
Submitted to the ACM SIGPLAN ’01 Conference on Programming Language Design and Implementation

Featherweight concurrency in a portable assembly language

Norman Ramsey

Harvard University

nr@eecs.harvard.edu

Simon Peyton Jones

Microsoft Research Ltd

simonpj@microsoft.com

Abstract

What abstractions should a reusable code generator provide
to make it easy for a language implementor to compile a
highly concurrent language? The implementation of con-
currency is typically tightly interwoven with the code gen-
erator and run-time system of the high-level language. Our
contribution is to tease out the tricky low-level concurrency
mechanisms and to package them in an elegant way, so they
can be reused by many front ends.

1 Introduction

C-- is a compiler-target language intended to be inde-
pendent of both source programming language and tar-
get architecture (Peyton Jones, Oliva, and Nordin 1997;
Peyton Jones, Ramsey, and Reig 1999; Ramsey and Pey-
ton Jones 2000). It acts as an interface between a front end
and a reusable code generator. The idea is that the front
end translates your favorite language into C--, leaving the
C-- compiler to do the rest. C-- encapsulates compilation
techniques that are well understood, but difficult to imple-
ment. Such techniques include instruction selection, register
allocation, instruction scheduling, and optimization of im-
perative code with loops. The aim of the C-- project is
not only to make it easy to reuse code generators, but to
enable reusable code generators to provide almost as much
flexibility and performance as custom code generators.

There is more to compilation than code generation. Many
high-level languages require run-time services such as
garbage collection, exception dispatch, and concurrency.
These services are typically implemented through close col-
laboration between the code generator and a run-time sys-
tem, but such close collaboration is impeded by the abstrac-
tions needed to make a code generator resuable.

Nowhere is this problem more difficult than in the design of
mechanisms to support concurrent languages, which is the
focus of our paper. Implementing concurrency often involves
delicate and architecture-specific interactions between com-
piled code and the run-time system. For example, the details
of changing the program counter and stack pointer during
thread switching are precisely the sort of dark magic—well
understood, but hard to implement—that we hope to en-
capsulate behind the abstractions offered by C--.

Here, then, is the problem we address: we want to make it
easy for a front end to support efficient user-level threads,
in such a way that all the policy decisions are in the hands

of the front end, while all the tricky mechanism is supported
by C--. Like many fine phrases, this goal is easier to state
than achieve. The contribution of this paper is a design that
extends C-- with clean, architecture-independent mecha-
nisms that can be used to implement common concurrency
policies efficiently. We identify three key mechanisms:

Switching contexts. We borrow from functional pro-
gramming the idea of building concurrency on top of
continuations. It is well known that exceptions can also
be implemented using continuations, and that the full
generality of first-class continuations is not needed for
either exceptions or concurrency. Our contribution is
to identify a single form of continuation that not only
supports both exceptions and concurrency, but also is
dirt cheap (Section 3).

Sharing data. Some data should be private to each
thread, some should be shared among all threads run-
ning on a particular processor, and some should be
shared among all threads running a particular program.
Using C--’s global registers, we provide a simple way for
the compiler writer to make these choices (Section 5).

Managing stacks. To manage stacks, we have developed a
simple model that supports all common styles of stack
use: execution on a single infinite stack, finite stacks
with detected or undetected failure on overflow, con-
tiguous stacks that are copied and enlarged at need,
and segmented stacks (Section 7). Moreover, while
our computational model permits execution on mul-
tiple stacks, it does not require multiple stacks, so for
example, a garbage collector and mutator can share a
single stack (Section 6).

There are other significant mechanisms that we do not have
enough space to discuss, but we do mention issues in pre-
emption and synchronization (Section 8).

Our work comes with a large caveat: it is not yet imple-
mented. But it is clearly implementable; we believe that
the ideas will interest the PLDI community; and the critical
evaluation of that community will help refine our design.

2 What is C--?

C-- is a simple, procedural programming language, with a
syntax reminiscent of C. To give a feel for C--, Figure 1
presents three C-- procedures, sp1, sp2, and sp3, each of
which computes the sum and product of the integers 1..n.
C-- is designed to be as low-level as possible while still being
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/* Ordinary recursion */
export sp1;
sp1( bits32 n ) {
bits32 s, p;
if n == 1 {

return( 1, 1 );
} else {

s, p = sp1( n-1 );
return( s+n, p*n );

}
}

/* Tail recursion */
export sp2;
sp2( bits32 n ) {
jump sp2_help( n, 1, 1 );

}

sp2_help( bits32 n, bits32 s, bits32 p ) {
if n==1 {

return( s, p );
} else {

jump sp2_help( n-1, s+n, p*n )
/* "jump" = tail call */

}
}

/* Loops */
export sp3;
sp3( bits32 n ) {

bits32 s, p;
s = 1; p = 1;

loop:
if n==1 {
return( s, p );

} else {
s = s+n;
p = p*n;
n = n-1;
goto loop;

} }

Figure 1: Three procedures that compute the sum
∑n

i=1
i

and product
∏n

i=1
i, written in C--.

nearly1 independent of the target architecture. C-- lacks
many features that C has, such as user-defined types, be-
cause C is a programming language while C-- is a compiler-
target language. C-- has a few features, critical for compil-
ers, that C lacks. For example, C-- has proper tail calls, so
procedure sp2 in Figure 1 works in constant stack space.

So much for basic code generation. Implementations of high-
level languages often require run-time services such as mem-
ory allocation and garbage collection, exception dispatch,
and concurrency. It would be wrong for C-- to offer such
services; no one semantics, object layout, and cost model
could possibly satisfy all clients. Instead, we expect that
each client of C-- includes not only a front end, but also
a front-end run-time system, which implements whatever
high-level services are needed. This front-end runtime must
cooperate with C--, because C-- controls stack layout and
register allocation. The C-- run-time interface provides the
mechanism for this cooperation.

