
Journal of Functional Programming
http://journals.cambridge.org/JFP

Additional services for Journal of Functional
Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Optimal purely functional priority queues

Gerth Stølting Brodal and Chris Okasaki

Journal of Functional Programming / Volume 6 / Issue 06 / November 1996, pp 839 - 857
DOI: 10.1017/S095679680000201X, Published online: 07 November 2008

Link to this article: http://journals.cambridge.org/abstract_S095679680000201X

How to cite this article:
Gerth Stølting Brodal and Chris Okasaki (1996). Optimal purely functional priority
queues. Journal of Functional Programming, 6, pp 839-857 doi:10.1017/
S095679680000201X

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JFP, IP address: 130.64.11.153 on 28 Nov 2013



J. Functional Programming 6 (6): 839-857, November 1996 © 1996 Cambridge University Press 8 3 9

Optimal purely functional priority queues

*GERTH ST0LTING BRODAL
BRICSj Department of Computer Science, University of Aarhus,

Ny Munkegade, DK-8000 Arhus C, Denmark
(e-mail: gerthSdaimi.aau.dk)

CHRIS OKASAKIJ
School of Computer Science, Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213, USA
(e-mail: cokasaki@cs.cmu.edu)

Abstract

Brodal recently introduced the first implementation of imperative priority queues to support
findMin, insert and meld in 0(1) worst-case time, and deleteMin in O(logn) worst-case time.
These bounds are asymptotically optimal among all comparison-based priority queues. In this
paper, we adapt Brodal's data structure to a purely functional setting. In doing so, we both
simplify the data structure and clarify its relationship to the binomial queues of Vuillemin,
which support all four operations in O(log n) time. Specifically, we derive our implementation
from binomial queues in three steps: first, we reduce the running time of insert to 0(1) by
eliminating the possibility of cascading links; second, we reduce the running time of findMin
to 0(1) by adding a global root to hold the minimum element; and finally, we reduce the
running time of meld to 0(1) by allowing priority queues to contain other priority queues.
Each of these steps is expressed using ML-style functors. The last transformation, known
as data-structural bootstrapping, is an interesting application of higher-order functors and
recursive structures.

Capsule Review

This paper presents an ML implementation of an optimal functional priority queue devel-
oped by the authors. The implementation has significant educational value in showcasing the
elegant ML module facility using the most difficult algorithmic example that I have ever seen.
It also serves the programming language community by making a most complex data struc-
ture accessible for applications, and by providing an interesting example for benchmarking
purposes.

Research partially supported by the ESPRIT II Basic Research Actions Program of the EC
under contract no. 7141 (project ALC0M II) and by the Danish Natural Science Research
Council (Grant No. 9400044).

f Basic Research in Computer Science, Centre of the Danish National Research Foundation.
X Research supported by the Advanced Research Projects Agency CSTO under the title "The

Fox Project: Advanced Languages for Systems Software", ARPA Order No. C533, issued
by ESC/ENS under Contract No. F19628-95-C-0050.



840 G. S. Brodal and C. Okasaki

1 Introduction

Purely functional data structures differ from imperative data structures in at least
two respects. First, many imperative data structures rely crucially on destructive
assignments for efficiency, whereas purely functional data structures are forbidden
from using destructive assignments. Second, purely functional data structures are
automatically persistent (Driscoll et al., 1989), meaning that, after an update, both
the new and old versions of a data structure are available for further accesses
and updates. In contrast, imperative data structures are almost always ephemeral,
meaning that, after an update, only the new version of a data structure is available.
In many cases, these differences prevent functional programmers from simply using
off-the-shelf data structures, such as those described in most algorithms texts. The
design of efficient purely functional data structures is thus of great theoretical and
practical interest to functional programmers, as well as to imperative programmers
for those occasions when a persistent data structure is required. In this paper, we
consider the design of an efficient purely functional priority queue.

The priority queue is a fundamental abstraction in computer programming, ar-
guably surpassed in importance only by the dictionary and the sequence. Many im-
plementations of priority queues have been proposed over the years; a small sampling
includes (Williams, 1964; Crane, 1972; Vuillemin, 1978; Fredman and Tarjan, 1987;
Brodal, 1996). However, all of these consider only imperative priority queues. Very
little has been written about purely functional priority queues. To our knowledge,
only Paulson (1991), Kaldewaij and Schoenmakers (1991), Schoenmakers (1992) and
King (1994) have explicitly treated priority queues in a purely functional setting.

We consider priority queues that support the following operations:

findMin (q) Return the minimum element of queue q.
insert (x, q) Insert the element x into queue q.
meld (q\,q2) Merge queues q\ and qi into a single queue.
deleteMin (q) Discard the minimum element of queue q.

In addition, priority queues supply a value empty representing the empty queue and a
predicate isEmpty. For simplicity, we will ignore empty queues except when presenting
actual code. Figure 1 displays a Standard ML signature for these priority queues.

Brodal (1995) recently introduced the first imperative data structure to sup-
port all these operations in 0(1) worst-case time except deleteMin, which requires
O(logn) worst-case time. Several previous implementations, most notably Fibonacci
heaps (Fredman and Tarjan, 1987), had achieved these bounds, but in an amortized,
rather that worst-case, sense. It is easy to show by reduction to sorting that these
bounds are asymptotically optimal among all comparison-based priority queues -
the bound on deleteMin cannot be decreased without simultaneously increasing the
bounds on findMin, insert and/or meld.

