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SUMMARY

A sample of programs, written in FORTRAN by a wide variety of people for a wide variety
of applications, was chosen ‘at random’ in an attempt to discover quantitatively ‘what
programmers really do’. Statistical results of this survey are presented here, together with
some of their apparent implications for future work in compiler design. The principal
conclusion which may be drawn is the importance of a program ‘profile’, namely a table of
frequency counts which record how often each statement is performed in a typical run; there
are strong indications that profile-keeping should become a standard practice in all computer
systems, for casual users as well as system programmers. This paper is the report of a three
month study undertaken by the author and about a dozen students and representatives of the
software industry during the summer of 1970. It is hoped that a reader who studies this
report will obtain a fairly clear conception of how FORTRAN is being used, and what
compilers can do about it,
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1. INTRODUCTION

Designers of compilers and instructors of computer science usually have comparatively
little information about the way in which programming languages are actually used by
typical programmers. We think we know what programmers generally do but our notions
are rarely based on a representative sample of the programs which are actually being run on
computers. Since compiler writers must prepare a system capable of translating a language
in all its generality, it is easy to fall into the trap of assuming that complicated constructions
are the norm when in fact they are infrequently used. There has been a long history of
optimizing the wrong things, using elaborate mechanisms to produce beautiful code in
cases that hardly ever arise in practice, while doing nothing about certain frequently
occurring situations. For example, the present author once found great significance in the
fact that a certain complicated method was able to translate the statement

ClIxN+J]:=((A+X)x Y)+2-768+ (L — M) x (- K))/Z

into only nineteen machine instructions compared to the twenty-one instructions obtained
by a previously published method due to Galler and co-workers (see Knuth?). The fact
that arithmetic expressions usually have an average length of only two operands, in practice,
would have been a great shock to the author at that time!

There has been widespread realization that more data about language use is needed; we
cannot really compare two different compiler algorithms until we understand the input data
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they deal with. Of course, the great difficulty is that there is no such thing as a ‘typical
programmer’; there is a tremendous variation among programs written by different people
with different backgrounds and sympathies and indeed there is considerable variation even
in different programs written by the same person. Therefore we cannot trust any measure-
ments to be very accurate, although we can measure the degree of variation in an attempt to
determine how significant it is. Not all properties of programs can be reduced to simple
statistics; it is necessary to study selected programs in detail in order to appreciate their
characteristics more clearly. For a survey of early work on performance measurement and
evaluation, see Calingaert? and Cerf.?

During the summer of 1970, the author worked together with several other people in
order to explore the nature of actual programs and the corresponding implications both for
software design and for computer science education. Our results are by no means a definitive
analysis of programming behaviour; our goal was to explore the various possibilities, as a
group, in order to set the stage for subsequent individual research rather than to go off in
all directions at once. Each week the entire group had an eight-hour meeting in order to
discuss what had been learned during the previous week, hoping that by combining our
differing points of view we might arrive at something reasonably close to Truth.

A first idea for obtaining ‘typical’ programs was to go to Stanford’s Computation Center
and rammage in the waste-baskets and the recycling bins. This gave results but showed
immediately what should have been obvious: waste-baskets usually receive undebugged
programs. Furthermore, it seems likely that compilers usually are confronted with unde-
bugged programs, too; so it was necessary for us to choose whether we wanted to study the
distributions of syntax errors, etc. or to concentrate on working programs. Some excellent
analyses of common errors have already been made (see Freeman, Moulton and Muller)®3
and one of our main goals was to study the effects of various types of optimization; so
we decided to restrict ourselves to programs which actually run to completion.

The waste-basket method turned up some interesting programs but it was not really
satisfactory. If we wanted to automate the process, extensive typing from the listings would
have been necessary; so we tried another tack. Our next method of obtaining programs was
to post a man by the card reader at various times; he would ask for permission to copy decks
on to a special file. Fifteen programs, totalling about 5000 cards, were obtained in this way;
but the job was very time-consuming since it was necessary to explain the objectives of our
project each time and to ask embarrassing questions about the status of people’s programs.

The next approach was to probe randomly among the semi-protected files stored on
disks looking for source text; this was successful, resulting in thirty-three programs,
totalling about 20,000 cards. We added nine programs from the CSD subroutine library
and three programs from the ‘Scientific Subroutine Package’, and some production pro-
grams from the Stanford Linear Accelerator Center. A few classical benchmark programs
(nuclear codes, weather codes and aerospace calculations) were also contributed by IBM
reptesentatives and to top things off we threw in some programs of personal interest to
members of the group.

This procedure gave us a quite varied collection of programs: some large, some small;
some sophisticated, some crude; some important, some trivial; some for production, some
for play; some numerical, some combinatorial.

It is well known that different programming languages evolve different styles of
programming, so our study was necessarily language-dependent. For example, one would
expect that expressions in APL programs tend to be longer than in FORTRAN programs.
But virtually all of the programs obtained by our sampling procedure were written in
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FORTRAN (this was the first surprise of the summer), so our main efforts were directed
toward the study of FORTRAN programs.}

Was this sample representative ? Perhaps the users of Stanford’s computers are more
sophisticated than the general programmers to be found elsewhere; after all we have such a
splendid Computer Science Department! But it is doubtful whether our Department had
any effect on these programs, because for one thing we do not teach FORTRAN; it was
distressing to see what little impact our courses seem to be having, since virtually all of the
programs we saw were apparently written by people who had learned programming else-
where. Furthermore, the general style of programming that we found showed very little
evidence of ‘sophistication’; if it was better than average, the average is too horrible to
contemplate! (This remark is not intended as an insult to Stanford’s programmers; after
all we were invading their privacy, and they would probably have written the programs
differently if they had known the code was to be scrutinized by self-appointed experts like
ourselves. Our purposes were purely scientific in an attempt to find out how things are,
without moralizing or judging people’s competence. The point is that the Stanford sample
seems to be reasonably typical of what might be found elsewhere.) Another reason for
believing that our sample was reasonably good is that the programs varied from text-editing
and discrete calculations to number-crunching; they were by no means from a homogeneous
class of applications. On the other hand, we do have some definite evidence of differences
between the Stanford sample and another sample of over 400 programs written at
Lockheed (see section 2 of this paper).