The run-time interface exports procedures that the front-
end run-time system can call to inspect and modify the state
of a suspended C-- computation. A garbage collector can
walk the stack to find roots (Peyton Jones, Ramsey, and
Reig 1999); an exception dispatcher can walk the stack to
find a handler (Ramsey and Peyton Jones 2000); a scheduler
can transfer control between C-- threads running on sepa-
rate stacks (this paper); and so on. We expose the details of
the interface gradually, but the fundamental idea is that a
C-- computation executes on a stack ; the run-time interface

1C-- deliberately exposes a few architectural details, such as word
size and alignment (Peyton Jones, Ramsey, and Reig 1999).

provides access to each activation and its local variables. We
start by assuming that the stack is contiguous, unbounded,
and grows towards increasing addresses; in Section 7 we dis-
cuss how to lift these unrealistic assumptions.

2.1 Implementations and policies for lightweight
concurrency

We want to implement concurrent languages, but “concur-
rency” means different things to different people. To some
it means processes or threads supported by the operating
system. We do not address this form of concurrency; since
the operating system handles all the details of multiplexing
the processes or threads onto the available CPUs, this form
of concurrency is outside the purview of a code generator.

OS threads and processes are heavyweight mechanisms.
Creating and communicating between threads is typically
expensive. For example, if Java is implemented by mapping
a Java thread to an OS thread, programmers must not cre-
ate too many threads, must not create them too often, and
must not synchronize too often. To economize on thread cre-
ation, programmers sometimes write their own schedulers in
the high-level language; e.g., “work crews” may pick up and
execute work packets (Roberts and Vandevoorde 1989). For
languages whose programming model is based on dirt-cheap
thread creation, such as Concurrent ML, JoCaml, Concur-
rent Haskell, Pict, and others, using one OS thread for each
language thread is a complete non-starter.

An attractive alternative user threads, which means multi-
plexing many Java (say) threads onto a single OS thread.
Now the Java compiler and its run-time system must co-
operate to share the computation power of a single OS
thread among the Java threads. Everything gets much,
much harder for the language implementor. For example,
the OS thread provides only one stack, so now the Java com-
piler must itself allocate stack space for the Java threads,
move control between stacks, manage stack overflow, etc.
An implementation on a true multiprocessor may be even
more complex, e.g., we may run an OS thread on each pro-
cessor, each of which serves many user threads.

3 Continuations for concurrency

The first key mechanism needed to multiplex threads is the
ability to transfer control between threads. In 1980 Mitch
Wand noticed that one could support lightweight concur-
rency in a Scheme implementation simply by using CATCH,
a precursor of “call with current continuation,” also called
call/cc (Wand 1980). The idea has been widely used in the
Scheme community and also taken up by Concurrent ML
(Reppy 1991). To take a very simple example, a thread that
is ready to yield control might call a procedure yield in the
scheduler. yield would capture the thread’s continuation
using call/cc, choose another thread (= continuation) to
run, and throw control to it. The following implementation
might be suitable for a uniprocessor:

(define yield ()
(call/cc (lambda (k) ; capture thread in k
(put ready-queue k)
((get ready-queue))))) ; throw to other thread

Of course one might wish for a more sophisticated scheduling
policy, and on a multiprocessor, one would have to synchro-
nize access to the ready queue, etc., but the point is that a
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continuation—a resumable computation—is a splendid en-
capsulation of a suspended thread; we need no other support
for context switching. The win is that the scheduler is just
another Scheme function, and the programmer can change
the scheduling policy without any help from the language
implementor. This is exactly the property we want for C--!

Should we simply add first-class continuations to C--? Un-
fortunately not. C-- is meant to provide an interface to
a code generator, and that interface must present a clear
cost model to the front end. There are too many strategies
for implementing first-class continuations, with too many
cost models (Clinger, Hartheimer, and Ost 1999); the client,
not C--, should get to choose. Pleasantly enough, however,
C-- already supports a weaker form of continuation, which
is used to implement exception dispatch in constant time
(Ramsey and Peyton Jones 2000). It turns out to be possi-
ble to implement Wand’s idea using C-- continuations.

3.1 Continuations in C--

In C-- one captures a continuation using a syntactic con-
struct somewhat reminiscent of an exception handler, rather
than by using a procedure call/cc. Here is an example:

f( bits32 x ) {
bits32 y;

y = g( x, k ) also cuts to k;
return( x-y );

continuation k(y):
return( x+y );

}

g( bits32 x, bits32 w ) {
...
cut to w(3) ;
...

}

In this example, the phrase continuation k(y) declares the
continuation k, binding k throughout the body of f.

• k is a value, which can be stored in memory, passed to
g, and so on. g is free to “cut to” the continuation,
cutting the stack back to the activation containing k
and resuming execution at that point.

• The continuation can take parameters, to allow infor-
mation to be conveyed from the cut to statement to
the target continuation. In the example above, the dec-
laration “continuation k(y)” specifies that y will be
passed to the continuation. This is not a binding occur-
rence of y; on the contrary, y must be a local variable
of f. How the value gets from cut to to continuation
is a private matter for the C-- implementation.

• The phrase “also cuts to k” at the call site tells the
C-- optimizer that in addition to a normal return, the
call to g may terminate by transferring control to con-
tinuation k. The optimizer uses this information to de-
termine liveness and to arrange that the call preserves
any values needed in the continuation.

• Though k is a value, it is not a completely first-class
value, because its lifetime ends when f returns, or when
any continuation captured by a (transitive) caller of f
is cut to. It is an unchecked run-time error to cut to

a dead continuation. The benefit of this Draconian re-
striction is that such continuations can be implemented
very efficiently (Section 3.3). C-- is an unsafe assem-
bly language; it is up to the front end to make sure the
C-- continuations are not misused.

Although restricted, these continuations are plenty power-
ful enough to implement constant-time exception dispatch
(Ramsey and Peyton Jones 2000). They are also enough to
transfer control between threads, as we see next.