It is reasonably straightforward to adapt Brodal's data structure to a purely func-
tional setting by combining the recursive-slowdown technique of Kaplan and Tar-
jan (1995) with a purely functional implementation of double-ended queues (Hood,
1982; Okasaki, 1995c). However, this approach suffers from at least two defects, one



Optimal purely functional priority queues 841

signature ORDERED =
sig

type T (• type of ordered elements •)
val leq : T x T —> bool (* total ordering relation •)

end

signature PRIORITY.QUEUE =
sig

structure Elem : ORDERED

type T (* type of priority queues *)

val
val

val
val

empty
isEmpty

insert
meld

: T
: T ->

: Elem.
: T x

exception EMPTY

val findMin
val

end
deleteMin

: T ->
: T —

bool

r x T
T -> r

£/em.r
r

(* raises EMPTY if queue is empty *)
(* raises EMPTY if queue is empty *)

Fig. 1. Signature for priority queues.

practical and one pedagogical. First, both recursive slowdown and double-ended
queues carry non-trivial overheads, so the resulting data structure is quite slow
in practice (even though asymptotically optimal). Second, the resulting design is
difficult to explain and understand. The design choices are intermingled, and it is
difficult to see the purpose and contribution of each. Furthermore, the relationship
to other priority queue designs is obscured.

For these reasons, we take an indirect approach to adapting Brodal's data struc-
ture. First, we isolate the design choices in Brodal's data structure and rethink each
in a functional, rather than imperative, environment. This allows us to replace recur-
sive slowdown with a simpler technique borrowed from the random-access lists of
Okasaki (1995b) and to eliminate the need for double-ended queues altogether. Then,
starting from a well-known antecedent - the binomial queues of Vuillemin (1978)
- we reintroduce each modification, one at a time. This both simplifies the data
structure and clarifies its relationship to other priority queue designs.

We begin by reviewing binomial queues, which support all four major operations in
O(logn) time. We then derive our data structure from binomial queues in three steps.
First, we describe a variant of binomial queues, called skew binomial queues, that
reduces the running time of insert to 0(1) by eliminating the possibility of cascading
links. Second, we reduce the running time of findMin to 0(1) by adding a global
root to hold the minimum element. Third, we apply a technique of Buchsbaum et
al. (Buchsbaum et al., 1995; Buchsbaum and Tarjan, 1995) called data-structural boot-
strapping, which reduces the running time of meld to 0(1) by allowing priority queues
to contain other priority queues. Each of these steps is expressed using ML-style func-
tors. The last transformation, data-structural bootstrapping, is an interesting applica-



842 G. S. Brodal and C. Okasaki

Rank 0 Rank 1 Rank 2 Rank 3

Fig. 2. Binomial trees of ranks 0-3.

tion of higher-order functors and recursive structures. After describing a few possible
optimizations, we conclude with brief discussions of related work and future work.

All source code is presented in Standard ML (Milner et al., 1990) and is available
through the World Wide Web from

http: / / f oxnet. cs . cmu.edu/people/cokasaki/priority.html

2 Binomial queues

Binomial queues are an elegant form of priority queue introduced by Vuillemin (1978)
and extensively studied by Brown (1978). Although they considered binomial queues
only in an imperative setting, King (1994) has shown that binomial queues work
equally well in a functional setting. In this section, we briefly review binomial queues
- see King (1994) for more details.

Binomial queues are composed of more primitive objects known as binomial trees.
Binomial trees are inductively denned as follows:

• A binomial tree of rank 0 is a singleton node.
• A binomial tree of rank r + 1 is formed by linking two binomial trees of rank

r, making one tree the leftmost child of the other.

From this definition, it is easy to see that a binomial tree of rank r contains exactly
T nodes. There is a second, equivalent definition of binomial trees that is sometimes
more convenient: a binomial tree of rank r is a node with r children t\ ...tr, where
each t,- is a binomial tree of rank r — i. Figure 2 illustrates several binomial trees of
varying rank.

Assuming a total ordering on nodes, a binomial tree is said to be heap-ordered if
every node is < each of its descendants. To preserve heap order when linking two
heap-ordered binomial trees, we make the tree with the larger root a child of the
tree with the smaller root, with ties broken arbitrarily.

A binomial queue is a forest of heap-ordered binomial trees where no two trees
have the same rank. Because binomial trees have sizes of the form 2r, the ranks of
the trees in a binomial queue of size n are distributed according to the ones in the
binary representation of n. For example, consider a binomial queue of size 21. The
binary representation of 21 is 10101, and the binomial queue contains trees of ranks
0, 2 and 4 (of sizes 1, 4 and 16, respectively). Note that a binomial queue of size n
contains at most |_1°S2(" + 1)J trees.



Optimal purely functional priority queues 843

We are now ready to describe the operations on binomial queues. Since all the
trees in a binomial queue are heap-ordered, we know that the minimum element in a
binomial queue is the root of one of the trees. We can find this minimum element in
O(logn) time by scanning through the roots. To insert a new element into a queue,
we first create a new singleton tree (i.e. a binomial tree of rank 0). We then step
through the existing trees in increasing order of rank until we find a missing rank,
linking trees of equal rank as we go. Inserting an element into a binomial queue
corresponds precisely to adding one to a binary number, with each link correspond-
ing to a carry. The worst case is insertion into a queue of size n = 2k — 1, requiring
a total of k links and O(logn) time. The analogy to binary addition also applies to
melding two queues. We step through the trees of both queues in increasing order
of rank, linking trees of equal rank as we go. Once again, each link corresponds to
a carry. This also requires O(log n) time.

The trickiest operation is deleteMin. We first find the tree with the minimum root
and remove it from the queue. We discard the root, but then must return its children
to the queue. However, the children themselves constitute a valid binomial queue
(i.e. a forest of heap-ordered binomial trees with no two trees of the same rank),
and so may be melded with the remaining trees of the queue. Both finding the tree
to remove and returning the children to the queue require 0(log n) time, for a total
of O(logn) time.

Figure 3 gives an implementation of binomial queues as a Standard ML functor
that takes a structure specifying a type of ordered elements and produces a structure
of priority queues containing elements of the specified type. Two aspects of this im-
plementation deserve further explanation. First, the conflicting requirements of insert
and link lead to a confusing inconsistency, common to virtually all implementations
of binomial queues. The trees in binomial queues are maintained in increasing order
of rank to support the insert operation efficiently. On the other hand, the children
of binomial trees are maintained in decreasing order of rank to support the link op-
eration efficiently. This discrepancy compels us to reverse the children of the deleted
node during a deleteMin. Second, for clarity, every node contains its rank. In a
realistic implementation, however, only the roots would store their ranks. The ranks
of all other nodes are uniquely determined by the ranks of their parents and their
positions among their siblings. King (1994) describes an alternative representation
that eliminates all ranks, at the cost of introducing placeholders for those ranks
corresponding to the zeros in the binary representation of the size of the queue.