The programs obtained by this sampling procedure were analysed in various ways. First
we performed a static analysis, simply counting the number of occurrences of easily
recognizable syntactic constructions. Statistics of this kind are relevant to the speed of
compilation. The results of this static analysis are presented in section 2. Secondly, we
selected about 25 programs at random and subjected them to a dynamic analysis, taking
into account the frequency with which each construction actually occurs during one run of
the program; statistics of this kind are presented in section 3. We also considered the
‘inner loops’ of 17 programs, translating them by hand into machine language using
various styles of optimization in an attempt to weigh the utility of various local and global
optimization strategies; results of this study are presented in section 4. Section 5 of
this paper summarizes the principal conclusions we reached, and lists several areas which
appear to be promising for future study.

2. STATIC STATISTICS

We examined a large number of FORTRAN programs to see how frequently certain
constructions are used in practice. Over 250,000 cards (representing 440 programs) were
analysed by Mr. Maybury at the computer centre of Lockheed Missiles and Space Corpora-
tion in Sunnyvale.

Table I shows the distribution of statement types. A ‘typical Lockheed program’ consists
of 120 comment cards, plus 178 assignment statements, 63-5 IF’s, 56 GO TO’s, 34 CALL’s,

1 By contacting known users of AL.GOL, it was possible to collect a fairly representative sample of ALGOL-W
programs as well. The analysis of these programs is still incomplete; preliminary indications are that the
increased flexibility of data types in ALGOL~W makes for much more variety in the nature of inner loops than
was observed in FORTRAN, and that the improved control structures make GO T'O’s and labels considerably
less frequent. A comprehensive analysis of ALGOL 60 programs has recently been completed by B. Wichmann.®

We analysed one PL/I program by hand. COBOL is not used at Stanford’s Computation Center, and we
have no idea what typical COBOL programs are like.
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21 CONTINUE’s, 18 WRITE’s, 18 FORMAT’s, 17 DO’s, 72 miscellaneous other
statements and 31 continuation cards (mostly involving COMMON or DATA). Essentially
the same over-all distribution of statement types was obtained when individual groups of

‘Table I. Distribution of statement types

Lockheed Stanford
Number Per centf Number Per centt

Assignment 78,435 41-0 4,869 51-0
Ir 27,967% 14-5% 816% 8-3%
GO TO 24,942 13-0 777 8-0
CALL 15,125 8-0 339 40
CONTINUE 9,165 50 309 30
WRITE 7,795 4-0 508 5-0
FORMAT 7,685 4-0 380 4-0
DO 7,476 4-0 457 5-0
DATA 4,468 2-0 28 0-3
RETURN 3,639 2-0 186 2-0
DIMENSION 3,492 20 141 1-5
COMMON 2,908 1-5 263 3-0
END 2,565 1-0 121 1-0
BUFFER 2,501 1-0 0
SUBROUTINE 2,001 1-0 93 1-0
REWIND 1,724 1-0 6
EQUIVALENCE 1,382 0-7 113 1-0
ENDFILE 765 0-4 2
INTEGER 657 0-3 34 0-3
READ 586 - 03 92 1-0
ENCODE 583 03 0

DECODE 557 0-3 0

PRINT 345 0-2 5

ENTRY 279 01 15 0-2
STOP 190 01 11 01
LOGICAL 170 0-1 9 0-1
REAL 147 0-1 3

IDENT 106 01 0

DOUBLE 3 99 1-0
OVERLAY 82 0

PAUSE 57 6 0-1
ASSIGN 57 4

PUNCH 52 5 0-1
EXTERNAL : 23 1
IMPLICIT 0 16 15
COMPLEX 6 0
NAMELIST 5 0
BLOCKDATA 1 2

INPUT 0 0

ouTPUT 0 0
COMMENT 52,924 {28) 1,090 (i)
CONTINUATION 13,709 6 636 Q)

T Per cent of total number of statements excluding comments and continuation cards.
} The construction ‘IF () statement’ counts as an IF as well as a statement, so the total is more than 100 per
cent,
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about thirty programs were tested, so these statistics tended to be rather stable. We forgot
to test how many statements had non-blank labels.

The same test was run on a much smaller but still rather large collection of programs
from our ‘Stanford sample’ (about 11,000 cards). Unfortunately the corresponding per-
centages shown in Table I do #not agree very well with the Lockheed sample; Stanfordites
definitely use more assignments and less IF’s and GO’s than Lockheedians. A superficial
examination of the programs suggests that Lockheed programmers are perhaps more careful
to check for erroneous conditions in their data. Note also that 2-7 times as many comments
appear on the Lockheed programs, indicating somewhat more regimentation. The
professional programmers at Lockheed have a distinctly different style from Stanford’s
casual coders.

The 7,933 DO loops were further investigated to determine their length and depth of
nesting; about 95 per cent of the DO statements used the default increment of one. Most
DO loops were quite short involving only one or two statements:

Length 1 2 3 4 5 >5
Number 3,046 1,467 758 576 1,043 1,043
Per cent 39-0 18-5 9-5 7-0 13-0 13-0

The depth of DO nesting was subject to considerable variation; the following totals were
obtained:

Depth 1 2 3 4 5 >5
Number 4,211 1,853 1,194 437 118 120
Per cent 53-5 23-0 15-0 5-5 1-5 1-5

Of the 28,783 IF statements scanned, 8,858 (30 per cent) were of the ‘old style’
IF (...) my, my, n5 o1 1F (...) my, m, while the other 19,925 (70 per cent) had the form IF (.
statement; 14,258 (71 per cent) of the latter were IF (...) GO TO’. (These count also as
GO TO statements.) Only 1,107 of the 25,719 GO TO statements were computed (switch)
GO’s.

An average of about 48 blank columns was found per non-comment card. A
compiler’s lexical scanner should therefore include a high-speed skip over blanks.

