with a goal, state information, and a knowledge base that
includes information about its own actions. Next, a plan is generated and
executed. If the execution is not successful, the agent attempts to expand and
update its knowledge base through action primitive discovery. This process
is repeated until execution is successful.

Recently, a few studies have formalized creative prob-
lem solving by relating the ability to that of MacGyver,
a character from a 1985 series, known for his ability to
synthesize creative solutions to challenging problems through
the ingenious use of materials in his environment. Nair et
al. [9] introduce the term “MacGyvering” as the process of
creating or repairing something in an inventive or improvised
way by utilizing available objects. Sarathy and Scheutz [10]
formalize a MacGyver problem as one in which a solution
exists, but is not immediately available to a planning agent
given its knowledge base of actions and state information.

To illustrate the MacGyver scenario, suppose a service
robot is taught how to press a button to call for an elevator.
In the demonstration, the robot learns that the “press button”
action consists of moving its gripper to the button, pushing
down, and retracting its arm. Suppose that in a new situation
the robot encounters a different elevator, one that requires
the button to be held upon pressing instead of released. In
this novel setting, there is no human demonstrator available
to teach the robot the new action “hold button.” The question
becomes, how can the robot discover this action on its own
— to gain the ability to reach a once unreachable goal?

Research with humans and other species suggests that two
key mechanisms enable agents to creatively problem solve in
novel situations: 1) object exploration, and 2) behavioral vari-
ation [11], [5]. Inspired by these lines of work, we propose
a framework for problem solving through action discovery
in robotic agents which uses autonomous exploration and
action segmentation. The proposed framework, illustrated in
Figure 1, leverages symbolic logical predicate information to

develop meaningful representations of newly formed actions
so that the discovered actions can easily be used for planning
when attempting to find a solution to the problem. When
faced with an unsolvable problem, the proposed method for
action discovery leverages change-point detection to break
existing actions into sub-parts, each of which can be used
independently in subsequent exploration. The framework was
evaluated in an object retrieval task similar to the button
example described earlier in this section, in which a robot
had to learn several action primitives (e.g., holding the button
once initially pressed) in order to make the target object
accessible. Results suggest that action segmentation is one
viable path towards enabling autonomous agents to adapt on-
the-fly and in short amounts of time, to new situations that
were unforeseen by their programmers and engineers.

II. RELATED WORK

A. Innovation and Creativity in Humans and Animals

Humans and many other species have the remarkable
ability to innovate and creatively problem solve on-the-fly
[1], [2]. The problem solving skills of birds and primates are
often studied in scenarios where the organism has to solve a
“puzzle-box”, sometimes using tools, to retrieve a food item
out of the box that is not immediately accessible. Reader and
Laland [4] define innovative behavior as “a new or modified
learned behaviour not previously found in a population”.
Research in animal psychology postulates that the ability
to exhibit novel behaviors, or familiar behaviors in novel
settings, is central to physical problem solving [12]. Motor
diversity has been identified as a strong predictor for problem
solving skills in several species [13], [14]. Inspired by these
findings, the work in this paper proposes a mechanism for
discovering new actions that an agent can subsequently use
when searching for a solution to a puzzlebox-like problem.

Research into the underpinnings of human creativity span
cognitive science, neuroscience, psychology and philosophy
[2], [15], [16]. Physical creativity and innovation are tightly
linked to object exploration and play [11]. In studies that
compare human problem solving to that of other species
(e.g., [17]), humans express the most creativity and inno-
vation, with one possible explanation being that our longer
developmental period fosters such abilities [18]. While for
a long time, it was thought that human creativity and inno-
vation is unique and separate from that of animals, a large
body of research indicates that the individual mechanisms
for creativity in humans are also present in other problem-
solving species [3]. Physical object exploration, in particular,
is a key mechanism for human and animal problem solving.
In this paper, the proposed framework also relies on the robot
exploring its environment with the actions it currently knows,
in order to discover new actions that can potentially solve
the object retrieval task it is faced with.

B. Creative Problem Solving in Robotics and AI

In robotics and AI, several recent works have brought
attention to the notion of creative and innovative problem
solving. Sarathy and Scheutz [10] formulate the MacGyver

problem as one in which a solution exists but is not imme-
diately available given the robot’s knowledge base of pred-
icates, actions and their preconditions and effects. Similar
problems have also been investigated in the context of tool
use [19], [20] and tool construction [9].