3 Skew binomial queues

In this section, we describe a variant of binomial queues, called skew binomial queues,
that supports insertion in 0(1) worst-case time. The problem with binomial queues
is that inserting a single element into a queue might result in a long cascade of
links, just as adding one to a binary number might result in a long cascade of
carries. We can reduce the cost of an insert to at most a single link by borrowing a
technique from random-access lists (Okasaki, 1995b). Random-access lists are based



844 G. S. Brodal and C. Okasaki

functor BinomialQueue (E : ORDERED) : PRIORITY.QUEUE =
struct

structure Elem = E

type Rank = int
datatype Tree = Node of Elem.T x Rank x Tree list
type T = Tree list

(• auxiliary functions *)
fun root (Node (x,r,c)) = x
fun rank (Node (x,r,c)) = r
fun link (ti as Node (xuruci), t2 as Node (x2,r2,c2)) = (* n = r2 •)

if Elem.leq (xit x2) then Aforfe (X1/1+M2 - ci) else Node (x2,r2+l>ti - c2)
fun ins ( t , [ ] ) = [t]

I ins (t, t! :: ts) = (• rank t < rank t1 *)
if rank t < rank t then t ::t/ ::ts else ins (link (t, tf), ts)

val empty = [ ]
fun isEmpty ts = null ts

fun insert (x, ts) = ins (Node (x,0,[ ]), ts)
fun meld ([], ts) = ts

I meld (ts, []) = ts
I meld (ti ::tsi,t2 ::ts2) =

if rank t\ < rank t2 then t\ :: meld (ts^, t2 :: ts2)
else if rank t2 < rank t\ then t2 :: meld (ti :: ts\, ts2)
else ins (/in/c (ti, £2), »>cW (tsi, tS2))

exception EMPTY

fun findMin [] = raise EMPTY
findMin [t] = root t

I findMin (t::ts) =
let val x = findMin ts
in if Elem.leq (root t, x) then root t else x end

fun deleteMin [ ] = raise EMPTY
I deleteMin ts =

let fun getMin [t] = (t, [])
I getMin (t:: ts) =

let val (£', ts7) = getMin ts
in if Elem.leq (root t, root f") then (t, ts) else (f7, t : : ts7) end

val (Node (x,r,c), ts) = getMin ts
in meW (ret) c, ts) end

end

Fig. 3. A functor implementing binomial queues.

on a variant number system, called skew binary numbers (Myers, 1983), in which
adding one causes at most a single carry.

In skew binary numbers, the kth digit represents 2k+l — 1, rather than 2k as in
ordinary binary numbers. Every digit is either zero or one, except that the lowest
non-zero digit may be two. For instance, 92 is written 002101 (least-significant digit
first). A carry occurs when adding one to a number whose lowest non-zero digit is



Optimal purely functional priority queues 845

Fig. 4. The three methods of constructing a skew binomial tree of rank r + 1. (a) A simple
link; (b) a type A skew link; (c) a type B skew link.

two. For instance, 1 +002101 = 000201. Because the next higher digit is guaranteed
not to be two, only a single carry is ever necessary.

Just as binomial queues are composed of binomial trees, skew binomial queues
are composed of skew binomial trees. Skew binomial trees are inductively defined
as follows:

• A skew binomial tree of rank 0 is a singleton node.
• A skew binomial tree of rank r + 1 is formed in one of three ways:

— a simple link, making a skew binomial tree of rank r the leftmost child of
another skew binomial tree of rank r;

— a type A skew link, making two skew binomial trees of rank r the children
of a skew binomial tree of rank 0; or

— a type B skew link, making a skew binomial tree of rank 0 and a skew
binomial tree of rank r the leftmost children of another skew binomial tree
of rank r.

Figure 4 illustrates the three kinds of links. Note that type A and type B skew links
are equivalent when r = 0. Ordinary binomial trees and perfectly balanced binary
trees are special cases of skew binomial trees obtained by allowing only simple links
and type A skew links, respectively. A skew binomial tree of rank r constructed
entirely with skew links (type A or type B) contains exactly 2r+1 — 1 nodes, but, in
general, the size of a skew binomial tree t of rank r is bounded by 2r <- \t\ < 2r+1 — 1.
In addition, the height of a skew binomial tree is equal to its rank. Once again, there
is a second, equivalent definition: a skew binomial tree of rank r > 0 is a node with
up to 2/c children s\ti ...Sktk (1 < k < r), where each t, is a skew binomial tree of
rank r — i and each s,- is a skew binomial tree of rank 0, except that s& has rank r — k
(which is 0 only when k = r). Every s, is optional except that Sk is optional only
when k = r. Although somewhat confusing, this definition arises naturally from the
three methods of constructing a tree. Every Sktk pair is produced by a type A skew
link, and every s,t, pair (i < k) is produced by a type B skew link. Every t, without a
corresponding s, is produced by a simple link. Unlike ordinary binomial trees, skew
binomial trees may have many different shapes. For example, the 12 possible shapes
of skew binomial trees of rank 2 are shown in Figure 5.

A skew binomial tree is heap-ordered if every node is < each of its descendants.
To preserve heap order during a simple link, we make the tree with the larger root



846 G. S. Brodal and C. Okasaki

Fig. 5. The twelve possible shapes of skew binomial trees of rank 2. Dashed boxes surround
each Sit, pair.

a child of the tree with the smaller root. During a skew link, we make the two trees
with larger roots children of the tree with the smallest root. We perform a type A
skew link if the rank 0 tree has the smallest root, and a type B skew link if one of
the rank r trees has the smallest root.