Assignment statements were analysed in some detail. There were 83,304 assignment
statements in all; and 56,751 (68 per cent) of them were trivial replacements of the form
A = B where no arithmetic operations are present!t The remaining assignments included
10,418 of the form 4 = Aopa, i.e. the first operand on the right is the same as the variable
on the left. An attempt was made to rate the complexity of an assignment statement, counting
one point for each + or — sign, five for each * and eight for each /; the distribution was

Complexity 0 1 2 3 4 5 6 7 8 9
Number 56,751 14,645 1,124 106 267 2,436 1,988 562 2,359 552
Per cent 68-0 17-5 3 061 03 30 20 06 30 06
Occurrences of operators and constants were also tallied:
standard
Operator + - * / w3 =  function constant

Occurrences 17,973 10,298 12,348 4,739 1,108 90,257 3,994 49,386

T In the Stanford sample the corresponding figures were 2,379 out of 4,869 (49 per cent); this was another
example of a Lockheed versus Stanford discrepancy.
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Tt is rather surprising to note that 7,200 (40 per cent) of the additions had the form e+ 1;
349 (3 per cent) of the multiplications had the form «*2; 180 (4 per cent) of the divisions had
the form af2; 427 (39 per cent) of the exponentiations had the form o**2. (We forgot to
count the fairly common occurrences of 2%w, 2.%, a*2., wf2., 2.0%, etc.)

The program analysed indices, although it was unable to distinguish subscripted
variables from calls on programmer-defined functions. Of the 166,599 appearances of
variables, 97,051 (58 per cent) were unindexed, 50,979 (30-5 per cent) had one index,
16,181 (9-5 per cent) had two, 2,008 (1 per cent) had three and 330 (0-2 per cent) had four.

Another type of ‘static’ test on the nature of FORTRAN programs was also made, in an
attempt to discover the complexity of control flow in the programs. Cocke’s ‘interval reduc-
tion’ scheme? was applied to fifty randomly selected FORTRAN programs and sub-
routines, and in every case the flow graph was reduced to a single vertex after six or less
transformations. The average number of transformations required per program was only 2-75.

The obvious conclusion to draw from all these figures is that compilers spend most of
their time doing surprisingly simple things.

3. DYNAMIC STATISTICS

The static counts tabulated above are relevant to the speed of compilation, but they do
not really have a strong connection with the speed of object program execution. We need
to give more weight to statements that are executed more frequently.

Two different approaches to dynamic program analysis were explored in the course of
our study, the method of frequency counts or program profiles and the method of program
status sampling. The former method inserts counters at appropriate places of the program
in order to determine the number of times each statement was actually performed; the
latter method makes use of an independent system program which interrupts the object
program periodically and notes where it is currently executing instructions.

Frequency counts were commonlystudied in the early days of computers (see von Neumann
and Goldstine)? and they are now experiencing a long-overdue revival. We made use of a
program called FORDAP, which had been developed previously in connection with some
research on compilation; FORDAP takes a FORTRAN program as input, and outputs an
equivalent program which also maintains frequency counts and writes them on to a file.
When the latter program is compiled and runm, its output will include a listing of the
executable statements together with their frequency counts. See Figure 1, which illustrates
the output corresponding to a short program, using an extension of FO RDAP which includes
a rough estimate of the relative cost of each statement, Ingalls.? The principles of preparing
such a routine were independently developed at UCLA by Russell;1° Russell’s efforts were
primarily directed towards a study of potential parallelism in programs, but he also included
some serial analyses of large scale routines which exhibit the same phenomena observed
in our own studies.

Frequency counts add an important new dimension to the FORTRAN programs;
indeed, it is difficult to express in words just how tremendously ‘eye-opening’ they are.
Even the small example in Figure 1 has a surprise (the frequency counts reveal that about
half the running time is spent in the subroutine linkage of the FUN function). After
studying dozens of FORDAPed programs, and after experiencing the reactions of pro-
grammers who see the frequency counts of their own programs, our group came to the
almost unanimous conclusion that all software systems should provide frequency counts to
all programmers, unless specifically told not to do so.
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Figure 1. The profile of a short program

111

EXELLTABLE STATENMENTS EXECUTIONS COSsT
REAJ (5510 XCsYOsHJINTIENT 2 100
IF (LENT) 2044Cy20 2 &%
WKITE (&y2) EoXTy¥YC 1 50
CALL KKZ (FUN2Hs XU g YO dNTy ILATHA) 1 2
3TeP=FLCAT(JNTI*H 1 11
X=X0 1 1
LU 30 [=1,1ENT 1 2
X=X+STEF 30 60
RRITE (€43) Xsa(I) 30 1530
GJ TU 1C 1 1
STCP 1 1
£ND
FUNCTIGN FUN{X2Y) 1200 18000
FLN =1e/X 1200 9500
FETURN 1200 6NQD
ENL
SUBRCUTLE RR2{FUN ke X1sYIaKeh,y VEC) 1 15
H2=t/Z» 1 8
Y=Y] 1 1
X=X1 1 1
U 2 i=lyi 1 2
DU L JsyK 30 60
T1=H*FLN{X,Y) 300 27100
T2=F*FUNIX+HZ, V4T 1/ 24) 300 5400
T3=REEFUNIX#H2,Y#T2/24) 300 5400
Ta=HEFUN( X4H,Y+T2) 300 3300
Y= Y+(TI42%T242.%T3474)/6, 300 6900
P EFE T ino 300
VEC(I)=Y 30 Qn
KeTURN 1 5
LND

The advantages of frequency counts in debugging have been exploited by

Satterthwaite!! in his extensions to Stanford’s ALGOL-W compiler. They can be used to
govern selective tracing and to locate untested portions of a program. Once the program has
been debugged, its frequency counts show where the ‘bottlenecks’ are, and this information
often suggests improvements to the algorithm and/or data structures. For example, we
applied FORDAP to itself, since it was written in FORTRAN, and we immediately found
that it was spending about half of its time in two loops that could be greatly simplified; this
made it possible to double the speed of FORDAP, in less than an hour’s work, without even
looking at the rest of the program. (See example 2 in section 4.) The same thing happened
many times with other programs.

Thus our experience has suggested that frequency counts are so important they deserve a
special name; let us call the collection of frequency counts the profile of a program.