Reinforcement learning remains a popular approach for
learning complex manipulation sequences [8]. While human
feedback over the course of learning (e.g., [21]) and learning
by demonstration [22] can substantially reduce training time,
the amount of interaction needed to learn a good policy can
be prohibitively expensive for a physical robot operating in
a real-world setting without direct human assistance.

Other related research has proposed segmenting actions
learned by demonstration into dynamic movement primi-
tives (DMP), which are partial motion trajectories of the
original action [23], [24]. Segmentation alone limits the
context of creative problem solving because it lacks symbolic
knowledge representations of the actions being discovered.
Techniques for bootstrapping low-level primitives with high-
level symbolic information have been explored in recent
years. These representations take the form of finite state
machines, skills trees, mappings to sub-goal abstractions, and
finding repeated substructures for generalization and stronger
representational value [25], [26], [27], [28]. Perhaps, most
related to our work is that of Baisero et al. [29] which
developed a method for segmentation of actions by using
relational information of both the objects in the scenario and
of their affordance information.

Although progress has been made toward segmentation
and representation of action primitives, existing methods fall
short of generating representational forms, which are often
utilized in cognitive applications that operate at higher levels
of abstraction. We address this shortcoming by developing a
novel framework that makes use of logical predicate infor-
mation to inform and develop action primitive discovery. Our
framework is able to not only learn newly discovered actions,
but is also capable of using newly learned actions to inform
the representation of its old actions. To our knowledge, this
is the first action segmentation framework which leverages
predicate information to build newly formed action represen-
tations, and one of the first attempts at illustrating a solution
to MacGyver Problems [10] through implementation.

III. THEORETICAL FRAMEWORK

A. Notation and Problem Formulation

We frame our problem in the context of a MacGyver
Problem, adopting a similar notation as that described in [10].
We define our planning domain as Σ = (S,A, γ), where
S is a set of finite states of the system, A is a finite set
of action primitives, and γ is the transition function over
actions and states (which we denote AΣ, SΣ, γΣ for a given
domain Σ). We define a set of known objects in the domain
O = {o1, o2, . . . o|O|} and a set of predicates,

F = {f1(·), . . . f|F |(�)},� ⊂ O,

where each predicate operates over a subset of objects in the
domain. Any state s ∈ S is composed of a set of predicate
values Fs that hold true. A problem in the domain is defined
as P = (Σ, s0, sg), where s0 is an initial state, sg is a
goal state, and s0, sg ∈ S. A plan π = [a1, a2, . . . a|π|] is a
solution to a problem P . Suppose a plan π to accomplish a
goal state sg is successfully generated, but fails on execution.
At this point, the problem becomes how to transform the
domain Σ to another domain, Σ′, such that π′ generated from
Σ′ will not fail. Note that in our framework, failure occurs in
the execution phase, rather than the planning phase, which
differentiates our method from [10].

B. Action Discovery

To handle the execution failure of π, we propose a method
that generates a refined and expanded action set A′ through
exploration and action segmentation. As a first step to this
discovery, the proposed algorithm generates a list of all
action-object combinations in Σ, which we call

CΣ = C

(
a(
o
|Ra|

)),∀a ⊂ AΣ, o ⊂ OΣ

where Ra are the parameters to action a. Next, the agent
executes each action combination in c ∈ CΣ, and generates
a set of change points ∆i = [t1, . . . tk], t ∈ Z, where ∆
is a time series list of ordered time stamps corresponding
to change points. The input to the change point detection
algorithm is a set of time series trajectories that represent
motor data (e.g., joint efforts, or end-effector position) for the
arm that executed the action. That is, for an action ai, a set
of n trajectories d1, . . . dn are represented by a matrix M ∈
Rn×di . These change points are used to generate candidate
action segmentations â1, . . . ˆak−1 where each âj corresponds
to the limb trajectory from time step tj to tj+1. Each
candidate âj is executed, generating effects Eâj . A is refined
to include candidate actions that generate a non-empty set of
effects, where the new action set A′ ← A ∪ {âj},∀aj s.t.
Ej 6= ∅. The transition function γ is implicitly updated with
this refinement. Finally, in line 28, the preconditions of the
failure action af are refined to include the effects of the
action that succeeded to accomplish sg .