A skew binomial queue is a forest of heap-ordered skew binomial trees where no
two trees have the same rank, except possibly the two smallest ranked trees. Since
skew binomial trees of the same rank may have different sizes, there may be several
ways to distribute the ranks for a queue of any particular size. For example, a skew
binomial queue of size 4 may contain one rank 2 tree of size 4; two rank 1 trees,
each of size 2; a rank 1 tree of size 3 and a rank 0 tree; or a rank 1 tree of size
2 and two rank 0 trees. However, the maximum number of trees in a queue is still
O(logn).

We are now ready to describe the operations on skew binomial queues. The
findMin and meld operations are almost unchanged. To find the minimum element
in a skew binomial queue, we simply scan through the roots, taking O(logn) time.
To meld two queues, we step through the trees of both queues in increasing order
of rank, performing a simple link (not a skew link!) whenever we find two trees of
equal rank. Once again, this requires O(logrc) time.

The big advantage of skew binomial queues over ordinary binomial queues is that
we can now insert a new element in 0(1) time. We first create a new singleton tree
(i.e. a skew binomial tree of rank 0). We then check the ranks of the two smallest
trees in the queue. If both trees have rank r, then we skew link these two trees with
the new rank 0 tree to get a new rank r + 1 tree. We know that there can be no
more than one existing rank r + 1 tree, and that this is the smallest rank in the new
queue, so we simply add the new tree to the queue. If the two smallest trees in the
queue have different ranks, then we simply add the new rank 0 tree to the queue.
Since there was at most one existing tree of rank 0, the new queue contains at most
two trees of the smallest rank. In either case, we are done.



Optimal purely functional priority queues 847

functor SkewBinomialQueue (E : ORDERED) : PRIORITY.QUEUE =
struct

structure Elem = E

type Rank = int
datatype Tree = Node of Elem.T x Rank x Tree list
type T = Tree list

(* auxiliary functions *)
fun root (Node (x,r,c)) = x
fun rank (Node (x,r,c)) — r
fun link (t\ as Node (x\,r\,c\), t2 as Node (X2,r2,c2)) = (* r\ = r2 *)

if Elem.leq (x\,x2) then Node (xi,r1+l,t2 ::ci) else Node (X2,r2+l,ti ::c2)
fun skew Link (to as Node (xo/o,-), 'i as Node (x\,ruc\), t2 as Node (x2,r2,c2)) =

if Elem.leq (xi.xo) andalso Elem.leq (x1 ;x2) then Node (x i , r i+ l , to :: h : : c i )
e l s e i f Elem.leq ( x 2 , x 0 ) a n d a l s o Elem.leq ( x 2 , X j ) t h e n Node ( x 2 , r 2 + \ , t ^ : : t \ : : c 2 )
else Node (xo/i+l,[ti, t2])

fun ins ( U l ) = [t]
| ins (t, f ::ts) = (* rank t < rank t' •)

if rank t < rank t! then t:: t! :: ts else ins (link (t, t1), ts)

fun uniqify [ ] = [ ]
| uniqify (t ::ts) = ins (t, ts) (* eliminate initial duplicate •)

fun meldUniq ( [ ] , ts) = ts
| meldUniq (ts, []) = ts
| meldUniq (ti :: tst, t2 :: ts2) =

if rank U < rank t2 then t\ :: meldUniq (ts\, t2 :: ts2)
else if rank t2 < rank t\ then t2 :: meldUniq (t\ :: tsi, ts2)
else ins (link (t\, t2), meldUniq (tsu ts2))

val empty = [ ]
fun isEmpty ts = null ts

Fig. 6. A functor implementing skew binomial queues (part I).

Again, deleteMin is the most complicated operation. We first find and remove the
tree with the minimum root. After discarding the root, we partition its children into
two groups, those with rank 0 and those with rank > 0. Other than Sk and tk, every
Si has rank 0 and every t, has rank > 0. The ranks of Sk and tk are both 0 when
k = r and both > 0 when k < r. Note that every rank 0 child contains a single
element. The children with rank > 0 constitute a valid skew binomial queue, so we
meld these children with the remaining trees in the queue. Finally, we reinsert each
of the rank 0 children. Each of these steps requires O(logn) time, so the total time
required is O(logn).

Figures 6 and 7 present an implementation of skew binomial queues as a Stan-
dard ML functor. Like the binomial queue functor, this functor takes a structure
specifying a type of ordered elements and produces a structure of priority queues
containing elements of the specified type. Once again, lists of trees are maintained
in different orders for different purposes. The trees in a queue are maintained in
increasing order of rank (except that the first two trees may have the same rank), but
the children of skew binomial trees are maintained in a more complicated order. The



848 G. S. Brodal and C. Okasaki

fun insert (x, ts as ti :: t2 :: rest) =
if rank t\ = rank t2 then skewLink (Node (x,0,[]),ti,t2) wrest
else Node (x,0,[]) "ts

| insert (x, ts) = Node (x,0,[ ]) :: ts
fun meW (ts, ts1) = meldUniq (uniqify ts, uniqify rs')

exception EMPTY

funfindMin [] = raise EMPTY
| findMin [t] = root t
| findMin (t ::ts) =

let val x = findMin ts
in if Elem.leq (root t, x) then root t else x end

fun deleteMin [ ] = raise EMPTY
| deleteMin ts =

let fun getMin [t] = (t, [ ] )
| getMin (t ::ts) =

let val (r", ts') = getMin ts
in if Elem.leq (root t, root t1) then (t, ts) else (t', t :: ts') end

fun sp/it (ts,xs,[]) = (ts, xs)
| split (ts,xs,t :: c) =

if ran/c t = 0 then sp/it (ts,root t :: xs,c) else split (t :: ts,xs,c)
val (Node (x,r,c), ts) = getMin ts
val (ts',xs') = split ([],[],c)

infold insert xs1 (meld (ts, ts!)) end
end

Fig. 7. A functor implementing skew binomial queues (part II).

t,- children are maintained in decreasing order of rank, but they are interleaved with
the Si children, which have rank 0 (except Sk, which has rank r — k). Furthermore,
recall that each s, is optional (except that s^ is optional only if k = r).

4 Adding a global root

We next describe a simple module-level transformation on priority queues to reduce
the running time of findMin to 0(1). Although this transformation can be applied
to any priority queue module, it is only useful on priority queues for which findMin
requires more than 0(1) time.