Programs typically have a very jagged profile, with a few sharp peaks. As a very rough
approximation, it appears that the #th most important statement of a program from the
standpoint of execution time accounts for about («— 1)a~ of the running time, for some «
and for small #z. We also found that less than 4 per cent of a program generally accounts for
more than half of its running time. This has important consequences, since it means that
programmers can make substantial improvements in their own routines by being careful in
just a few places; and optimizing compilers can be made to run much faster since they
need not study the whole program with the same amount of concentration.
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Table II shows how the relative frequency of statement types changes when the counts
are dynamic instead of static; this table was compiled from the results of twenty-four
FORDAP runs, with the statistics for each program weighted equally. We did not have
time to break down these statistics further (to discover, for example, the distribution of
operators, etc.), except in one respect: 45 per cent of the assignment statements were
simply replacements (of the form 4 = B where B is a simple variable or constant), when
counting statically, but this dropped to 35 per cent when counting dynamically. In other
words, replacements tend to occur more often outside of loops (in initialization sections,
etc.).

Table I1. Distribution of executable statements

Static (per cent) Dynamic

Assignment 51 6
IF 10 1

WRITE
CONTINUE
RETURN
READ
STOP

=N OO
OO W~ W WD S

The other approach to dynamic statistics gathering, based on program status sampling,
tends to be less precise but more realistic, in the sense that it shows how much time is
actually spent in system subroutines. We used and extended a routine called PROGTIME??
which was originally developed by Johnston and Johnson to run on System/360 under
MVT. PROGTIME spawns the user program as a subtask, then samples its status word at
regular intervals, rejecting the datum if the program was dormant since its last interruption.
An example of the resulting ‘histogram’ output appears in Figure 2; it is possible (although
not especially convenient) to relate this to the FORTRAN source text.

In general, the results obtained from PROGTIME runs were essentially what we would
have expected from the FORDAP produced profiles, except for the influence of input/
output editing times. The results of FORDAP would have led us to believe that the code
between relative locations 015928 and 015A28 in Figure 2 would consume most of the
running time, but in fact FORDAP does not give the true over-all picture since 70 per cent
of the time was actually spent in those beloved system subroutines IHCECOMH and
IHCFCVTH (relative locations 016A88-019080). Roughly half of the programs we studied
involved substantial amounts of input/output editing time, and this led us to believe that
considerable gains in efficiency would be achieved if the compilers would do the editing
in-line wherever possible. It was easy to match up the formats with the quantities to be
edited, in every case we looked at. However, we did not have time to study the problem
further to investigate just how much of an improvement in performance could be expected
from in-line editing. Clearly the general problem of editing deserves further attention,
since it seems to use up more than 25 per cent of the running time of FORTRAN programs

in spite of the extremely infrequent occurrence of actual inputfoutput statements reflected
in Table II.
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Due to the random nature of the sampling process, two PROGTIMEs of the same
program will not give identical results. It is possible to get accurate frequency counts and
accurate running times by using the technique of ‘jump tracing’ (see Gaines).’® A jump
trace routine scans a program down to the next branch instruction and executes the inter-
vening code at machine speed; when a branch occurs the location transferred to is written
on to a file. Subsequent processing of the file makes it possible to infer the frequency counts.
The jump trace approach does not require auxiliary memory for counters and it can be
used with arbitrary machine language programs. Unfortunately we did not have time to
develop such a routine for Stanford’s computers during the limited time in which our study
was performed.

4. THE INNER LOOPS

We selected seventeen programs at random for closer scrutiny; this section contains a
summary of the main features of these programs. (It is worth emphasizing that we did not
modify the programs nor did we discard programs that did not produce results in accord-
ance with our preconceived ideas; we analysed every routine we met whether we liked it or
not. The result is hopefully a good indication of typical FORTRAN programming practice
and we believe that a reader who scans these programs will obtain a fairly clear conception
of how FORTRAN is being used.) First the program profile was found by running it with
FORDAP and PROGTIME. (This caused the chief limitation on our selection, for we
were unable to study programs for which input data was on inaccessible tapes or otherwise
unavailable.) In each case a glance at the profile reduced the program to a comparatively
small piece of code which represented the majority of the execution time exclusive of
input/output statements. These ‘inner loops’ of the programs are presented here; the names
of identifiers have been changed in order to give some anonymity, but no other changes
have been made.

In each case we hand-translated the inner loop into System/360 machine language using
five different styles of ‘optimization’:

Level 0

Straight code generation according to classical one-pass compilation techniques.

Level 1

Like level 0 but using local optimizations based on a good knowledge of the machine;
common subexpressions were eliminated and register contents were remembered across
statements if no labels intervene, etc., and the index of a DO was kept in a register but no
optimizations requiring global flow analysis were made.

Level 2

‘Machine-independent’ optimizations based on global flow analysis, including constant
folding, invariant expression removal, strength reduction, test replacement and load-store
motion (cf. Allen).1
Level 3

Like level 2 plus machine-dependent optimizations based on the 360, such as the use of
BXLE, LA, and the possibilities afforded by double indexing.
Level 4

The ‘best conceivable’ code that would be discovered by any compiler imaginable.
Anything goes here except a change in the algorithm or its data structures.
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These styles of optimization are not extremely well defined, but in each case we produced
the finest code we could think of consistent with that level. (In nearly every case this was
noticeably better than the optimizations produced by the existing FORTRAN compilers;
FORTRAN H OPT 02 would presumably be able to reach level 3 if it were carefully tuned.)
Level 4 represents the ultimate achievable, by comparison with what is realized by current
techniques, in an attempt to assess whether or not an additional effort would be worth
while.

These styles of optimization can best be appreciated by studying Example 1 for which
our machine language coding appears in the Appendix to this paper. It is appropriate to
restrict our attention solely to the inner loop, since the profiles show that the effect of
optimization on this small part of the code is very indicative of the total effect of optimization
on the program as a whole.