It should be noted that some algorithmic components are
agnostic to our framework, including the choice of planner
used to find π, the change point detection algorithm used to
find ∆, and motion data collected in M . Likewise, although
we describe the algorithm in this section within the context of
a breadth-first search (BFS) method for finding new actions,
the method choice is also agnostic to our framework. In
our results section, we discuss findings for both breadth-first
search and depth-first search (DFS) approaches.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We ran a proof-of-concept of our framework in the Gazebo
simulation environment, which utilizes a high performance
physics engine. This experimental setup consisted of five

Algorithm 1 Action Primitive Discovery Framework
1: procedure PLANEXECUTOR(sg,Σ)
2: sg : predicates needed to accomplish goal
3: δ ← ∅ : list of candidate action primitives
4: af , as = ∅
5: while sg 6⊂ sC do
6: π ← generateP lan(sC , sg,Σ)
7: for a ∈ π do
8: if execute(a) = FAIL then
9: af ← a

10: break
11: if δ = ∅ then
12: CΣ ← getAllActionCombos(AΣ, OΣ)
13: for a ∈ CΣ do
14: while execute(a) do
15: M ←MotionData(alimb)

16: ∆← getChangePoints(M)
17: for j ∈ range(|∆| − 1) do
18: â← newAction(∆[j],∆[j + 1])
19: execute(â)
20: if Ea 6= ∅ then
21: AΣ ← AΣ ∪ {â}
22: δ ← δ ∪ {â}
23: if δ 6= ∅ then
24: as ← δ[randInt(0, |δ|)]
25: execute(as)
26: Fas ← b
27: δ ← δ \ as
28: Iaf ← Iaf ∪ Eas

parts: a Baxter robot, a table with a sliding wall mechanism,
two red buttons, and a green block, which is shown in Figure
2. In this environment, the red buttons are readily accessible
to the robot’s arms, while access to the block is obstructed
by the wall. The wall can be actuated by pressing one of
the buttons, but the robot lacks domain knowledge on how
to operate these buttons to cause the wall to slide out of the
way to enable the robot to be able to pick up the block.

The Baxter robot used Pyperplan1 as its planner, op-
erating over actions in a Partial Domain Definition Lan-
guage (PDDL) format. This format was most conducive to
the predicate representations employed by our framework.
Action primitives in our framework, following the PDDL
format, were equipped with a set of preconditions and effects,
which describe the predicates which must hold true prior to
execution, and as a consequent of execution, respectively.

For the change point detection component, the agent used
Bayesian Change Point (BCP) detection in conjunction with
agglomerative bottom-up clustering. The BCP method uses
a Bayes factor to estimate the position of change points
in trajectories [30]. The agglomerative bottom-up clustering
method then grouped change points in an iterative manner
based on distance metrics. A final set of change points were

1https://bitbucket.org/malte/pyperplan

Fig. 2. proof-of-concept Gazebo simulation environment, including Baxter
robot in starting position (grippers above table), wooden table with wall,
two red blocks representing left button and right button, and green block.
Pressing and holding the left button results in lowering the wall which blocks
the robot from retrieving the target object.

generated by extracting the minimum, maximum, and mean
of each cluster that had a cardinality greater than 10, which
we set as our minimum grouping value in order to consider
only the most significant groupings.

B. Illustrative Example

In our proof-of-concept task, the goal of the Baxter robot
was to obtain the block located at the other side of the
sliding wall, which is initially inaccessible. The domain Σ
and problem formulation P of the task are shown in Table
I. Using this information, the Baxter robot generates a plan
π = [obtain object(l gripper, block)]. Due to
the wall obstructing the path of the grippers to the object, π
fails on execution. At this point, the Baxter robot generates
a list of action-object combinations, shown in section C of
Table I, to be used for segmentation. The table shows samples
executed by the left gripper but not by the right gripper. This
is because in our proof-of-concept, actions performed by the
left gripper and right gripper were reflective of one another,
generating the same predicate results. In other applications,
this assumption may not be favorable or appropriate.

