
Aliasing and C--

Norman Ramsey Simon Peyton Jones

July 24, 2000

C compilers must be conservative in their use of memory. For example, unless
they implement sophisticated points-to analyses, C compilers must assume that
a store through any pointer variable could change the value seen by a later
load through another pointer variable. This conservative assumption makes it
difficult to optimize code involving references to memory.

• It may be hard to move references out of loops.

• It may be difficult to eliminate common subexpressions involving refer-
ences to memory.

• The compiler cannot easily change the scheduling of instructions involving
loads and stores.

Often, the front end has information that would enable these optimizations.

• Some pointers may refer only to immutable data, in which case writes
through other pointers cannot possibly interfere.

• In some languages, references using pointers to values of different types
may never interfere.

• Stores to a newly allocated heap object cannot possibly interfere with loads
from a fully initialized object, and may not interfere with each other.

The purpose of this note is to propose extensions to C-- that make it possible for
front ends to communicate this sort of simple knowledge about the impossibility
of aliasing.

1



We assume that the C-- back end does not do sophisticated alias or pointer
analysis; it does simple data-dependence analysis only. Our proposal is designed
to fit easily into a simple dataflow framework. It follows that it is up to the
front end to perform any sophisticated analysis that might be done. We have
not studied the literature and verified that our proposal is capable of expressing
the results of standard pointer analyses. Our proposal is designed with only two
aims in mind:

• The proposal should be easy to implement in a traditional optimizer based
on simple use-def analysis.

• The proposed extensions should be capable of expressing the simple facts
about memory that are easily deduced from the properties of safe lan-
guages and languages with immutable types.

Sets of locations

We divide the machine’s locations into disjoint sets, such that a store into one set
cannot possibly affect the value of a load from another set.1 In C--, all register
variables are disjoint from each other and from memory locations, so we refer
only to memory from here on. C-- knows about only one set of locations: M ,
which is the set of all memory locations. Front ends may define subsets of M

as explained below.

The kernel of our proposal is that every reference to memory carries with it
an assertion about the address used in the reference. C-- already contains
alignment assertions, which have the meaning “address a is a multiple of k,”
for some fixed k in the assertion. We are proposing to add aliasing assertions,
which have the meaning “address a is a member of S1 ∪S2 ∪ · · · ∪Sn,” for some
fixed sets S1, . . . , Sn specified in the assertion. If the C-- compiler sees that
two addresses are asserted to belong to disjoint sets, it is free to assume that
stores to one address do not interfere with stores to or loads from the other.

The default aliasing assertion is of course to be a ∈M .

1We take this property to be the definition of the term “disjoint.” Two unequal addresses

may not be disjoint if, for example, an instruction can store a value that is larger than the

difference between the addresses.

2



Specification of sets

How are front ends to specify the sets that addresses belong to, and how shall
they specify which sets are disjoint? We propose that each set be represented
by a name, and that these names be arranged in a tree withM at the root. The
tree enables the compiler to infer that each node is partitioned by its children.
Because the tree represents the front end’s knowledge about aliasing, it must be
specified explicitly in the C-- source program. Indeed, each C-- procedure may
have its own tree. As discussion below should make clear, the tree structure is
not strictly necessary for specification, but it should help front ends build simpler
and more readable specifications.

An example tree might be

M

global

readonly readwrite

stack

mystack callerstack

heap

new

p1 p2

old

The names might have these meanings:

M All of memory.
global Initialized and uninitialized data.
readonly Initialized data that is never written, only read.
readwrite Data that is both read and written.
stack Data allocated on some stack frame.
mystack Data allocated in the current stack frame.
callerstack Data allocated in some frame that is not the current stack

frame.
heap A pointer to an object allocated on the heap.
new A pointer to a newly allocated heap object.
pi A pointer to newly allocated object pi

old A pointer to a heap object allocated an initialized before this
procedure.

The tree structure indicates that, for example, p
1
and p

2
are disjoint from each

other and from any old heap object, that all heap objects are different from
stack data, etc.

The tree can be used to identify sets of addresses and to tell the back end which
sets are disjoint.