Most implementations of priority queues represent a queue as a single heap-
ordered tree so that the minimum element can always be found at the root in 0(1)
time. Unfortunately, binomial queues and skew binomial queues represent a queue as
a forest of heap-ordered trees, so finding the minimum element requires scanning all
the roots in the forest. However, we can convert this forest into a single heap-ordered
tree, thereby supporting findMin in 0(1) time, by simply adding a global root to
hold the minimum element. In general, this tree will not be a binomial or skew
binomial tree, but this is irrelevant since the global root will be treated separately
from the rest of the queue. The details of this transformation are quite routine, but
we present them anyway as a warm-up for the more complicated transformation in
the next section.



Optimal purely functional priority queues 849

functor AddRoot (Q : PRIORITY.QUEUE) : PRIORITY.QUEUE =
struct

structure Elem = Q.Elem

datatype T = Empty | Root of Elem.T x Q.T

val empty = Empty
fun isEmpty Empty = true

| isEmpty (Root _) = false

fun insert (y, Empty) = Root (y, Q.empty)
| insert (y, Root (x, q)) =

if Elem.leq (y, x) then Root (y, Q.insert (x, q)) else Root (x, Q.insert (y, q))
fun meld (Empty, rq) = rq

| meld (rq, Empty) = rq
| meld (Root (xu qi), Root (x2, q2)) =

if Elem.leq (xi, X2) then Roor (xi, Q.insert (x2, Q.meld (qu q2)))
else Root (X2, Q.insert (xit Q.meld (qit q2)))

exception EMPTY

fun findMin Empty = raise EMPTY
I findMin (Root (x, q)) = x

fun deleteMin Empty = raise EMPTY
I deleteMin (Root (x, q)) =

if Q.isEmpty q then Empty else .Root (Q.findMin q, Q.deleteMin q)
end

Fig. 8. A functor for adding a global root to existing priority queues.

Given some type Pa of primitive priority queues containing elements of type a,
we define the type of rooted priority queues RPa to be

RPa = {empty} + (a x Pa)

In other words, a rooted priority queue is either empty or a pair of a single
element (the root) and a primitive priority queue. We maintain the invariant that
the minimum element of any non-empty priority queue is at the root. For each
operation / on priority queues, let / and / ' indicate the operations on Pa and RP^,
respectively. Then,

findMin'((x,q)) = x
insert' (y, (x, q}) = (x, insert (y, q)) if x < y
insert' (y, (x, q)) = {y, insert (x, q)) if y < x

meld'((xuq\),(x2,q2)) = {xt, insert (x2, meld (quq2))) ifxi<x2

meld'((xi,qi),(x2,q2)) = (x2,insert [xx,meld {quqi))) ifx2<xi
deleteMin' ((x, q)) = {findMin (q), deleteMin (q))

In Figure 8, we present this transformation as a Standard ML functor that
takes a priority queue structure and produces a new structure incorporating this
optimization. When applied to the skew binomial queues of the previous section,
this tranformation produces a priority queue that supports both insert and findMin
in 0(1) time. However, meld and deleteMin still require O(logn) time.



850 G. S. Brodal and C. Okasaki

If a program requires several priority queues with different element types, it may be
more convenient to implement this transformation as a higher-order functor (Mac-
Queen and Tofte, 1994). First-order functors can only take and return structures, but
higher-order functors can take and return other functors as well. Although the defi-
nition of Standard ML (Milner et al., 1990) describes only first-order functors, some
implementations of Standard ML, notably Standard ML of New Jersey, support
higher-order functors.

A priority queue functor, such as BinomialQueue or SkewBinomialQueue, is one
that takes a structure specifying a type of ordered elements and returns a structure
of priority queues containing elements of the specified type. The following higher-
order functor takes a priority queue functor and returns a priority queue functor
incorporating the AddRoot optimization.

functor AddRootToFun (functor MakeQ (E : ORDERED) :
sig

include PRIORITY.QUEUE
sharing Elem = E

end)
(E : ORDERED) : PRIORITY.QUEUE =

AddRoot {MakeQ (£))

Note that this functor is curried, so although it appears to take two arguments,
it actually takes one argument (MakeQ) and returns a functor that takes the
second argument (E). The sharing constraint is necessary to ensure that the functor
MakeQ returns a priority queue with the desired element type. Without the sharing
constraint, MakeQ might ignore E and return a priority queue structure with some
arbitrary element type.

Now, if we need both a string priority queue and an integer priority queue, we
can write

functor RootedSkewBinomialQueue =
AddRootToFun (functor MakeQ = SkewBinomialQueue)

structure StringQueue = RootedSkewBinomialQueue (StringElem)
structure IntQueue = RootedSkewBinomialQueue (IntElem)

where StringElem and IntElem match the ORDERED signature and define the
desired orderings over strings and integers, respectively.

5 Bootstrapping priority queues

Finally, we improve the running time of meld to 0(1) by applying a technique of
Buchsbaum et al. (Buchsbaum et al., 1995; Buchsbaum and Tarjan, 1995) called
data-structural bootstrapping. The basic idea is to reduce melding to simple insertion
by using priority queues that contain other priority queues. Then, to meld two
priority queues, we simply insert one priority queue into the other.

As in the previous section, we describe bootstrapping as a module-level transfor-
mation on priority queues. Let Pa be the type of primitive priority queues containing



Optimal purely functional priority queues 851

elements of type a. We wish to construct the type BPa of bootstrapped priority queues
containing elements of type a. A bootstrapped priority queue will be a primitive
priority queue whose 'elements' are' other bootstrapped priority queues. As a first
attempt, we consider

BPa = PPa

Here we have applied a single level of bootstrapping. However, this simple solution
does not work because the elements of the top-level primitive priority queue have
the wrong type - they are simple primitive priority queues rather than bootstrapped
priority queues. Clearly, we need to apply the idea of bootstrapping recursively, as
in

BPa = PBP,

Unfortunately, this solution offers no place to store simple elements. We therefore
borrow from the previous section and add a root to every primitive priority queue.