3.2 Making new continuations

We already have nearly enough to implement a simple con-
currency package. Suppose a C-- thread voluntarily calls
yield, a procedure whose intent is to allow another thread
to run. The Scheme version of yield from the previous page
could be written this way in C--:

yield() {
put(ready_queue, k);
cut to get(ready_queue);
continuation k: return;

}

Here, yield captures a continuation k, puts it on the ready
queue, decides which thread (continuation) to run next,
and uses cut to to transfer control to that continuation.
More sophisticated scheduling policies can be implemented
by writing a different version of yield, or perhaps by having
yield call an out-of-line scheduler.

But where are these continuations on the ready queue to
come from? yield cannot safely cut to another continuation
on its caller’s stack, because transferring control to any such
continuation would kill k. What we need is a C-- primitive
to create a fresh continuation:

NewContinuation( bits32 stk, bits32 f, bits32 x )

NewContinuation receives a pointer to a chunk of memory
stk, in which it creates a new call stack, initializes it, and
returns a parameterless continuation, k. When this contin-
uation is cut to, it runs f(x) on the new stack, incidentally
killing k. It is an error for the procedure f to return, because
there is nothing sensible to do “after” f. Instead, f will typi-
cally recycle the memory chunk and jump to the scheduler—
but C-- neither knows nor cares about that. Section 4 has
an example. We do not need to tell NewContinuation how
big the memory chunk is, because dealing with stack over-
flow is the client’s responsibility, as we discuss in Section 7.

3.3 Implementation notes and cost model

Because of their limited lifetime, C-- continuations are dirt
cheap, and they come with a guaranteed cost model. A con-
tinuation value is represented by a single machine address,
so it is cheap to pass and store. Exactly what the address
points to is private to C--, but one good implementation
is to represent the continuation by a pointer into the stack.
cut to simply loads this pointer into the stack-pointer regis-
ter, puts the actual parameters into standard locations, finds
the program counter in some standard location on the stack,
and branches to that program counter. Because cut to is
much like a return, it’s attractive to pass the actual param-
eters using the same convention we use for returning values
from a procedure, but other conventions are equally valid.
No matter what the value-passing convention, cut to takes
constant time.
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Figure 2: Design choices and costs for continuations

Capturing a continuation is extremely cheap; we need only
save a stack pointer and program counter. Capturing a con-
tinuation has a subtle indirect cost, however. Consider the
example program in Section 3.1. Because cut to is guaran-
teed to take constant time, it cannot restore any callee-saves
registers that are live at the call to g. So the flow edge spec-
ified by the also cuts to annotation kills the callee-saves
registers. That in turn makes the call to g slightly more
expensive, because any variable live in k (for example, x),
cannot be kept in a callee-saves register.

NewContinuation is a constant-time operation, involving a
handful of memory writes to initialize the new stack chunk.

Figure 2 compares C--’s continuations with those in the lit-
erature. Fully first-class continuations are expensive, some-
times unpredictably so. Bruggeman, Waddell, and Dyb-
vig (1996) observe, however, that many continuations, in-
cluding those used to represent threads, are used at most
once. In their Chez Scheme system, so-called one-shot con-
tinuations are restricted to at most one invocation, but they
are much less expensive than first-class continuations, be-
cause neither capturing nor invoking a continuation require
stack copying. On the other hand, their lifetime is dynamic:
a one-shot continuation remains valid until used even if one
throws to a continuation captured by a (transitive) caller.
C--’s continuations occupy a different part of the design
space; by compromising on lifetime, not number of uses,
we get continuations that are cheaper still. We discuss this
tradeoff further in Section 9.

4 Example: building threads on continuations

Using these continuations, the front-end runtime can sup-
port user threads by providing a library written in C--.
We illustrate by defining tfork, a procedure that forks a
new user thread. To show the flexibility of C--, we choose
a more complex representation of threads than the simple
continuations used to implement yield, above. Instead, we
represent a thread by a thread-control block (TCB), which
contains such information as the thread’s saved continua-
tion, its thread-local data, its priority, pointers used to put
threads on queues, and so on. In particular, we assume that
the very first word of a TCB is the (parameterless) con-
tinuation that should be cut to to resume execution of the
thread. Different front ends could easily implement different
design choices; this is the joy of Wand’s idea.

We assume that we have defined these procedures as part of
the front-end run-time system:
alloc Allocate memory
put Put a TCB on a queue
release Deallocate memory
reschedule Choose a ready thread and run it

Supposing that a TCB occupies 40 bytes, and we choose to
put it at the base of a 4K stack, here is tfork:

tfork( bits32 f, bits32 x ) {
bits32 tcb; /* TCB (and stack) of new thread */
bits32 k; /* Continuation for new thread */

tcb = alloc(4096); /* Allocate new TCB & stack*/
k = NewContinuation( stk+40, run_thread, tcb );

/* Stack starts beyond TCB */

/* Initialize and enqueue the TCB */
bits32[tcb] = k; bits32[tcb+4] = f; bits32[tcb+8] = x;
put( ready_queue, tcb );
return;

}

run_thread( bits32 tcb ) {
bits32 f,x;

f = bits32[tcb+4]; x = bits32[tcb+8];
f(x); /* Do the job of this thread */
release( tcb ); /* Deallocate the TCB+stack */
jump reschedule(); /* Tail call the scheduler */

}

tfork allocates memory to hold the TCB and stack for the
new thread, uses NewContinuation to initialize the stack,
and stores k, f and x into the TCB (bits32[a] refers to the
word of memory at address a). tfork then adds the new
TCB to the ready queue and returns. The continuation k
is stored in the first word of the TCB, where the scheduler
expects to find it. The next two words hold f and x until the
scheduler decides to run the new thread. It does so by cut-
ting to k, which in turn calls the procedure run_thread. The
latter retrieves f and x from the TCB, then runs f(x) (i.e.,
what the caller of tfork originally wanted) before releasing
the storage for the thread and re-entering the scheduler.