In order to compare one strategy to another, we decided to estimate the quality of each
program by hand instead of actually running them with a timer, as in Wichmann.’®> We
weighted the instructions in a crude but not atypical manner as follows: Each instruction
costs one unit, plus one if it fetches or stores an operand from memory or if it is a branch
that is taken, plus a penalty for specific slower opcodes:

Floating add/subtract add 1

Multiply add 5

Divide add 8

Multiply double add 13

Shift. ' add 1

Load multiple add in (n registers loaded)
Store multiple add in (n registers stored)

This evaluation corresponds roughly to 1 unit per 0-7 microseconds on our model 67
computer. Other machine organizations (‘pipelining’, etc.) would, of course, behave
somewhat differently, but the above weights should give some insight. We also assumed the
following additional costs for the time spent in library subroutines, cf. Reference 16.

SQRT 85
SIN, COS 110
ALOG 120
ERF 130

Complex multiply 60
Real ** Integer 75

Example 1

The first program we studied involved 140 executable statements, but the following five
represented nearly half of the running time:

DO2J=1,N
T = ABS(A(L T))
IF (T—8) 2,2,1

1 S=T

2 CONTINUE
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Statement 1 was executed about half as often as the others in the loop. The programs in the
Appendix have a ‘score’ of
37.5, 285, 14-0, 80, 70
for levels 0, 1, 2, 3, 4 respectively.
The same program also included another time-consuming loop,
DO3J=1N
3 ALLD=AJ]J)*B
for which the respective scores are
51-0, 29.0, 17.0, 12.0, 11-0

In this case, level 0 is penalized for calculating the subscript twice.

Example 2
(This came from the original FORDAP program itself.) Although there were 455
executable statements, over half of the program time was spent executing two loops like this:
DO 1] =138,53
IF (K(I).EQ.L(J)) GO TO 3
1 CONTINUE
2

The five styles of translation give respective scores of
23-.0, 19-0, 90, 50, 3-5

Level 4’s score of 3-5 is obtained in an interesting way which applies to several other loops
we had examined earlier in the summer; we call it the technique of combining tesis. The
array element 1.(54) is set equal to K(I), so that the loop involves only one test; then after
reaching L3, if ] = 54 we go back to L2. The code is

Q1 L1LAZ380,3)
C 4,000,3)
BER5 (Register 5 contains A(L3))
C 4,40,3)
BNE Q1
L3

I necessary, L(54) could be restored.
Of course, in this particular case the loop is executed only sixteen times, and so it could
be completely unrolled into 32 instructions

C 4,L(38)
BER 5
C 4,1(39)
BER 5

C 4,1(53)
BER 5
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reducing the score to 3-0. But in actual fact the L table was loaded in 2 DATA statement
and it contained a list of special character codes; a more appropriate program would
replace the entire DO loop by a single test
IF (LT(KD)) 1,3,1
for a suitable table LT, thereby saving over half the execution time of the program.
(Furthermore, the environment of the above DO loop was
DO21=7,72

so that any assembly language programmer would have reduced the whole business to a
single ‘translate and test’.)
Example 3

DOUBLE A,B,D

DO1K=1]N

A=TI-X,1+K)

B=TI-KJ+K)

1 D=D-A*B

(This is one of the few times we observed double precision being used, although the
numerical analysis professors in our department strongly recommend against the short

precision operators of the 360; it serves as another indication that our department seems to
have little impact on the users of our computer!) The scores for this loop are

89-0, 67-0, 38.0, 13-0, 0-12

here level 2 suffers from some clumsiness in the indexing and a lack of knowledge that an
ME instruction could be used instead of MD.

Example 4

Here the inner loop is longer and involves a subroutine call. The following code
accounted for 70 per cent of the running time; the entire program had 214 executable
statements.

DO 1K =M,20

CALL RAND(R)

IF (R .GT. .81) N(K) = 1
1 CONTINUE

SUBROUTINE RAND(R)

J = 1#65539
IF (J) 1,2,2

1 J=J+2147483647 +1
R=]
R = R*.4656613E—9
I=]
K=K+l
RETURN

END
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(Here we have a notoriously bad random number generator which the programmer must
have got out of an obsolete reference book; it is another example of our failure to educate
the community.) Conversion from integer to real is assumed to be done by the sequence

X r, =XL4'80000000'
ST r,SPEC+4
LD 0,SPEC
AD 0,SPEC1

for suitable contents of SPEC and SPEC1. By further adjusting these constants the
multiplication by 0-4656613E —9 ~ 2-3! could be avoided; but this observation was felt to
be beyond the scope of level 4 optimization, although it would occur naturally to any
programmer using assembly language.

The most interesting thing here, however, is the effect of subroutine linkage, since the
long prologue and epilogue significantly increase the time of the inner loop. The timings for
levels 0-3 assume standard OS subroutine conventions, although levels 2 and 3 are able to
shorten the prologue and epilogue somewhat because of their knowledge of program flow.
For level 4, the subroutine was ‘opened’ and placed in the loop without any linkage;
hence the sequence of scores,

119-9, 105-1, 814, 76-2, 27-2

Without subscripting there is comparatively little difference between levels 0 and 3; this
implies that optimization probably has more pay off for FORTRAN than we would find
for languages with more flexible data structures.

It would be interesting to know just how many hours each day are spent in prologues
and epilogues establishing linkage conventions.

Example 5
The next inner loop is representative of several programs which had to be seen to be
believed.

DO1K=1N
M=(J-1)*10+K~-1
IF (M.EQ.0) M = 1001
Cl = C1+AI(M)*(B1*%(K — 1))¥(B2**(J - 1))
C2 = C2+ A2(M)*(B1**(K — 1))*(B2**(J - 1))
IF (K-1).EQ.0) T=0.0
IF (K—1).GE.1) T = AI(M)*(K — 1)*(B1*¥(K —2))*(B2**(J - 1))
C3=C3+T
IF ((K—1).EQ.0) T = 0.0
IF (K-1).GE.1) T = A2(M)*(K — 1)*(B1*¥(K - 2))*(B2**(J — 1))
C4=C4+T
IF (J-1).EQ.0) T=0.0
IF ((J—1).GE.1) T = AI(M)*(B1**(K — 1))*(J — 1)*(B2**(J - 2))
C5=C5+T
IF (J—1).EQ.0) T = 0.0
IF (J-1).GE.1) T = A2(M)*(B1*¥(K — 1))*(J — 1)*(B2**(J] — 2))
C6=Co+T

1 CONTINUE
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After staring at this for several minutes our group decided it did not deserve to be
optimized. But after two weeks’ rest we looked at it again and found interesting applications
of ‘strength reduction’, both for the exponentiations and for the conversion of K to real.
(The latter applies only in level 4, which knows that K does not get too large.) The scores
were

1367-0, 545-0, 159-0, 145-0, 104-0

Level 1 optimization finds common subexpressions and level 2 finds the reductions in
strength. Level 4 removes nearly all the IF tests and rearranges the code so that C1 and C2
are updated last; thus only B1**(K —1) is necessary, not both it and B1*¥(K —2).