BPa = a x PBPa

Thus, a bootstrapped priority queue is a simple element (which should be the
minimum element in the queue) paired with a primitive priority queue containing
other bootstrapped priority queues ordered by their respective minimums. Since
bootstrapping adds a root to every primitive priority queue, the bootstrapping
transformation subsumes the AddRoot transformation. Finally, we must allow for
the possibility of an empty queue. The final definition is thus

BPX = {empty} + R* where Ra = a x P^

Note that the primitive priority queues contain only non-empty bootstrapped priority
queues as elements.

Now, each of the operations on bootstrapped priority queues can be denned in
terms of the operations on the primitive priority queues. For each operation / on
priority queues, let / and / ' indicate the operations on P^ and BPa, respectively.
Then,

findMiri'((x,q)) = x
insert'(x,q) = meld' ((x, empty), q)
meld'({xx,q\),{x2,q2)) = (xi,insert {{x2,q2),q\)) ifxi<x2

meld'({x\,q\),(x2,q2)) = (x2,insert ((xi,qi),q2)) ifx2<*i
deleteMin1((x,q)) = (y,meld(qi,q2))

where (y,q\) = findMin(q)
q2 = deleteMin (q)

Next, we consider the efficiency of bootstrapped priority queues. Since the min-
imum element is stored at the root, findMin requires 0(1) time regardless of the
underlying implementation. The insert and meld operations depend only on the
insert of the primitive implementation. By bootstrapping a priority queue with 0(1)
insertion, such as the skew binomial queues of Section 3, we obtain both 0(1) inser-
tion and 0(1) melding. Finally, deleteMin on bootstrapped priority queues depends
on findMin, meld, and deleteMin from the underlying implementation. Since skew



852 G. S. Brodal and C. Okasaki

functor Bootstrap (functor MakeQ (E : ORDERED) : sig
include PRIORITY-QUEUE
sharing Elem = E

end)
(E : ORDERED) : PRIORITY.QUEUE =

struct
structure Elem = E

(* recursive structures not supported in SML! *)
structure rec RootedQ =

struct
datatype T = Root of Elem.T x Q.T
fun leq (Root (x\, <ji), Root (xi, qi)) = Elem.leq (xi, X2)

end
and Q = MakeQ (RootedQ)

open RootedQ (* expose Root constructor •)

datatype T = Empty \ NonEmpty of RootedQ.T

val empty = Empty
fun isEmpty Empty = true

I isEmpty (NonEmpty .) = false

fun insert (x, xs) = meW (NonEmpty (Root (x, Q.empty)), xs)
and meld (Empty, xs) = xs

I meld (xs, Empty) = xs
I meW (NonEmpty (rt as Root (xi, <ji)), NonEmpty fo as Root (X2, 52))) =

if Elem.leq (x\, xi) then NonEmpty (Root (x\, Q.insert (r2, qi)))
else NonEmpty (Root (xi, Q.insert (rit 42)))

exception EMPTY

fun findMin Empty = raise EMPTY
I findMin (NonEmpty (Root (x, q))) = x

fun deleteMin Empty = raise EMPTY
I deleteMin (NonEmpty (Root (x, q))) =

if Q.isEmpty q then Empty
else let val (Root (y, qi)) = Q.findMin q

val q2 = Q.deleteMin q
in NonEmpty (Root (y, Q.meld (q\, 92))) end

end

Fig. 9. A higher-order functor for bootstrapping priority queues.

binomial queues support each of these in 0(log n) time, deleteMin on bootstrapped
skew binomial queues also requires O(logn) time.

In summary, bootstrapped skew binomial queues support every operation in 0(1)
time except deleteMin, which requires O(log n) time. It is easy to show by reduction
to sorting that these bounds are optimal among all comparison-based priority
queues. Other tradeoffs between the running times of the various operations are also
possible, but no comparison-based priority queue can support insert in better than
O(logn) worst-case time or meld in better than 0(n) worst-case time unless one of
findMin or deleteMin takes at least O(logn) worst-case time (Brodal, 1995).



Optimal purely functional priority queues 853

The bootstrapping process can be elegantly expressed in Standard ML extended
with higher-order functors and recursive structures, as shown in Figure 9. The higher-
order nature of Bootstrap is analogous to the higher-order nature of AddRootToFun,
while the recursion between RootedQ and Q captures the recursion between Ra and
PR^. Unfortunately, although some implementations of Standard ML support higher-
order functors (MacQueen and Tofte, 1994), none support recursive structures, so
the recursion between RootedQ and Q is forbidden. In fact, there are good reasons
for not supporting recursion like this in general. For instance, this recursion may
not even be sensible if MakeQ can have computational effects! However, many
priority queue functors, such as SkewBinomialQueue, simply define a few datatypes
and functions, and have no computational effects. For these well-behaved functors,
the recursion between RootedQ and Q does appear to be sensible, and it would be
pleasant to be able to bootstrap these functors in this manner.

Without recursive structures, we can still implement bootstrapped priority queues,
but much less cleanly. We manually specialize Bootstrap to each desired primitive
priority queue by inlining the appropriate priority queue functor for MakeQ and
eliminating Q and RootedQ as separate structures. This reduces the recursion on
structures to recursion on datatypes, which is easily supported by Standard ML.
Of course, as with any manual program transformation, this process is tedious and
error-prone.