Next, the robot executes each action-object combina-
tion in Table I to find candidate action primitives. For
our motion trajectory data, we recorded the 3-dimensional
coordinate (x-y-z) position of the gripper performing the
action. Using the data collected during exploration, change
points were generated using our BCP/clustering algorithm,
with motion trajectory matrix M as input. This process
is illustrated in Figure 3, shown over the execution of
a = press button(l gripper, l button), where
nine change points were detected [t1, . . . t9], resulting in
eight trajectories â1, . . . â8. Figure 3 shows corresponding
simulation image frames of the execution steps for each
trajectory. It should be noted that some sub-trajectories had
very small positional differences in the gripper, and some

Planning Domain: Σ

A
obtain object(:gripper, :location)
press button(:gripper, :button)

F

pressed(:button)
obtained(:obj)
at(:object)
is visible(:obj)

O

:obj - wall, block
:gripper - l gripper, r gripper
:button - l button, r button
:object - :obj, :gripper, :button
:location - loc a, loc b, loc c,
loc d, loc e

Problem: P
sg obtained(block)

s0

at(left gripper, loc a)
at(r gripper, loc b)
at(l button, loc c)
at(r button, loc d)
at(block, loc e)
is visible(l button)
is visible(r button)

Action-Object Combinations: C
press button(l gripper, l button)
press button(l gripper, r button)
obtain object(l gripper, wall)
obtain object(l gripper, table)
obtain object(l gripper, block)

TABLE I
DOMAIN KNOWLEDGE, INITIAL PROBLEM FORMULATION, AND

ACTION-OBJECT COMBINATIONS

images reflect more than one sub-trajectory due to non-
visible trajectory differences.

After generating change points, the Baxter robot executes
each sub-trajectory, keeping the sub-trajectories that result
in non-empty effects lists. For our proof-of-concept, we
omitted location information from effects list, and only
considered actions with state-based predicates in its effects
list (pressed(), obtained() or is visible()).
From Figure 3, it can be seen that the only sub-
trajectory with non-empty state effects list is â2, with
Eâ2 = is visible(block),pressed(l button),
corresponding to the sub-trajectory from t2 to t3. In this par-
ticular example, none of the other sub-trajectories produced
a change in state-based predicates in their effects lists.

The robot was able to use â2 to successfully obtain the
object by first holding the left button (via â2), and then using
the obtain object action primitive to move the object
with its right gripper, generating a new plan,
π′ = [â2(l gripper, l button),
obtain object(r gripper, block)].

Furthermore, it refined the preconditions of the
obtain object action primitive to contain Eâ2 .

C. Results

We implemented and tested our framework under the con-
ditions described in our illustrative example2. We define an
experimental trial to be an independent sequence of re-plan
attempts that the agent uses to get from its initial problem
formulation to its goal. Execution phases are algorithmic

2The code for our framework and experiments is available at
https://github.com/Evana13G/RAPDR

Fig. 3. Change point detection for press button(right gripper, left button). The image on the bottom shows the x-y-z location of the left gripper over
time steps during action execution, separated into three separate traces. All vertical lines represent change points in the motion data, grouped based on
clustering, with a total of 6 clusters. The black vertical lines show the change points that got used for segmentation, consisting of the min/max/mean of
clusters that include more than 10 change points.

TABLE II
EVALUATION RESULTS

Method # of Discovered
Action Primitives

Execution
Attempts

Exploration
Attempts

BFS 2.62 ± 1.12 3.74 ± 3.48 1.04 ± 0.22
DFS 1.76 ± 1.03 6.18 ± 0.22 6.18 ± 0.22

steps which consist of plan generation and plan execution,
corresponding to lines 6-10, 23-27 of our algorithm. Ex-
ploratory phase are steps which consist of executing an
action-object combination or of executing a candidate action
segmentation, corresponding to lines 11-22 of our algorithm.
Any re-plan attempt that includes an exploratory phase is
referred to as an exploratory attempt, whereas all other
attempts are referred to as execution attempts.

We consider a trial to be successful if the agent succeeds
in accomplishing its goal after some unbounded number of
execution and exploratory phases. We define time to solution
(TTS) of a successful trial as the total time in seconds elapsed
from the initial problem formulation to completion of the
goal. For successful trials, we use the TTS and number of
execution attempts as evaluation performance measures.