You might wonder whether it is OK for run_thread to re-
lease the storage for the thread while still running on the
stack held in that storage. Good question! This is ex-
actly the kind of delicate question whose answer we want
not to build into C--. In some situations it might be per-
fectly OK (e.g., the storage can’t possibly be re-used until
Reschedule() cuts to a new thread). In others, it might be
a disaster. In the latter case, we can readily fix the prob-
lem by having a spare C-- continuation, with a stack of its
own, that plays the role of a kernel stack. Then run_thread
can cut to the kernel stack, which can release the storage
held by the now-finished thread. The details are unimpor-
tant. What is crucial is that these decisions are made by
the client; they are not built into C--.

5 Global variables and sharing

We now turn our attention to the second key problem from
the Introduction: sharing. In general, some information
should be shared among threads, while other information
should be private. Furthermore, it is common to keep both
kinds of information in registers, e.g., the allocation pointer,
the exception stack, the current profiling bucket, or what-
ever. C-- provides direct support for such global registers,
which are visible to all activations of a C-- computation.
We devote this section to explaining how global registers
interact with thread switching and concurrency, and in par-
ticular, how global registers can be made private or shared.2

2Given private global registers, it is easy for a C-- client to provide
thread-local data; either the data itself or a pointer to it can be held
in a global register.
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5.1 Global registers

We begin by reviewing how global registers work in C--.
Global registers are defined in C-- by a global register dec-
laration. For example, this declaration specifies two global
registers, hp and tcb, both of type bits32:

register bits32 hp;
register bits32 tcb;

The idea is that hp might be the allocation pointer, while
tcbmight point to the TCB of the currently-running thread.
In the presence of such declarations, the globals can be used
just like local variables. For example, we may write:

f( bits32 x ) {
bits32[tcb+16] = x;
return

}

This procedure stores x in the word beginning 16 bytes be-
yond where tcb points; it is probably a store to a thread-
local location.

Global register declarations have the following Draconian
constraints:

• Every C-- compilation unit in an application must con-
tain identical global register declarations, in the same
order. The use of global registers affects the calling
convention generated by the C-- compiler, so it abso-
lutely must be consistent.

• The programmer can assign global registers to partic-
ular machine registers by adding annotations, thus:

register bits32 hp "%eax";
register bits32 tcb "%ebx";

Lacking such annotations, the C-- compiler puts as
many globals as possible in registers, keeping the rest in
memory. Variables declared first have highest priority
for allocation to registers.

• You cannot take the address of a global register, so the
C-- compiler can assume that they do not alias with
each other or with any memory location.

5.2 Global registers and concurrency

What policies should be available to govern the sharing
of global registers between threads? “Shared among all
threads” and “private to each thread” are obvious policies,
but for shared-memory multiprocessors finer distinctions are
needed. For example, a common choice is to have a separate
heap-allocation pointer for each physical processor. All the
user threads that run on a particular processor use that pro-
cessor’s allocation pointer, which must be distinct from the
allocation pointer used by user threads on other processors.
This is clearly the sort of critical choice that should be up to
the client. Accordingly, C-- control transfers do not affect
the global registers. If the client wants to change the tcb
global register, say, when switching threads, then he simply
assigns a new value to it.

Unfortunately, at least some interactions between threads
are likely to be mediated by the front-end run-time system,
and we have already noted that much of the front-end run-
time may be written in a proper programming language,
which knows nothing about C-- global registers! To com-
plete the story, we show how the front-end run-time system
can get into the act without trashing the global registers.

5.3 Global registers and C code

The front-end run-time system should be written in a
language designed for human programmers, but providing
enough unsafe features to enable the implementation of
garbage collectors, etc. Without loss of generality we as-
sume this language is C. What we need, then, is a way to
transfer control from C to C-- and back. In particular, it
must be possible to define C-- procedures that are callable
from C, and to call C from certain C-- procedures. Every
transition between C and C-- must be identified explicitly,
because C-- need not use C’s calling convention.

To allow C to call C--, one defines a procedure in C-- using
a foreign annotation:

foreign "C" f( bits32 x ) {
...

}

The foreign "C" part tells the C-- compiler to generate
code for a procedure that expects to be called using C’s
calling convention. Such a procedure returns to C using
foreign "C" return(x).

Similarly, to allow C-- to call C, we provide a foreign ver-
sion of the procedure call:

r = foreign "C" g( x, y );

So what happens to global registers? We cannot hope for
them to survive a transition from C-- to C, because the
C and C-- calling conventions need not be compatible. One
possibility would be to automatically save and restore the
globals across a foreign call, but that is not always right.
For example, suppose that a user thread is suspended (its
continuation captured) and later resumed. Some of its glob-
als (e.g., the user-thread-local ones) should be restored just
as they were when the thread was suspended. Others (e.g.,
the allocation pointer) should be shared among all user
threads; or, on a multiprocessor, shared among the user
threads bound to a particular OS thread.

These are clearly policy decisions! Here is how we expose
them to the client:

• We provide C-- procedures that save and restore the
global registers en bloc:

SaveGlobals ( bits32 gp )
RestoreGlobals( bits32 gp )

Each of these procedures takes as argument the address
of a save area for the globals; this area must be pro-
vided by the front-end runtime. SaveGlobals stores
the registers in the save area; RestoreGlobals loads
the registers from the save area. It is an unchecked er-
ror to save the globals into a save area other than the
one from which they were restored by the preceding
RestoreGlobals.

• A foreign call kills all the global registers, and a
foreign-callable procedure starts with all the global
registers dead (but see also Section 5.4).

