
Experiment around a training engine 

Anne Brygoo, Totou Durand, Pascale Manoury, Christian Queinnec and 
Michele Soria 
Universite Pierre et Marie Curie (Paris 6), UFR d'informatique, France 

Abstract: We describe a teaching experiment where an introductory course to computer 
science is accompanied by use of a computerised training engine. This whole 
engine relies on the existence of an interpreter of the taught programming 
language that allows us to offer quizzes as well as exercises with some 
automatic marking facility. Students may then perform their homework with 
immediate feedback, without being connected to the internet. However, 
students' answers are eventually gathered in a central data base where they 
may be analysed, thus providing the means for 'personal coaching' . 

. Key words: software to improve the learning process, distributed learning system, 
improving learning environments 

1. INTRODUCTION 

The University 'Pierre et Marie Curie' (Paris 6) gave us in 1998 the 
responsibility for running the ftrst introductory course in computer science 
(CS) in a cursus named MIAS (mathematics and informatics applied to 
sciences), a two-year cursus where young students, 18 to 20 years old, study 
general mathematics, physics, mechanics and computer science before 
choosing to graduate in only one of these sciences. The CS cursus is made 
up of three other mandatory courses accompanied by an optional CS project. 
There are roughly 800 students in the ftrst year, 600 in the second year; 450 
get their ftnal degree: 250 choose to pursue mathematical studies, while 160 
others choose CS. 

These ftgures show that most of our audience were not bound to become 
computer scientists, so we decided to introduce the students to the main 

D. Passey et al. (eds.), TelE-Learning
© Springer Science+Business Media New York 2002



46 Anne Brygoo et al. 

concept of CS: the 'evaluation process', that is, how a computer turns 
(executes) a text (a program) into some result. 

Of course, we also decided that our teaching should attract students to 
CS. We therefore favoured a conceptual approach mixed with numerous 
programming activities. These ideas are not new and are rooted in the well
known SICP book (Structure and Interpretation of Computer Programs, 
Abelson and Sussman, 1985) used and taught for a long time at MIT. 

The teaching is 12 weeks long and every week is made up of one course 
(1 hour 15 minutes) and one lab session (1 hour 30 minutes) associated with 
a pre-lab session (1 hour 30 minutes). Thirty students form a group 
monitored by one teacher. Every group follows a computerless pre-lab 
session. The lab session is performed in specialised classrooms with 15 
computers: each computer is operated by two students together. 

Last year, we volunteered to prepare an experiment where 50 students 
would be taught differently. This experiment is described in the rest of this 
short paper (for the complete report on this experiment see Brygoo et aI., 
2002). The main lines of our teaching are detailed in Section 2 (as well as 
giving details of the SP AD experiment and how it differs from the regular 
course). Section 3 presents the software architecture of the associated 
computerised environment. The results of the experiment appear in Section 
4, followed by some conclusions and future perspectives. 

2. CHOICES, OBJECTIVES AND EXPERIMENT 

The goal of the course is to present the 'evaluation process', that is, the 
general principles that allow a computer to interpret a text as a program 
whose value should be mechanically obtainable. We chose to use a subset of 
the Scheme programming language (Kelsey, Clinger and Rees, 1998). 

Our course is divided into three seasons. The ftrst season (six weeks 
long) is devoted to recursion on numbers and lists; the second season (four 
weeks long) presents trees and grammars and, of course, recursion on trees 
and the concept of 'abstraction barrier'. The third and ftnal season (two
weeks long) presents the evaluation process as an interpreter for our Scheme 
subset written in our Scheme subset. The third season does not introduce any 
new concept. It only gathers many functions (most of which were studied in 
lab sessions) for a single goal: the evaluation of a small but powerful 
programming language. 

Finally, the most difficult aspect of CS at that level is to master 
abstraction, that is, to differentiate between syntax and semantics, 
knowledge and information, aspect and meaning. 



Experiment around a training engine 47 

2.1 CD-ROM 

We created a CD-ROM to support our course. This CD-ROM is targeted 
for use with the Windows and Linux Operating Systems. Its aim is to 
provide every student with a means to practice the course at home, that is, 
reading, programming and thinking. Moreover the CD-ROM software 
provides immediate feed-back wherever possible - without any internet 
connection. 