We ran a total of 38 trials to evaluate and test our
framework, with 21 trials in BFS mode and 17 trials in
DFS mode. The number of trials between modes differed
because of server issues which rendered some trials to be
removed from analysis. In all trials, the agent was successful
in accomplishing its goal. Figure 4 shows the TTS for all
trials, split across BFS and DFS modes. This figure shows
higher value mean TTS of BFS trials than the DFS trials,
but with a lower variance. We believe that this is because
of the differing nature of the exploration attempts of the
BFS and DFS approaches. In the BFS approach, exploration
attempts require the agent to iterate over all action-object
combinations, finding all viable segmentations, before return-

Fig. 4. Total execution time for each execution type. Although the
time to solution for the BFS approach was higher than the median time to
solution of the DFS approach, it had less variance. The BFS approach thus
generates more consistent times to solution, whereas the DFS approach has
a wider spread of times to solution. The difference is statistically significant
(p = 0.0221) under an unpaired t-test.

ing to an execution step. In the DFS approach, exploration
attempts include the attempted discovery of action primitives
for just one action-object combination, and the problem re-
plan following that potential exploration phase. This implies
that in the case of DFS, a lucky trial could find a successful
segmentation on the first try, from its first action-object
combination exploration, whereas an unlucky case could
find it after iterating over every action-object combination
possibility. This phenomena is further reflected in Table II,
where the mean value of execution attempts for BFS mode
is larger than that of DFS, but the mean value of exploration
attempts for BFS is smaller than that of DFS.

Table II also shows the mean value of the number of newly
discovered action primitives in BFS and DFS trials. BFS
mode had a larger mean value and standard deviation for
this metric than DFS mode. We do not believe that this data
is distinguishable enough to represent a general trend, and it
is unclear to us if this finding can be generalized to all tasks
which employ our framework, but we do believe this to be
application specific behavior.

V. CONCLUSION AND FUTURE WORK

The ability to innovate and problem solve on-the-fly is
a hallmark of human and animal intelligence. This paper
proposed a framework for such problem solving in the
context of manipulation tasks in which the agent’s starting
knowledge base of predicates and actions is insufficient to
successfully execute the agent’s plan. The key mechanism
behind our approach consists of action segmentation during
exploration so that the agent can increase the diversity
of its behavioral repertoire. We evaluated the framework
with a simulated robot that faced an object retrieval task
inspired by puzzle-box domains used to evaluate the problem
solving abilities of biological organisms. Results suggest that
action segmentation is one viable means towards enabling
autonomous agents to adapt on-the-fly and in short amounts
of time, to new situations that were unforeseen by their
programmers and engineers.

In future work, we hope to use the segmented action prim-
itive in reinforcement learning settings, and in more compli-
cated domains. We also would like to extend the framework
to include additional mechanisms for action discovery (e.g.,
varying control parameters of an action’s controller) in addi-
tion to segmentation. Furthermore, in addition to discovering
novel actions, novel problems may also require the discovery
of new predicates and new sensorimotor means to infer their
state. Finally, we are working towards the development of
a set of scenarios for creative problem solving that grow in
complexity (e.g., tool creation and use [19], [9]) relative to
the problem domain used in our evaluation.

REFERENCES

[1] M. A. Boden, The creative mind: Myths and mechanisms. Routledge,
2004.

[2] A. Fink, R. H. Grabner, M. Benedek, G. Reishofer, V. Hauswirth,
M. Fally, C. Neuper, F. Ebner, and A. C. Neubauer, “The creative
brain: Investigation of brain activity during creative problem solving
by means of eeg and fmri,” Human brain mapping, vol. 30, no. 3, pp.
734–748, 2009.

[3] S. J. Shettleworth, “Clever animals and killjoy explanations in com-
parative psychology,” Trends in cognitive sciences, vol. 14, no. 11, pp.
477–481, 2010.

[4] S. M. Reader and K. N. Laland, Animal innovation. Oxford University
Press Oxford, 2003, vol. 10.

[5] A. S. Griffin and D. Guez, “Innovation and problem solving: a review
of common mechanisms,” Behavioural Processes, vol. 109, pp. 121–
134, 2014.

[6] S. Zhang, M. Sridharan, and F. S. Bao, “ASP+POMDP: Integrat-
ing non-monotonic logic programming and probabilistic planning on
robots,” in 2012 IEEE International Conference on Development and
Learning and Epigenetic Robotics (ICDL). IEEE, 2012, pp. 1–7.