• The only C-- constructs that affect the values held in
the global registers are RestoreGlobals, foreign call,
and direct assignment to a global register. All the oth-
ers, including call, return, cut to, NewContinuation,
SaveGlobals, and so on, leave the global registers un-
changed.
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• The C-- run-time interface (see Section 2) includes a
procedure that the front-end runtime can use to ma-
nipulate global registers:

void *Cmm_FindGlobal( void *gp, int n )

The call Cmm_FindGlobal(gp,n) returns the address of
the n’th global in the save area gp. This allows the
front end to get at the values saved by SaveGlobals.

Now the front end is in control. Typically, it will save the
globals before exiting a C-- context and restore them before
entering it again. Sometimes the address of the save area will
itself be kept in a global register, so that it is conveniently
available when the time comes to save the globals, but that
choice is not built into C--. On a uniprocessor it might be
perfectly OK to use a fixed memory location as the global
save area, or on a multiprocessor there might be an OS-
specific way to get at data local to an OS thread.

One question remains: how big should the client make the
save area? C-- provides a static constant %GlobalSize,
available in C-- code only, which gives the size in bytes.
The client can, for example, implement a C-- procedure to
return this value, or it can use C-- to allocate a suitable
block of memory statically, thus:

section "data" {
save_area : bits8[%GlobalSize]

}

Section 6 presents an example of the interactions between
C-- threads and a garbage collector; this example illustrates
the intended use of RestoreGlobals and SaveGlobals.

5.4 Atomic foreign calls

Some foreign calls invoke innocuous procedures, i.e, ones
that cannot suspend, allocate, or do other strange things. In
these cases we might like to avoid the expense of a complete
SaveGlobals/RestoreGlobals pair, and instead simply ask
the C-- implementation to save the globals across the for-
eign call. Purely as an efficiency enhancement, C-- offers
an atomic call to a foreign procedure, thus:

r = atomic foreign "C" sin( x );

The keyword “atomic” tells C-- that the call is atomic with
respect to thread switching, use of Cmm_FindGlobal, etc.,
and it instructs the C-- back end to save and restore any
global registers that are considered volatile by the C call-
ing convention. It can save them on the stack, or per-
haps in C’s callee-saves registers, but the globals are not
available to Cmm_FindGlobal during the foreign call. Pro-
vided the foreign code keeps its promise of atomicity, the
atomic foreign call is equivalent to a more expensive se-
quence: SaveGlobals, make foreign call, RestoreGlobals.

5.5 Implementation notes

C-- keeps as many as possible of the global “registers” in
real, machine registers, but if there are too many globals,
some must live in memory. In that case, a plausible im-
plementation is to dedicate one machine register to point
to the save area, and to access individual globals by in-
dexing from this pointer. Even then, globals are better
than arbitrary memory locations, because the code gener-
ator knows that the globals do not alias with other memory
locations. Because we require that SaveGlobals be passed

void Cmm_FirstActivation(Cmm_cont k, Cmm_activation *a);
int Cmm_NextActivation(Cmm_activation *a);
void *Cmm_FindLocal(Cmm_activation a, int n);

int Cmm_BytesToTop(Cmm_activation a);
Cmm_cont Cmm_CopyActivations (Cmm_activation *a,

void *stack, Cmm_ptr underflow);

Figure 3: Part of the C-- run-time interface, written in C

the same save area as RestoreGlobals, we can limit the
cost of RestoreGlobals and SaveGlobals to the number of
machine registers saved and restored.

6 An example: garbage collection

As a concrete example of managing global registers, we show
how to manage the control transfer between application code
and a garbage collector. We use the same example to illus-
trate a second point: the same facilities that support con-
currency are necessary to support garbage collection, even
in a non-concurrent system. The garbage collector needs to
inspect and modify the state of a suspended computation,
including that computation’s stack. In a non-concurrent set-
ting, it is very desirable to do so while using only one stack,
but this is a little tricky, because the garbage collector runs
on the very same stack that it modifies. When we run on
one stack, control starts in the front-end runtime, which ini-
tializes the heap, then calls the main C-- procedure of the
compiled high-level program.

We assume that heap allocation takes place in a contiguous
area whose extremities are pointed to by the global registers
hp and hlim. At intervals, the compiled program must check
for heap overflow, e.g., as in with the following C-- code,
which allocates 20 bytes:

test:
if (hlim - hp < 20) {

call_gc();
goto test:

} else { hp = hp+20; }

The C-- procedure call_gc saves the global registers and
calls the garbage collector, passing a continuation for the
suspended computation. Here, save_area is assumed to be
the label of a static global-register save area (Section 5.3):

gc() {
SaveGlobals( save_area );
foreign "C" gc( k );
RestoreGlobals( save_area );
return;

continuation k:
return;

}

The only reason to have k is to have a value to pass to gc,
so that it knows where to start its stack walk.

The C-- run-time interface, part of which is summarized in
Figure 3, provides access to the state of a suspended compu-
tation. The front end can look at an activation on the stack,
find the locations of its local variables, find its caller’s acti-
vation, and so on. The “handle” used to provide access to
all this information is precisely the C-- continuation that
is passed to gc, and which is used to resume execution of
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the thread. In particular, Cmm_FirstActivation initializes
a data structure, of type Cmm_activation, that identifies an
activation record on the stack. Cmm_NextActivation moves
from one activation to the next one down, returning zero if
there is none. Cmm_FindLocal returns the address of the n’th
local variable in activation a. Other parts of the run-time
interface, not presented here, allow the garbage collector to
figure out which local variables hold pointers (Peyton Jones,
Ramsey, and Reig 1999).

7 Stack management

The last of the key mechanisms identified in the Introduction
is the management of stacks. C-- requires a computation
to execute on a stack, but it is up to the client to decide
how many stacks it wants and how big they should be. C--
is intended to support the following policies:

(A) The entire program, including both generated code and
the front-end run-time system, executes on one big
stack: the “system stack.” This stack is effectively un-
bounded; the operating system arranges for it to grow
until all of memory is exhausted, or until the size of the
stack exceeds some limit assigned by the user. Stack
exhaustion is a checked run-time error. This policy is
suited only for single-threaded languages, but for those
languages it is the policy of choice.