Example 6

In this case the inner loop involves subroutine calls instead of a DO loop:

SUBROUTINE S(A, B, X)
DIMENSION A(2), B(2)
X=0
Y = (B(2)— A(2)y*12+ B(1) - A(1)
IF (Y.LT.0) GO TO 1
X=Y
1 RETURN
END
SUBROUTINE W(A, B, C, D, X)
DIMENSION A(2), B(2), C(2), D(2), U(2), ¥(2)
X=0
CALL S(A, D, X)
IF (X.EQ.0) GO TO 3
CALL S(C, B, X)
IF (X.EQ.0) GO TO 3
CALL S(C, A, X)
U(1) = A(1)
U(2) = A(2)
IF (X.NE.0) GO TO 1
U(1) = C(1)
U(2) = C(2)
1 CONTINUE
CALL S(B, D, X)
V(1) = B(1)
V(2) = B(2)
IF (X.NE.0) GO TO 2
V(1) = D(1)
V(2) = D(2)
2 CALL S(U, V,X)
3 CONTINUE
RETURN
END
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The numbers at the right of this code show the approximate relative frequency of occurrence
of each statement; calls on this subroutine accounted for 60 per cent of the execution time
of the program. The scores for various optimization styles are

1545-5, 1037-5, 753-3, 736-3, 2890

Here 270 of the 15455 units for level 0 are due to repeated conversions of the constant 0
from integer to real. Levels 2 and 3 move the first statement ‘X = 0’ out of the main loop,
performing it only if “Y.L'T.0’. The big improvement in level 4 comes from inserting the
code for subroutine S in line and making the corresponding simplifications. Statements like
U(1) = A(1), U(2) = A(2) become simply a change in base register. Perhaps further
reductions would be possible if the context of subroutine W were examined, since if we
denote 12*A(1)+A(2) by a, 12*B(1)+B(2) by &, etc., the subroutine computes
max [0, min (b, d) —max (g, c)].

Example 7
In this program virtually all of the time exclusive of input/output editing was spent in the
two loops

DO1I=1,N
A = X*%2.4 Y**2 - 25X *Y*C(T)
B = SQRT(A)

K = 100.*B+1.5
1 D) = S(I*T(K)
Q = D(1)—-D(N)
DO21=2,M,2
2 Q=Q+4*DI)+2.*D(I+1)
where array D was not used subsequently. The scores are
744-0, 387-0, 316-0, 292-0, 256-0

Here level 1 computes X**2 by ‘MER 0,0’ instead of a subroutine call and it computes
2.#D(I+1) by ‘AER 0,0’ instead of multiplying. Level 4 combines the two DO loops into
one and eliminates array D entirely. (Such savings in storage space were present in quite a
few programs we looked at; some matrices could be reduced to vectors, and some vectors
could be reduced to scalars, due to the nature of the calculations. A quantitative estimate of
how much space could be saved by such optimization would be interesting.)

Ezample 8
Ninety per cent of the running time of this program was spent in the following subroutine

SUBROUTINE COMPUTE
COMMON ...
COMPLEX Y(10), Z(10)
R = REAL(Y(N))
P = SIN(R)
Q = COS(R)
S = C*6.%(P/3.— Q*Q*P)
T = 1.414214*P*P*Q*C*6.
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U =T

V = —2.5C*6.%(P[3.— Q*Q*P/2.)
Z(1) = (0.,— 1.)*(S*Y(1)+ T*Y(2))
Z(2) = (0.,— LY(U*Y(1) + V*Y(2))
RETURN

END

This was the only example of complex arithmetic that we observed in our study. The scores
841-5, 7355, 336-0, 3360, 2490

reflect the fact that levels 0 and 1 make six calls on the complex-multiply subroutine, while
levels 2 and 3 expand complex multiplication into a sequence of real operations (with
obvious simplifications). Level 4 in this analysis makes free use of the distributive law, e.g.
S = C*P*2.-6.*Q*Q), although this may not be numerically justified. Furthermore
level 4 assumes the existence of a single ‘SINCOS(R)’ subroutine that computes both the
sine and cosine of its argument in 165 units of time; programmers who calculate the sine
of an angle usually want to know its cosine too and vice versa, and it is possible to calculate
both in somewhat less time than would be required to compute them individually.

Example 9
A program with 245 executable statements spent 70 per cent of its time in

DO2K=1,M
DO2]=1M
X=0.
Y=0
DO1I=1M
N=(J+J+{I-1)*M2)
B=AKI)

X = X+B*Z(N)
1 Y=Y4+B*A(N-1)
DY(L) = W*X
DY(L41)= —-W*Y
2 L=L+2
when M was only 3. Scores (for the innermost I loop only) are
84-0, 69-0, 30-0, 24-0, 24-0
reflecting the fact that level 4 cannot do anything for this case.

Example 10
In this excerpt from a contour plot routine, the CALL is only done rarely:
DO1I=LM

1 IF (X(I-1,]) .LT.Q .AND X(L]J) .GE. Q) CALL S(Al, A2, A3, A4,7,A5)
The scores, assuming that X(I) .L'T.Q about half the time, are
40-0, 31-5, 145, 7-5, 5-0
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Level 3 keeps Q in a register, while level 2 does not. Level 4 is especially interesting since
it avoids testing X(I—1,]).LT.Q in those cases where it is known to be true from the
previous loop. We had noticed similar situations in other routines.