6 Optimizations

Although bootstrapped skew binomial queues as described in the previous section are
asymptotically optimal, there are still further optimizations we can make. Consider
the type of priority queues resulting from inlining SkewBinomialQueue for MakeQ:

datatype Tree = Node of Root x Rank x Tree list
and Root= Root of Elem.T x Tree list

datatype T = Empty | NonEmpty of Root

In this representation, a node has the form Node{Root(x,f),r,c), where x is an
element, / is a list of trees representing a forest, r is a rank, and c is a list of trees
representing the children of the node. Since every node contains both x and / we
can flatten the representation of nodes to be

datatype Tree = Node of Elem.T x Tree list x Rank x Tree list

In many implementations, this will eliminate an indirection on every access to x.
Next, note that / is completely ignored until its root is deleted. Thus, we do not

require direct access to / and can in fact store it at the tail of c, combining the
two into a single list representing c-H-f. This leads to the following representation,
which usually saves a word of storage at every node:

datatype Tree = Node of Elem.T x Rank x Tree list

In this representation, it is necessary to traverse c during deleteMin to access / ,
but we need to traverse c anyway to extract the rank 0 children and reverse the



854 G. S. Brodal and C. Okasaki

remaining children. Given a rank r node, determining where c ends and / begins
is usually quite easy. If r = 0, then c = []. If r = 1, then c consists of either one
or two rank 0 nodes. If r > 1, then c ends with either a pair of nodes of the same
non-zero rank or a rank 1 node followed by one or two rank 0 nodes. The only
ambiguities involve rank 0 nodes: it is sometimes impossible to distinguish the case
where c ends with two rank 0 nodes from the case where c ends with a single rank
0 node and / begins with a rank 0 node. However, in every such situation, it does
no harm to treat the ambiguous node as if it were part of c rather than / .

As a final simplification, note that the distinction between trees and roots is un-
necessary, since every root can be treated as a tree of rank 0. Our final representation
is then

datatype Tree = Node of Elem.T x Rank x Tree list
datatype T = Empty \ NonEmpty of Tree

This increases the size of every root slightly, but also eliminates some minor copying
during melds.

7 Related work

Although there is an enormous literature on imperative priority queues, there has
been very little work on purely functional priority queues.

Paulson (1991) describes a (non-meldable) priority queue combining the techniques
of implicit heaps (Williams, 1964), which traditionally are implemented using arrays,
with a balanced-tree representation of arrays supporting extension at the rear.
Hoogerwoord (1992) represents arrays using the same trees as Paulson, but also
allows the arrays to be extended at the front. A variant of Paulson's queues, using
the slightly simpler front-extension of Hoogerwoord, appears to be part of the
functional programming folklore.

King (1994) presents a purely functional implementation of binomial queues.
Although binomial queues are considered to be rather complicated in imperative
settings (Jones, 1986), King demonstrates that the more convenient list-processing
capabilities of functional languages support binomial queues quite elegantly.

Schoenmakers (1992), extending earlier work with Kaldewaij (1991), uses func-
tional notation to aid in the derivation of amortized bounds for a number of data
structures, including three priority queues: skew heaps* (Sleator and Tarjan, 1986),
Fibonacci heaps (Fredman and Tarjan, 1987) and pairing heaps (Fredman et al.,
1986). Schoenmakers also discusses splay trees (Sleator and Tarjan, 1985), a form of
self-adjusting binary search tree that has been shown by Jones (1986) to be particu-
larly effective as a non-meldable priority queue. Each of these four data structures is
efficient only in the amortized sense. Although he uses functional notation, Schoen-
makers restricts his attention to ephemeral uses of data structures, where only the
most recent version of a data structure may be accessed or updated. Ephemerality

* Note that the 'skew' in skew heaps is completely unrelated to the 'skew' in skew binomial
queues.



Optimal purely functional priority queues 855

is closely related to the notion of linearity (Wadler, 1990). When persistence is al-
lowed, traditional amortized analyses break down because operations on 'expensive'
versions of a data structure can be repeated arbitrarily often. Okasaki (1995a; 1996)
describes how to use the memoization implicit in lazy evaluation to support amor-
tized data structures whose bounds hold even under persistence. However, of the
above data structures, only pairing heaps appear to be amenable to this technique.

Finally, our data structure borrows techniques from several sources. Skew link-
ing is borrowed from the random-access lists of Okasaki (1995b), which in turn
are a modification of the random-access stacks of Myers (1983). We use skew
linking to reduce the cost of insertion in binomial queues to 0(1), but recursive
slowdown (Kaplan and Tarjan, 1995) and lazy evaluation (Okasaki, 1996) could be
used for the same purpose. Data-structural bootstrapping is used by Buchsbaum et
al. (Buchsbaum et al., 1995; Buchsbaum and Tarjan, 1995) to support catenation for
double-ended queues, much as we use it to support melding for priority queues.

8 Discussion

We have described the first purely functional implementation of priority queues to
support JindMin, insert and meld in 0(1) worst-case time, and deleteMin in O(logn)
worst-case time. These bounds are asymptotically optimal among all comparison-
based priority queues. Our data structure is an adaptation of an imperative data
structure introduced by Brodal (1995), but we have both simplified his original data
structure and clarified its relationship to the binomial queues of Vuillemin (1978).
Our data structure is reasonably efficient in practice; however, there are several
competing data structures that, although not asymptotically optimal, are somewhat
faster than ours in practice. Hence, our work is primarily of theoretical interest. The
major area in which our data structure should be useful in practice is applications
dominated by melding, particularly applications that also require persistent priority
queues.

Although we have implemented our data structure in Standard ML, a strict
functional language, it could easily be translated into other functional languages,
even lazy languages such as Haskell (Hudak et al, 1992). However, in a lazy
language, the worst-case bounds become amortized because the actions of each
insert, meld and deleteMin are delayed until their results are needed by a JindMin.
For instance, a JindMin following a sequence of m insertions and melds will take Q(m)
time, although that time can be amortized over the insertions and melds in the usual
way. This problem is not unique to our data structure - it applies to virtually all
nominally worst-case data structures in a lazy language. See Okasaki (1995a; 1996)
for a fuller discussion of the interaction between lazy evaluation and amortization.

Next, we note that imperative priority queues often support two additional oper-
ations, decreaseKey and delete, that decrease and delete a specified element of the
queue, respectively. The element in question is usually specified by a pointer into
the middle of the queue, but this is awkward in a functional setting. One approach
is to represent the queue as a binary search tree, so that we can efficiently search for
arbitrary elements. This is essentially the approach taken by King (1994). Empirical



856 G. S. Brodal and C. Okasaki

comparisons by Jones (1986) suggest that splay trees would be ideal for this purpose,
at least for predominantly ephemeral usage.* Unfortunately, melding binary search
trees (including splay trees) requires O(n) time.