[7] P. Khandelwal, F. Yang, M. Leonetti, V. Lifschitz, and P. Stone,
“Planning in action language BC while learning action costs for
mobile robots,” in International Conference on Automated Planning
and Scheduling (ICAPS), June 2014.

[8] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[9] L. Nair, J. Balloch, and S. Chernova, “Tool MacGyvering: Tool
Construction Using Geometric Reasoning,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2019.

[10] V. Sarathy and M. Scheutz, “MacGyver problems: Ai challenges for
testing resourcefulness and creativity,” Advances in Cognitive Systems,
vol. 6, pp. 31–44, 2018.

[11] T. G. Power, Play and exploration in children and animals. Psychol-
ogy Press, 1999.

[12] S. M. Reader, J. Morand-Ferron, and E. Flynn, “Animal and human
innovation: novel problems and novel solutions,” 2016.

[13] H. M. Manrique, C. J. Völter, and J. Call, “Repeated innovation in
great apes,” Animal Behaviour, vol. 85, no. 1, pp. 195–202, 2013.

[14] A. S. Griffin, M. Diquelou, and M. Perea, “Innovative problem solving
in birds: a key role of motor diversity,” Animal Behaviour, vol. 92,
pp. 221–227, 2014.

[15] A. Dietrich, “The cognitive neuroscience of creativity,” Psychonomic
bulletin & review, vol. 11, no. 6, pp. 1011–1026, 2004.

[16] G. A. Wiggins, “A preliminary framework for description, analysis and
comparison of creative systems,” Knowledge-Based Systems, vol. 19,
no. 7, pp. 449–458, 2006.

[17] L. Rat-Fischer, A. Kacelnik, K. Plunkett, and A. von Bayern, “De-
velopment of physical problem-solving competences in human infants
and corvids,” in 2016 Joint IEEE Intl. Conf. on Development and
Learning and Epigenetic Robotics (ICDL-EpiRob), 2016, pp. 101–102.

[18] L. Fogarty, N. Creanza, and M. W. Feldman, “Cultural evolutionary
perspectives on creativity and human innovation,” Trends in ecology
& evolution, vol. 30, no. 12, pp. 736–754, 2015.

[19] J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,” in 7th
IEEE International Conference on Development and Learning. IEEE,
2008, pp. 91–96.

[20] M. Stilman, M. Zafar, C. Erdogan, P. Hou, S. Reynolds-Haertle, and
G. Tracy, “Robots using environment objects as tools the macgyver-
paradigm for mobile manipulation,” in 2014 IEEE Intl. Conf. on
Robotics and Automation (ICRA). IEEE, 2014, pp. 2568–2568.

[21] W. B. Knox and P. Stone, “Tamer: Training an agent manually via
evaluative reinforcement,” in 2008 7th IEEE International Conference
on Development and Learning. IEEE, 2008, pp. 292–297.

[22] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[23] S. Schaal, “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics,” in Adaptive motion of
animals and machines. Springer, 2006, pp. 261–280.

[24] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE
Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010.

[25] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and
A. G. Barto, “Learning grounded finite-state representations from
unstructured demonstrations,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 131–157, 2015.

[26] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learn-
ing from demonstration by constructing skill trees,” The International
Journal of Robotics Research, vol. 31, no. 3, pp. 360–375, 2012.

[27] V. Chu, R. A. Gutierrez, S. Chernova, and A. L. Thomaz, “The role of
multisensory data for automatic segmentation of manipulation skills,”
in RSS Workshop on Empirically Data-Driven Manipulation, 2017.

[28] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters,
“Towards learning hierarchical skills for multi-phase manipulation
tasks,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2015.

[29] A. Baisero, Y. Mollard, M. Lopes, M. Toussaint, and I. Lütkebohle,
“Temporal segmentation of pair-wise interaction phases in sequential
manipulation demonstrations,” in 2015 IEEE/RSJ Intl Conf. on Intel-
ligent Robots and Systems (IROS), 2015, pp. 478–484.

[30] D. L. Ensign and V. S. Pande, “Bayesian detection of intensity changes
in single molecule and molecular dynamics trajectories,” The Journal
of Physical Chemistry B, vol. 114, no. 1, pp. 280–292, 2009.