(B) A thread does not run on a stack, but instead uses
continuation-passing style. This policy was popular-
ized by Standard ML of New Jersey (Appel 1992) and
Concurrent ML (Reppy 1991). It can be implemented
as a special case of policy A, in which all threads share
a degenerate stack containing only one frame, and ev-
ery call is a tail call. Each thread yields only when
its state is captured in a heap-allocated “client con-
tinuation”, built and maintained entirely by the front
end. C-- continuations are not used; instead, a thread
yields by tail-calling the scheduler, passing the client
continuation.

(C) Each thread runs on a bounded stack, the size of which
is fixed at the time the thread is created. Stack exhaus-
tion may be treated as a checked run-time error, as in
SRC Modula-3, or as an unchecked run-time error, as in
many threads packages for C. The client makes this de-
cision by balancing the values of safety, efficiency, and
ease of implementation.

(D) Each thread runs on a contiguous stack, which is en-
larged as needed. Enlarging a stack may entail copying
it to another memory location. The front-end run-time
system and C-- must cooperate to ensure that stacks
can be copied and that exhaustion is handled transpar-
ently. Several JVMs use this policy.

(E) Each thread runs on a segmented stack. New segments
are added as needed and are returned to a common pool
when no longer needed. For good performance, some
hysteresis is needed to bound the overhead of “bounc-
ing” across segment boundaries (Bruggeman, Waddell,
and Dybvig 1996). Chez Scheme uses this policy.

(F) In variants of policies D and E, the client might want
to move stacks around, or compact segments together,
during garbage collection, rather than just moving a
chunk on the top when stack overflow occurs.

The policies further down this list are extremely ambitious
in the context of C--, because they involve such intimate
cooperation between C-- and the client. In this paper we
describe how to implement A-E, leaving F for further work.

To get off the ground, we need to know three things: in
which direction the stack grows (easy, Section 7.1), how to
detect stack overflow (moderately easy, Section 7.2), and
what to do when the stack overflows (difficult, Section 7.3).

7.1 Stack direction

For each architecture there is usually a “preferred” direction
of stack growth; that is, one that is better supported by the
hardware. We deal with this question in a simple but bru-
tal way: C-- assumes that the client knows the direction of
stack growth. As we mentioned in the Introduction, C-- is
not a “write-once, run-anywhere” language. There are a
few architectural features that are very hard for C-- to hide
without losing efficiency, but are very easy for the client to
adapt to: word size, byte order, alignment requirements,
direction of stack growth, and synchronization style (Sec-
tion 8.2). C-- is dramatically simplified by exposing these
features to the client, and we claim this simplification comes
at very little cost to the client.

The direction of stack growth determines the specification of
NewContinuation. If the stack grows up, NewContinuation
must be given the address of the lowest-address byte of the
stack; if the stack grows down, it must be given the address
one byte beyond the highest-address byte of the stack.

7.2 Detecting stack overflow

To implement policy C, we need only the ability to detect
stack overflow. This is a delicate matter, because we want
the front end to decide whether and how to check for stack
overflow, but the back end has critical information needed
to perform such checks.

The primary policy question about detecting stack overflow
is “how much should it cost?” The cost is paid at every call,
so it must be low. Here are some common policies:

Omit the stack-overflow check.

Compare the stack pointer with a stack limit, obtained

(a) from a dedicated register,

(b) from some other well known location, or

(c) by masking out the least significant n bits of the
stack pointer (for downward-growing stacks).

Guard page. Place an inaccessible page of memory just
beyond the end of the stack. The compiler arranges for
the first store into each procedure’s activation record to
be at the extreme young end of the frame; if the stack
is exhausted, this store is guaranteed to cause a fault.
This works unless the procedure’s activation record is
larger than a guard page (a statically-known fact), in
which case the compiler must either test against a limit
or generate multiple stores, one into each page of the
new activation record.

The remaining policy decision that must be left to the front
end is that only the front end knows whether it should be
possible to recover from stack overflow.

The front end cannot implement these policies by itself, be-
cause only the C-- implementation knows these facts:
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• in what register the stack pointer is stored

• how big the activation record is

• how much “headroom” is needed to save the state that
is needed for recovery from stack overflow

• how to make a store into the extreme young end of the
frame do useful work

• how to save the state needed to recover after a stack
overflow

We need such close cooperation between front and back ends
that it seems necessary to introduce a new C-- primitive.

The limitcheck primitive, which checks for stack overflow,
is a bit like a conditional cut to; if the stack is exhausted, it
cuts to an overflow handler provided by the front end. The
syntax of this primitive is as follows:

limitcheck [limit ] [guarded size]
fails to continuation
[recovers with continuation];

Optional elements appear in brackets; the meanings of the
elements are as follows.

• The limit is an expression used to compute the stack
limit. This expression may refer to the C-- pseudo-
variable %sp; this variable stands for the current value
of the stack pointer, which is needed for limit-check
policy (c) above. By making the front end provide the
limit expression, we enable the front end to choose the
cost of computing the stack limit.

• guarded size, if present, indicates that the front-end
run-time system has placed an inaccessible “guard
page” of size size just beyond the end of the stack.
The size must be a compile-time constant expression.
The default is size 0, i.e., no guard pages.

• The front end must provide a continuation to cut to
if the stack overflows. It receives as its argument a
continuation for the thread whose stack has overflowed.

• Using the optional recovers with clause, the front end
may provide a continuation to cut to after the overflow
has been resolved. Normally this continuation will be
in the procedure that has just overflowed, either just
before or just after the test. If the front end omits the
recovers with continuation, the back end knows that
stack overflow is an unrecoverable error. The back end
can adjust its notions of “headroom” accordingly, and
it can also avoid emitting the code needed to save state.

The front end must provide either a limit or a nonzero guard-
page size; if it provides both, C-- uses the guard page for
small frames and an explicit limit check for large ones.