The CD-ROM contains the software required to program in Scheme as 
well as the material for the course, including numerous documents related to 
the Scheme programming language, pragmatics and community. This extra 
material is provided since a programming language is not reduced to syntax 
and semantics but also include pragmatics, folklore, programming guides or 
tricks, etc. 

The CD-ROM favours connection-less self-training, that is, besides a 
traditional course (in HTML and PDF form) it offers quizzes as well as 
exercises that do not require an internet connection. More than 85% of our 
MIAS students have a computer available at home but less than 45% have an 
internet connection. Despite this increasing level of wealth, (and conversely 
to educational platforms vendors), we strongly believe that, in the next ten 
years, most students in the world will still not be constantly connected from 
home to the servers of their university. Therefore we favoured an 
architecture where students solve quizzes or exercises, submit their answers 
and have immediate feedback telling them how good that solution is: the 
feedback is computed locally and does not require an active connection. 

The current version of the CD-ROM contains nearly 400 questions in 
quizzes and 245 questions within 58 exercises. This gives great latitude to 
students (and teachers) to choose which exercise to practice (or study). 

2.2 The SPAD experiment 

The university decided, a year ago, to experiment with distance learning 
at the MIAS level. In September 2001, a group of nearly 50 students began 
to be taught in a new way in mathematics and CS for one semester. First, 
the students only needed to spend three days (instead of five) at the 
university. Second, every student received a CD-ROM containing the 
computerised teaching material. We decided, in CS, to organise the students' 
week on a new basis: we compressed the course and merged the pre-lab and 
lab session into a single weekly 'pedagogical rendez-vous' (2 hours). We 
also reduced the size of a group to 15 students so every student might 
practice alone on a computer. 



48 Anne Brygoo et al. 

However, since we wanted to follow the progress of our SPAD students, 
the CD-ROM software locally stores all their answers and transfers them, 
later on, to the servers of the university when an internet connection is made. 
Most often, with a few days lag, we get a precise view of our groups 
enabling us to advise our students on a personal basis via e-mail or a shared 
forum. 

Within the constraints, we organise the week as follows: 
- Tuesday was the day of the pedagogical rendez-vous. Weekly 

assignments (course, quizzes and exercises) were prescribed. 
- The course should be read and first-level quizzes completed for Friday. 
- Questions about the course should be posted (on a forum) by Sunday. 
- Exercises should be completed by Monday. 

The organisation of the week rules the content of the pedagogical rendez
vous. We answer student's questions, we present briefly the most delicate 
points of the written course and, finally, we supervise the students practising 
quizzes or exercises as in a normal lab session. 

3. TRAINING ENGINE 

The CD-ROM contains a PDF version of the written course so it may be 
searched or printed, as well as an HTML version chopped into pages centred 
on a single topic. This course is intended to be the main document 
containing all sort of links to quizzes, exercises or other pages with extra 
information. 

Since the course heavily uses a programming language, we also provide a 
programming environment for that language: we chose DrScheme by the 
PLT team from Rice University. DrScheme is a useful environment with a 
lot of well thought-out pedagogical features. It runs on a variety of 
Macintosh, Windows and Linux systems and is easily installed on all sorts of 
computers. 

Quizzes and exercises are written in Scheme, they are installed as an 
additional package to DrScheme where they run as separate threads. As we 
regularly improve and extend this package, students get used to updating 
their configuration (with a simple click). 

3.1 Quizzes 

Teachers' quizzes help students to understand the course before getting 
involved in exercises. Quizzes adhere to the structure of the course and 
provide questions on every topic of the course. Quizzes are ranked from easy 
to difficult and from optional to mandatory. Students are aware of this 



Experiment around a training engine 49 

ranking. Quizzes are not marked; answers are just checked for correctness 
wherever possible. 