3



To associate sets with references to memory, the most obvious method is an
explicit assertion. For example, a front end might generate the following code
to copy a cons cell, assuming the cons cell might be allocated either on the heap
or in a caller’s stack frame:

〈copy a cons cell c〉≡
copycons(bits32 c) {

bits32 p;

p = alloc(12);

bits32[p in p1] = bits32[c-4 in old, callerstack]; /* copy header */

bits32[p+4 in p1] = bits32[c in old, callerstack]; /* copy car */

bits32[p+8 in p1] = bits32[c+4 in old, callerstack]; /* copy cdr */

return p+4;

}

The compiler can safely emit “load; load; load; store; store; store,” perhaps
getting better performance from the memory unit.

It may be tedious or less than readable to write an explicit assertion after every
address. We can reduce notation by adding the following rules:

• Every variable is associated with a list of sets. This association is approx-
imately an assertion that whenever the value of the variable is used in
an addressing expression, it lies in one of the sets.2 If no association is
specified, the C-- compiler associates the variable with M .

• If a reference to memory does not bear an explicit in assertion, its address
is asserted to be in the union of the sets associated with the free variables of
that expression.3 We’ve chosen the union because it’s a safe, conservative
approximation, but it might make more sense to look at the intersection.
Intersections would make it easier to handle offsets, array indices, and
other things used in address arithmetic, as they could just be put in M .

• If a reference to memory bears an explicit in assertion, that assertion
overrides all information attached to the free variables of its address.

Under these rules, the notation required to copy a cons cell could be reduced:

〈copy a cons cell c〉+≡
copycons2(bits32 c in old, callerstack) {

bits32 p in p1;

p = alloc(12);

bits32[p ] = bits32[c-4]; /* copy header */

bits32[p+4] = bits32[c ]; /* copy car */

bits32[p+8] = bits32[c+4]; /* copy cdr */

return p+4;

}

2We say “approximately” because dealing with address arithmetic is tricky.
3It’s not clear what to do when the union is empty, i.e., for absolute addresses.

4



What the compiler does

Here we describe how the aliasing information can be used in an optimizer.
First, the compiler computes an assertion for each reference to memory. Next,
looking at the tree of sets, it replaces the names of internal nodes with the names
of their children, continuing until each assertion mentions only leaves. At this
point it has each assertion is in a kind of disjunctive normal form.

The leaves can now be treated almost like C-- variables, since they don’t inter-
fere with C-- variables or with each other. In particular, the compiler can add
a suitable def and use for each leaf, in place of the def M̂ use M̂ that appear
in Table 3 of our PLDI’00 paper. All the ordinary dataflow stuff just works,
and we don’t touch anything else in the optimizer.

A refinement

We don’t need to stop with loads and stores; the PLDI paper can guide us to
a useful refinement. We’ve replaced the M̂s at loads and stores, but we should
also do so at call sites. That is, instead of assuming that a call may use or
modify any location in memory, we can annotate the call explicitly with the
sets of locations it may use or modify. This is well-understood technology; see
for example John Guttag’s work Larch, which uses similar specifications.

As an example, suppose we have a cons cell allocated on our stack frame, and
we get unlucky and must copy it onto the heap.

〈call site〉≡
.

:

stackdata {

x: bits32[3];

}

.

:

q = copycons(x) uses mystack modifies new;

.

:

These kinds of annotations may be most useful for procedures in the front-end
run-time system. For example, this would provide a way for someone to say
that a procedure to perform bignum adds, for example, uses and modifies only
the part of memory pointed to by its arguments. Could there be any

point in annotating
the use of global
register variables?It remains to see what, if anything, to do about annotating exit nodes, jumps,

etc.

5



Interpretation

How shall we interpret the names of the sets? Simply, on each execution of
a load or store, we want each name to stand for a set of machine addresses.
Because we optimize full procedures, we require that there exist a mapping that
can be used for the entire activation. Furthermore, this mapping must be such Where does this leave

us wrt interprocedural
analysis? Smells like
it might be a research
question. . .

that the (implicit) disjointness specification is sound for that mapping, and the
assertions on all the memory references are satisfied.

Future work

It remains to explore a number of examples and see what kind of knowledge
this proposal can express.

It remains to see to what degree the proposed extensions can express the results

of state-of-the-art pointer analysis.

If we derive address assertions from assertions on variables, we need to think
more about how to deal with address arithmetic. For example, in computing
the address of an element in an array, how should we treat the index?

We don’t know if there are also opportunities to annotate exit nodes, jumps,
etc.

It’s not clear if or how this idea generalized to interprocedural analysis and
optimization.

It would be a good idea to compare this proposal to what’s in MLRISC and to
Nicolau’s proposal.

6