Example 11
This ‘fast Fourier transform’ example shows that inner loops are not always signalled
by the word ‘DO’.
1 K=K+1

Al = A(K)*C(J)+ Al
B1 = B(K)*C(J)+B1
K=K+1
A2 = A(K)*S(J)+ A2
B2 = B(K)*S(J)+ B2
J=J+1
IF(JGTM)J=]J-M
IF (K.LT.M)GO TO 1

The scores are
118-0, 91.0, 60-0, 54-0, 500
Level 4 is able to omit the second ‘K = K+ 1°, and to use a BXLE for ‘J = J+T".

Example 12

Unfortunately an inner loop is not always as short as we had hoped. This rather long
program (1,300 executable statements) spent about half of its time in the following rather
horrible loop:

DO3I=1M

Jo=11

IF (JO.EQ.0) JO =]2

J1=J1+1

J3=J3+1

J4=J4+1

IF J4EQ(LJ-1)+1) J4=1

I5=J1+1

IF (J5.EQ.(J2+1)) J5=1

Ul = U(J1,K1,K2)

V1 = V(J1, K1, K2)

w1 =W(J1,K1,K2)

P(J1) = .25%(Q1(I)*(V1+ V(J3, K3, K2)y*(W1+W(J3, K3,K2))
+Q2D*(V1+V(J3+1, K3, K2))%(W1+W(J3+1,K3,K2))
—Q3(D*(V1+V(J4, K4, K2))*(W1+ W(J4, K4, K2))
+D*(U14+U(J5, K1, K2))*(W1+W(J5, K1, K2))

—(U1+U(J0, K1, K2))*(W1+4 W(J0, K1, K2))))
+R1(J1, K1)*R2(K2)*(S(J1, K2+ 1)*(W1+ W(J1,K1, K2+ 1))
—S(J1, K2)%(W1+W(J1,K1,K2-1)))
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IF (LEQ.1) GO TO 1
J6 = J4—1
IF (J6.EQ.0) J6 = L(J—1)
P(]1) = P(J1)— .25*QH(L)*(V1 + V(J6, K4, K2))*(W1 + W(J6, K4, K2))
GO TO 3
1 IF (M.EQ.1) GO TO 2
P(J1) = P(J1)+.25%Q4(I)*(V1+ V(J3— 1, K3, K2))*(W1+ W(J3~ 1, K3, K2))
GO TO 3
2 P(J1) = P(1)+.25*Q4(I)*(V1+ V(J2+4, K3, K2))*(W1 + W(J2 + 4, K3, K2))
3 CONTINUE

Here levels 2 and 3 have just enough registers to maintain all the necessary indices; the
scores are

792-0, 368-0, 242.0, 238-0, 207-0

Level 4 observes that J6 can more easily be computed by ‘J6 = J4’ before J4 is changed,
and the Q4(I) terms are included as if they were conditional expressions within the big
formula for P(J1).

Example 13
Here is a standard ‘binary search’ loop:

I=0
K=N+1

1 J=(I+K)/2
IF (J.JEQ.I) GO TO 5
IF (X(J)—-X0) 2,4,3

2 I=]
GO TO1

3 K=]
GO TO1

The scores
38-5, 33-0, 27-0, 21-0, 100

for the inner loop are of interest primarily because level 4 was able to beat level 3 by a
larger factor than in any other example (except where subroutines were expanded in-line).
The coding for level 4 in this case consisted of six packets of eight lines each, one for each
permutation of the three registers «, 8 and y:

Liafy LA  y,0(xfB)
SRL 4,1
NR 4,8
CR  y,u
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BE L5«
CE 0,X(y)
BL LlyB«
BE L4y

Llmp

Here 41, 4] and 4K are respectively assumed to be in registers «, v and 8; register 8 contains
—4. Division by 2 can be reduced to a shift since it is possible to prove that I, J and K are
non-negative. Half of the ‘CR y,«; BE L5«’ could have been removed if X(0) were
somehow set to ‘—o0’; this would save another 10 per cent.

Actually the binary search was not the inner loop in the program we analysed although
the programmer (one of our group) had originally thought it would be! The frequency
counts showed that his program was actually spending most of its time moving entries in the
X table to keep it in order when new elements were inserted. This was one of many cases
we observed where a knowledge of frequency counts immediately suggested vital improve-
ments by directing the programmer’s attention to the real bottlenecks in his program.
Changing to a hash-coding scheme made this particular program run about twice as fast.

Examples 14-17
From this point on the programs we looked at began to seem rather repetitious. We
worked out four more examples, summarized here with their scores:
DO1I=1,N
C=C/D*R
R=R+1.
1 D=D-1. [45-0, 42-0, 27-0, 21-0, 20-0]

DO1J=IN
H(L,J) = H(L, J)+ S(D)*S(J)/D1 ~ S(K + I)*S(K + ])/D2
1 H(,1)=H({]J)
[136-0, 103-0, 58-0, 49-0, 41-5]

REAL FUNCTION F(X)
Y = X*.7071068
IF (Y.LT.0.0) GO TO 1
F = 0:5%(1.0+ ERF(Y))
RETURN

1 F=1.0-05%1.0+ERF(-Y))
RETURN
END

} low frequency

[219-5, 208-5, 191-3, 191-3, 151-0]

DO11=1,N
1 A=A+BI)+C(K,I) [41-0, 31-0, 14-0, 9-0, 8:0]

(‘The latter example is the loop from 015928 to 015A28 in Figure 2.)
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Cursory examination of other programs led us to believe that the above seventeen
examples are fairly representative of the programs now being written in FORTRAN, and
that they indicate the approximate effects achievable with different styles of optimization
(on our computer). Only one of the other programs we looked at showed essentially different
characteristics, and this one was truly remarkable; it contained over 700 lines of straight
calculation (see the excerpts in Figure 3) involving no loops, IF’s or GO’s! This must be
some sort of record for the length of program text without intervening labelled statements,
and we did not believe it could possibly be considered typical.