Here, for example, is one way to test for stack overflow, at
the entry point to procedure f:

import stack_overflow;
register bits32 stacklimit;
f( bits32 x ) {
continuation test:
limitcheck stacklimit
fails to bits32[stack_overflow]
recovers with test;

...rest of f...
}

The limit check requires that the current activation record
fits below stacklimit, a global register. If not, it imme-
diately cuts to a continuation stored in memory at address
stack_overflow, passing continuation test as an argument.
After the overflow is dealt with, the front-end run-time sys-
tem can resume the thread by cutting to test.

Of course, if the limit check fails, the back end will need
enough stack space to spill the parameters (x in this case)
and the callee-saves registers (since cut to does not restore
them) before transferring control to stack_overflow. The
amount of space needed is bounded by the number of reg-
isters; if there are dozens of parameters, the ones that do
not fit in registers will be on the stack already. The calling
convention therefore requires that there always be enough
space to dump the registers live at the call, and it is up to
the caller to provide this space. So f’s limitcheck includes
space for f’s callees to dump their registers if necessary. It is
therefore unsafe for a C-- procedure that does not recover
from overflow to call a C-- procedure that does recover from
overflow.

An ambitious C-- compiler might use call-graph informa-
tion to economize on stack-overflow checks, e.g., a proce-
dure might check stack space for its (non-recursive) callees.
Call-graph information might come from the compiler’s own
analysis or might be provided by a front end, using an an-
notation (targets) not otherwise mentioned in this paper.
It is not obvious that the gain in efficiency would be worth
the pain of complexity.

7.3 Dealing with stack overflow

If the stack overflows, we may cut to a continuation in the
front-end runtime, which can either abort (the thread or the
whole program) or can rearrange memory to increase the
size of the stack. In general, memory can’t be rearranged
without copying all or part of the stack to a new block of
memory, which is our topic for the rest of this section.

The recovery routine can use the run-time interface (Fig-
ure 3) to walk the stack of the thread whose stack has
overflowed. At any time during this stack walk, it can
call Cmm_BytesToTop to find how many bytes lie between
the current activation and the youngest end. At some
point—when the bottom of stack is reached (policy D), or
when there are enough bytes to copy (policy E)—the stack
walker will decide to copy all or part of the stack to some-
where new. It does this by calling Cmm_CopyActivations.
Cmm_CopyActivations copies the segment of stack from, and
including, the activation a up to the youngest end; that is,
up to and including the continuation from which a was orig-
inally initialized with Cmm_FirstActivation. It copies this
chunk of stack into a new block of memory pointed to by
stack, and it returns a new continuation that can be used
to resume the computation on its new stack.

When the computation resumes, it may eventually un-
derflow the new stack, unless we copied all the activa-
tions on the old stack. Cmm_CopyActivations arranges
that, when underflow occurs, the C-- procedure underflow
is called. This procedure is passed as a parameter to
Cmm_CopyActivations. If zero is passed then the following
C-- procedure is used as default:

std_underflow (bits32 k, bits32 stack) {
cut to k;

}
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The first parameter to the underflow procedure is a zero-
parameter continuation that resumes the computation on
the old stack segment. The second parameter points to the
block of memory originally given to Cmm_CopyActivations.
It is ignored by the default underflow routine, but the client
may supply an underflow routine that (for example) returns
the block to a free pool.

7.4 Redirecting pointers

A serious complication with moving stacks around is that
the client may hold pointers into the stack. These pointers
include not only C-- continuations but also client data that
is allocated on the stack using a mechanism not presented
in this paper. There are many policies one might like to
support for stack-allocated data.

• If stack-allocated data is immutable, it is safe to copy.

• If stack-allocated data is mutable, but the garbage col-
lector never moves stacks, a good plan is to use the
original activation, not any copies, as the “master” lo-
cation for the data. The cost is that such data must be
addressed indirectly, via a C-- local variable, rather
than by a fixed offset from the stack pointer. Chez
Scheme uses this policy for “heap objects” allocated
on the stack. This policy is easily expressed in C--,
but we omit the details.

• If stack-allocated data is mutable and the garbage col-
lector moves stacks, we need support for redirecting
pointers into the stack. This support presents no great
difficulty in principle, but it adds to the complexity of
Cmm_CopyActivations, and the details are beyond the
scope of this paper.

Continuations are a little more delicate than client data.
Consider the following example:

f( bits32 x ) {
bits32 v ;
v = x;

g( x, k ) ;
v = v+1 ;

h( x ) also cuts to k ;
return(v) ;

continuation k:
return( v ) ;

}

Here, g presumably stores k somewhere, and h finds that
pointer and cuts to it. But since g (or its callees) may
provoke stack overflow, by the time g returns, f may resume
execution in a copy of its original activation, and it is in the
copy that v will be modified.3 It would be an error for h to
cut to the old stack, because that won’t have an up-to-date
copy of v.

One solution to this problem is to require the client to find
all the continuations it has stored away, and redirect them
to the new stack segment. This may be acceptable during
garbage collection, when the store is being traversed anyway,
but it is not acceptable when expanding a stack. A better
solution is to require Cmm_CopyActivations to replace all
continuations in the copied activations by indirections to

3We assume some hysteresis in the stack to prevent “bouncing”.

their new locations. Now, if h throws to the old k, the old k
will transparently throw to the new k.

We hope this story gives you an uneasy feeling. How com-
plicated is this going to get? How do we know when we
are done? We do not have a completely satisfactory answer.
You may not be surprised; systems that support fully-mobile
stacks and interior pointers, even when front and back ends
are tightly integrated, are rare, complicated, and seldom
well described. Nevertheless, the design we have presented
can support the most common policies, and we see no insu-
perable obstacles to extending it to richer regimes.