After reading a topic of the written course, the student is offered some 
quizzes as simple links. Technically, clicking on such a link directs the 
browser towards a web-server embedded within DrScheme. This web-server 
loads the required quiz (a Scheme file) and starts evaluating it. This 
program (the quiz) is made of a succession of standardised questions at 
various abilities for the student (Queinnec, 2000). We distinguish three 
levels of quizzes: 
- Simple applications of the course. 
- Questions on the course itself. 
- 'Meta-questions' that replace knowledge from the whole course. 

The standardisation of questions makes it easier for students to recognise 
the type of question they have to solve. It also makes it easier for teachers to 
write quizzes since only the varying parts are to be specified. The lITML 
decoration is therefore totally unrelated to the scientific content. 

To sum up, most of the quizzes allow students to program short items in 
Scheme, without the complete DrScheme programming environment, with 
the sole power of a browser. 

3.2 Exercises 

An extra menu item within the DrScheme programming environment 
allows students to choose an exercise. Exercises are made up of a series of 
questions. A question asks for the definition and the test of one (or more) 
Scheme function(s). 

First, the student writes the required function, followed by some tests. 
He may then hit the 'Check' button to get some feedback for his work. As 
developed below, the feedback consists of a mark associated with some 
comments justifying this mark. The marking process takes into account 
many syntactical or semantical aspects of the program into account but is not 
intended to replace the teacher. The mark is an indicator that tells the student 
how correct the program is. Additionally, if the mark is above a given 
threshold, an (lITML) solution is displayed. 

3.3 Traces 

For all quizzes and exercises, solutions and their evaluations (most often 
a number) are time-stamped and stored (more or less immediately) in a data 
base of a central server of the university. We developed, for our own usage, 
some SQL web-based forms making inquiries of the data base to display the 
state of any particular student with respect to the quizzes or exercises of any 



50 Anne Brygoo et al. 

given week, thus allowing us to offer some comments (bye-mail) on his 
answers: this is what we call 'personal coaching'. We also question the data 
base to display the state of a whole group with respect to the quizzes or 
exercises of any given week, to allow us to write a page entitled 'Weekly 
advice' or post in the forum any comment upon a popular mistake or habit. 

These forms also allow some statistical analyses to determine which 
questions (quiz or exercise) have a high failure rate because either the 
question is poorly worded or not feasible at that place in the course. 

4. RESULTS AND PERSPECTIVES 

A first and surprising result is that the 50 students in the SP AD group are 
rather representative of the whole group of regular students: we observed 
students that were always absent, students loosely interested in CS, students 
that produced regularly poor results, students with a huge background in 
windows-based software but unable to master recursion, as well as students 
without any former programming experience but with good results. 

The continuous use of a computer for that course showed unanticipated 
effects. SP AD students used the computer to read the course, followed the 
links towards quizzes, performed quizzes on screen, and switched between 
the browser and the programming environment. Moreover, they were alone 
on a computer during a lab session, and therefore, they were much more at 
ease with computers than the rest of the MIAS students: the computer 
became a helper device rather than an opponent to be tamed. SP AD students 
used the computer as a specialised co-worker. 

We generated some statistics to compare the 750 regular students with 
the 50 SP AD students. The results showed no significant difference between 
both populations except that extremely good students seemed less rare. But 
we also report a refined perception of the experiment, based upon the final 
questionnaire that was completed by all students, and several discussions 
with the SP AD students. 

SP AD students did enjoy the experience: the main points that were 
brought out were: 
- they feel free to organise their work, but very much appreciate the 

weekly prescriptions they are given (see Section 1.2). 
- although they meet their teachers only once a week (and would rather 

have two rendez-vous), they feel closely connected with them via e-mail 
and the daily maintained forum. 

- they appreciate learning programming by practising (even for those who 
had no experience with a computer, and first had to struggle a lot). 



Experiment around a training engine 51 

5. RELATED WORK 

We share with ELM-ART, an intelligent tutoring system on the WWW to 
teach Lisp (Brusilovsky, Schwarz and Weber, 1996; Weber and Specht, 
1997), a number of goals and means. We teach a similar language (Scheme 
is an heir of Lisp) and our web-server (for quiz) is written in Scheme 
(whereas ELM-ART uses CL-HTTP written in COMMON LISP). 