An alternative approach is to use two priority queues, one containing 'positive'
occurrences of elements and one containing 'negative' occurrences of elements. To
delete an element, simply insert it into the negative queue. To decrease an element,
delete the old value and insert the new value. Positive and negative occurrences
of the same element cancel each other out when they both become the minimum
elements of their respective queues. This approach can be viewed as the functional
analogue of the lazy delete operation of Tarjan (1983). This solution works well
provided the number of negative elements is relatively small. However, when there
are many positive-negative pairs that have not yet cancelled each other out, this
solution may be inefficient in both time and space. Further research is needed to
support decreaseKey and delete efficiently in a functional setting.

A final area of future work concerns the Standard ML module system. As noted
in Section 5, recursive modules are not always sensible, and hence are currently
disallowed in implementations of the language. However, recursion at the module
level does appear to be sensible - and useful - for certain well-behaved modules.
It would be interesting to formalize the conditions under which recursive modules
should be allowed, and extend some implementation of Standard ML accordingly.

Acknowledgments

Thanks to Peter Lee, David King and Amy Moormann Zaremski for their comments
and suggestions on an earlier draft of this paper.

References

Brodal, G. S. (1995) Fast meldable priority queues. Workshop on Algorithms and Data
Structures: Lecture Notes in Computer Science 955 pp. 282-290. Springer-Verlag.

Brodal, G. S. (1996) Worst-case priority queues. ACM-SIAM Symposium on Discrete Algorithms
pp. 52-58.

Brown, M. R. (1978) Implementation and analysis of binomial queue algorithms. SIAM J.
Computing 7(3):298-319.

Buchsbaum, A. L. and Tarjan, R. E. (1995) Confidently persistent deques via data structural
bootstrapping. J. Algorithms 18(3):513—547.

Buchsbaum, A. L., Sundar, R. and Tarjan, R. E. (1995) Data-structural bootstrapping, linear
path compression, and catenable heap-ordered double-ended queues. SIAM J. Computing
24(6) :1190-1206.

Crane, C. A. (1972) Linear lists and priority queues as balanced binary trees. PhD thesis,
Computer Science Department, Stanford University. (Available as STAN-CS-72-259.)

Driscoll, J. R., Sarnak, N., Sleator, D. D. K. and Tarjan, R. E. (1989) Making data structures
persistent. J. Computer and System Sciences 38(1):86-124.

However, since findMin on splay trees takes O(log n) amortized time, it may be desirable
to first apply the AddRoot transformation of Section 4.



Optimal purely functional priority queues 857

Fredman, M. L. and Tarjan, R. E. (1987) Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3):596-615.

Fredman, M. L., Sedgewick, R., Sleator, D. D. K. and Tarjan, R. E. (1986) The pairing heap:
A new form of self-adjusting heap. Algorithmica 1(1):111—129.

Hood, R. (1982) The Efficient Implementation of Very-High-Level Programming Language
Constructs. PhD thesis, Department of Computer Science, Cornell University. (Available
as Cornell TR 82-503.)

Hoogerwoord, R. R. (1992) A logarithmic implementation of flexible arrays. Conference on
Mathematics of Program Construction: Lecture Notes in Computer Science 669 pp. 191-207.
Springer-Verlag.

Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzman, M.,
Hammond, K., Hughes, J., Johnsson, T, Kieburtz, D., Nikhil, R., Partain, W. and Peterson,
J. (1992) Report on the functional programming language Haskell, Version 1.2. SIGPLAN
Notices 27(5).

Jones, D. W. (1986) An empirical comparison of priority-queue and event-set implementations.
Comm. ACM 29(4):300-311.

Kaldewaij, A. and Schoenmakers, B. (1991) The derivation of a tighter bound for top-down
skew heaps. Information Processing Letters 37(5):265-271.

Kaplan, H. and Tarjan, R. E. (1995) Persistent lists with catenation via recursive slow-down.
ACM Symposium on Theory of Computing pp. 93-102.

King, D. J. (1994) Functional binomial queues. Glasgow Workshop on Functional Programming
pp. 141-150.

MacQueen, D. B. and Tofte, M. (1994) A semantics for higher-order functors. European
Symposium on Programming pp. 409—423.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML. The MIT Press.
Myers, E. W. (1983) An applicative random-access stack. Information Processing Letters

17(5):241-248.
Okasaki, C. (1995a) Amortization, lazy evaluation, and persistence: Lists with catenation via

lazy linking. IEEE Symposium on Foundations of Computer Science pp. 646-654.
Okasaki, C. (1995b) Purely functional random-access lists. Conference on Functional Pro-

gramming Languages and Computer Architecture pp. 86-95.
Okasaki, C. (1995c) Simple and efficient purely functional queues and deques. J. Functional

Programming 5(4):583-592.
Okasaki, C. (1996) The role of lazy evaluation in amortized data structures. ACM SIGPLAN

International Conference on Functional Programming pp. 62-72.
Paulson, L. C. (1991) ML for the Working Programmer. Cambridge University Press.
Schoenmakers, B. (1992) Data Structures and Amortized Complexity in a Functional Setting.

PhD thesis, Eindhoven University of Technology.
Sleator, D. D. K. and Tarjan, R. E. (1985) Self-adjusting binary search trees. J. ACM,

32(3):652-686.
Sleator, D. D. K. and Tarjan, R. E. (1986) Self-adjusting heaps. SIAM J. Computing 15(1):52-

69.
Tarjan, R. E. (1983) Data Structures and Network Algorithms. CBMS Regional Conference

Series in Applied Mathematics, vol. 44. Society for Industrial and Applied Mathematics.
Vuillemin, J. (1978) A data structure for manipulating priority queues. Comm. ACM 21(4):309-

315.
Wadler, P. (1990) Linear types can change the world! Proceedings of the 1FIP TC 2 Working

Conference on Programming Concepts and Methods pp. 561-581.
Williams, J. W. J. (1964) Algorithm 232: Heapsort. Comm. ACM 7(6) :347-348.