7.5 Implementation notes

The abstractions described in this section are undoubtedly
complicated to implement, which is precisely why we want
to abstract over them. The main complications are these:

• To enable continuations to be forwarded transparently,
the simplest strategy is to allocate a pair of words on
the stack for each continuation. At allocation time,
one word is initialized, to the program counter for
the relevant continuation. If the activation is moved
by Cmm_CopyActivations, the second word is made to
point to the new copy of the continuation, and the
program-counter word is changed to a trivial C-- pro-
cedure which throws to that continuation.

• When underflow occurs, C-- must arrange to dump
the return values (there may be many) into the lower
stack segment and construct a zero-parameter contin-
uation to complete the return, which it then passes to
the underflow routine. If the user has not supplied an
underflow routine, then it is possible to return directly
to the lower stack segment without dumping the re-
turn values. The std_underflow routine given above
is a specification, not an implementation.

8 Pre-emption and synchronization

A full treatment of concurrency in C-- would cover pre-
emption and synchronization, but we do not have space for
that here, so we content ourselves with brief summaries.

8.1 Pre-emption

Pre-emption is typically triggered by an asynchronous event,
e.g., a timer interrupt. The interrupt handler may simply
make a small change in the state of the machine, for which
each thread must poll frequently. Alternatively, the inter-
rupt handler may suspend the interrupted thread, taking
the “signal context” or “interrupt frame” supplied by the
operating system and packaging it as a C-- continuation.
The latter technique is well understood (Reppy 1990) but
tricky to implement; it is a perfect candidate for C--.

When a thread can be interrupted and suspended anywhere,
it is unclear what operations can be performed on a sus-
pended thread. Clearly one can cut to such a thread, but
can one safely walk the stack? Run the garbage collector?
It may be too expensive to make a thread “collectible” at
every instruction, although some recent results are encour-
aging (Stichnoth, Lueh, and Cierniak 1999). If not, and if
it is necessary to run the collector, suspended threads must
be rolled forward or rolled back to a “safe point.” These
are current research problems, as is whether or how the C--
back end should support safe points.
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8.2 Synchronization

For pre-emptive or multiprocessor implementations, C--
must support synchronization. Operating-system synchro-
nization is easy but expensive; the sensible solutions for a
custom code generator appear to be atomic hardware in-
structions or (for a uniprocessor only) restartable atomic
sequences (Bershad, Redell, and Ellis 1992; Shivers, Clark,
and McGrath 1999). We discuss only instructions here.

We have identified two families of atomic hardware in-
structions. The explicit-protection family, exemplified by
the test and set instruction, requires that all access to
shared data be protected by an explicit “lock bit.” The
implicit-protection family, exemplified by the compare and
swap or load-linked/store-conditional instructions, can pro-
vide atomic operations on a word in memory even when
some threads write to that word using ordinary store in-
structions. It is pointless to try to hide this distinction from
the C-- client, because when using explicit protection, the
front end must allocate a lock bit to protect every piece of
shared data, whereas when using implicit protection, the
front end can usefully manipulate a protected word without
additional lock bits.

We have identified a useful abstraction for implicit-
protection instructions: weak compare and swap. It is like
an ordinary compare and swap, except it may nondetermin-
istically fail even if the comparison succeeds. It can be used
to solve a variety of synchronization problems, and it can
be implemented easily and efficiently using either hardware
compare and swap or a load-linked/store-conditional pair.
It is therefore a good candidate for addition to C--.

9 Related work

The basic ideas about continuations, exceptions, context
switching, and stack overflow are well known to those inter-
ested in compilers and run-time systems, who have imple-
mented many variations on these themes. We have, however,
found it hard to track down published descriptions. Even
among what we have found, space limitations preclude a
comprehensive treatment; we give only an illustrative sam-
ple of references.

Wand (1980) is the seminal paper on using continuations
for concurrency. The technique has been used widely in lan-
guages with first-class continuations; Reppy (1991) presents
an interesting example. Reppy (1990) makes a connection
between pre-emption and continuations.

The trade-off between the Chez Scheme’s one-shot continu-
ations (Bruggeman, Waddell, and Dybvig 1996) and C--’s
continuations is interesting. Chez Scheme’s design requires
a segmented stack, which C-- supports but does not re-
quire. Furthermore, capturing a one-shot continuation re-
quires sealing an existing stack chunk and beginning a fresh
one. This is a constant-time operation, but it is not nearly
as cheap as saving a single program counter on the exist-
ing stack, which is what C-- does to capture a continuation
(Section 3.3). For example, call/1cc would be a relatively
expensive way to set up an exception handler. A C-- client
could, however, implement Chez Scheme’s design by using
NewContinuation to allocate a new stack whenever a con-
tinuation was captured.

There are many “lightweight threads packages” for C; Cor-
mack (1988) describes one interesting early example. Many

of the techniques developed for these packages could be used
to implement some of the primitives discussed here, but
most of them embody policy decisions concerning stack over-
flow and thread scheduling, and none of them provides the
crucial ability to inspect and modify the state of a suspended
computation. In short, C-- is—by design—at a lower level;
it should be possible to implement a C user-threads pack-
age using C--, but not vice versa. The package that is
nearest in spirit to C-- is Keppel’s QuickThreads package,
which shares the explicit goal of providing minimalist mech-
anisms, leaving policy to the client (Keppel 1993). However,
C-- separates the notions of capturing a continuation and
cutting to one, whereas QuickThreads, whose objectives are
more limited, combines both into a thread-switch operation.
QuickThreads provides no support for global registers, stack
walking, or stack-overflow checking and recovery.

Segmented stacks appear not to be widely covered in the
literature, but Bruggeman, Waddell, and Dybvig (1996) re-
pays careful scrutiny.

10 Conclusions and further work

We set ourselves the task of encapsulating well-known imple-
mentation techniques for concurrency in a way that enables
the client to choose policies and cost tradeoffs, without hav-
ing to rebuild the implementation. No other work known
to us tries to abstract this particular interface, and it has
proved surprisingly challenging.

We are working on an implementation of C--, in which we
can test our design.
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