There are many differences though. Our system uses primarily the 
programming environment DrScheme. This allows students to write Scheme 
programs with great comfort, but this is not the case with any web-based 
system we know. It also allows for more interesting exercises where we 
provide some libraries to be assessed by the students. Students have access 
to all the debugging means provided by the programming environment to 
perform their assignment. 

The way we mark exercises by comparison to the teachers' solution is 
very easy to put into practice. This solves one of the major difficulties 
highlighted in many works (Joey, Chan and Luck, 2000) which is to write 
these marking functions. The work is reduced to writing at least one 
solution, then to deciding to which (possibly dynamically-generated) set of 
inputs, the solution and the student's answer should be compared. Given that 
we use Scheme and run our tests on the values themselves (Le. their 
representation in memory) instead of their printed representation, we are free 
from the burden of specifying any precise 10 format: this is quite similar to 
the Boss2 solution (Joey, Chan and Luck, 2000) that uses Java interfaces to 
hide implementation details. 

6. CONCLUSIONS 

As is the case for nearly all teaching experiments, we feel that the 
experiment is a success both for students who liked the freedom they gained 
with this organisation and for teachers who experienced a new means of 
teaching. 

The material we developed for the SP AD experiment is not only useful 
for SP AD students, it brings the opportunity for all our MIAS students (and 
possibly other French-speaking students around the world) to practise at 
home, with feedback, the quizzes and exercises supporting our course. 

Moreover, we gathered a number of pedagogical resources offering new 
teaching possibilities: computerised homework with automatic submission 
(via the trace system), computerised examination during lab sessions, 
computerised revision (with quizzes) during free-hours. We are eager to 
explore these new fields with our colleagues. 



52 Anne Brygoo et ai. 

Eventually, we collected a number of traces that we plan to explore 
further. Many elaborated studies may take place, for instance computing the 
difference between two consecutive answers to the same question. This will 
allow us to understand better the learning process in order to improve our 
teaching. 

The web site and the CD-ROM we developed for this course are freely 
accessible (but mostly in French) at 
http://www.infop6.jussieu.fr/deugl200 1Imias/mias-aldeugspad, and 
http://www.infop6.jussieu.fr/cederomsNideoScm200 11. 

REFERENCES 

Abelson, H. and Sussman, GJ. with Sussman, 1. (1985) Structure and Interpretation of 
Computer Programs. Cambridge, Mass.: MIT Press 

Brusilovsky, P., Schwarz, E.W. and Weber, O. (1996) ELM-ART: An intelligent tutoring 
system on world wide web. In C. Frasson, G. Gauthier and A. Lesgold (eds.) Intelligent 
Tutoring Systems (lTS'96), Vol. 1086 of Lecture Notes in Computer Science, 261-269. 
Berlin: Springer-Verlag 

Brygoo, A., Durand., T., Manoury, P., Queinnec, C. and Soria, M. (2002) Experiment around 
a training engine (Complete version). Available at: 
http://www.spi.lip6.fr/-queinneclPaperslifip2002.ps.gz 

Joy, M.S., Chan, P.-S. and Luck, M. (2000) Networked submission and assessment. In 
Proceedings of the I st Annual Conference of the LTSN Centre for Information and 
Computer Sciences, LTSN-ICS. 

Kelsey, R., Clinger, W. and Rees, J. (eds.) (1998) Revised K report on the algorithmic 
language Scheme. Higher-Order and Symbolic Computation, II, (I), 7-105 

Queinnec, C. (2000) The influence of browsers on evaluators or, continuations to program 
web servers. In ICFP '2000 - International Conference on Functional Programming, 
Montreal, Canada. 

Weber, G. and Specht, M. (1997) User modeling and adaptive navigation support in www
based tutoring systems. In A. Jameson, C. Paris and C. Tasso (eds.) Proceedings of the 
Sixth International Conference on User Modelling (UM'97), Cagliari, Italy. 

BIOGRAPmES 

The authors teach in the computer studies department of University 
Pierre et Marie Curie. Their combined teaching experience roughly amounts 
to a century. 