U23 =-ES12T#SETN + ES1ZB¥*SEBN 26% .
U24 =-ES22T#SETN + ESZZEXSERN 2&35,
Y30 = ESEETHSETN +. ESB6P*SEEN 264,
U3l =-E£S66THSETN 4 ESE6B*SEBN 267,
VAT ==2.%{{ESILT+ M ESI2TI*SXT+{ ¥xES22T +ESLZ T)#SYT1#C2XC2Y 269,
1 - 2.3DSERT(RI*TT*ESHET*S2XS2Y 267.
V3B ==2.%({ES11E+M2ESI2E)#SXB+( M$ES2284ES 12145 YB1#C2XC 2Y 27¢.
1 -2 4DSCRT{H] * TB*ESEE5%S2XS2Y 271,
V4T ==B.P{LESLLIT+M*FES 12T IXSXT+(MFES22T+E3 LT)ASYT) %CaXCaY 2724
1 - B XD SORTINBIR TTHESHOE T+ S4XS4Y 273.
V4B ==8 . %{{ESLIB+M¥ES12BY*SXB+{ H+ES2284+ES 2B ¥SYBI*C L XC 4Y 274,
1 ~B ¥USCRT (M) RTE*ESH68554 XS4Y 2754
V5T ==2.%{{S.*ESLIT+4*ESIZT }2SXT+{M¥ES22T+9.#ES12T) #SYTI=C2XCHY 276
1 ~5 kD SCRT (MYFTTHESu LT ¥3 2XSoY : 271.
Al3) = =ALI3ML232,.%X] 1 = 4. %A22FNML2¥4,%X12 = AL3*MNL2%2 32X 11 50%.
1 +T1¥64 ,%¥XI3 £C5.
é =TMLZC¥(AL]l # Z2.%A22 + Al3) 606,
3 4 JHEYXSBOZFHL 2 607.
Alg) = =ME2%{Z2.sXIL1F (X12+X13)-BETARXIL/LSC 1~-ALL=Q2S 68,
1 ~TML Z0¥{X[1/4, +X[2 + XI D) 509.
2 + {HXF(KIIB+M*KIZBX ) #SAT L +M3HY X (MK 22B4K128Y}*5811 61Ca
3 +HXYAMFKEGB®EC 1) /24 6ll.
4 +¥3 €l2.
A{S) = -MLZxxIZixl&., = A22%02S5%16. &13.
1 © = TPL20®Z.3X 3 Ela.
z +Y4 615,
Bfl4416)= +¥1315 555,
Bl 14s17)= +¥131¢e 960 .
2(15414)= D{Ll4,15) Sol.
BllEs14)=-B(14,1€E} 562
B{17¢14)= B{l4,17} 963 .
B{15+1) = Q. 64,
8l15:21! = 0. 965,
8{15,3) = ~4.3ML23HY 556,
B{15:15) = ~HY®SHYXMSU*DLIB/{2.*%0B} + Y1414 7.
B{15,416)= Y1415 €68.
8{15,17)= Yl<1¢ 865,
B{16,15)= E(15:161 970,
BL{17+15)= B{15,:17) 971.
BU1by1)= +MLZSHXY T2,
3{1&4+2) =:C. $73.
B{1&s3) = C.» 974.
B{16,16) = =FXY3HXY#M/ {4.5C€6B) + Y1515 575,

Figure 3. Excerpts from a remarkable program

All but one of the DO loops in the above examples apparently have variable bounds, but
in fact the compiler could deduce that the bounds are actually constant in most cases. For
instance in Example 17, N is set equal to 805 at the beginning of the program and never
changed thereafter.
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Table III summarizes the score ratios obtained in three examples; 0/1 denotes the ratio
of the score for level 0 to the score for level 1, etc.

It may be objected that measurement of the effects of optimization is impossible since
programmers tend to change the style of their FORTRAN programs when they know what
kind of optimizations are being done for them. However, the programs we examined showed
no evidence that the programmers had any idea what the compiler does, except perhaps the
knowledge that ‘1’ is or is not converted to ‘1-0’ at compile time when appropriate. Therefore
we expect that such feedback effects are very limited.

Table ITI. Execution speed ratios with various types of optimization

Example 0/1 0/2 0/3 0/4 1/4 2/4 3/4

1a 13 27 47 5-4 41 2-0 11
1b 1-8 30 4-3 4-8 27 15 11
2 1-2 26 4-6 66 54 26 i-4
3 1-3 2-3 6-8 74 5:6 32 1-1
4 11 1-5 1:6 4-4 39 30 2-8
5 2:5 90 94 131 52 1-5 1-4
6 15 20 21 54 36 26 25
7 i-9 24 2-5 29 1-5 1-2 11
8 11 2-5 2:5 34 30 1-3 13
9 12 2-8 335 35 2:9 1-3 1-0
10 1-3 28 5-3 8-0 6-3 29 15
11 1-3 20 22 24 1-8 1-2 11
12 2:2 33 33 38 1-8 11 11
13 1-2 1-4 1-8 39 33 27 21
14 11 1-6 21 2:3 21 14 11
15 13 2-3 2:8 33 2-5 1-4 1-1
16 11 11 1-1 1-5 1-4 13 1-3
17 13 29 46 5-1 39 1-8 11

Note that level 3 and level 4 programs ran four or more times as fast as level 0 programs,
in about half of the cases. Level 3 was not too far from level 4 except in Examples 4 and 6
where short subroutine code was expanded in line; by incorporating this technique and the
idea of replicating short loops, level 3 would come very close indeed to the ‘ultimate’
performance of level 4 optimization. (Before conducting this study, the author had expected
a much greater difference between levels 3 and 4 and had been experimenting with some
more elaborate schemes for optimization, capable of coming close to the level 4 code in the
binary search example above. But the sample programs seem to show that existing
optimization techniques are good enough, on our computer at least.)

5. SUMMARY AND CONCLUSIONS

Compiler writers should be familiar with the nature of programs their compiler will have to
handle. Besides constructing ‘best cases’ and ‘worst cases’ it is a good idea to have some
conception of ‘average cases’. We hope that the data presented in this paper will help to give
a reasonably balanced impression of the programs actually being written today.

Of course every individual program is atypical in some sense, yet our study showed that
a small number of basic patterns account for most of the programming constructions in use.
Perhaps these programs can be used to make a more realistic comparison of compiler and
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machine speeds than is obtained with the ‘GAMM test’.’” See also P. Bryant’s comparison
of FORTRAN compilers summarized in Reference 7, pp. 764-767.

Our sample may not be correct, and so we hope people in other parts of the world will
conduct similar experiments in order to see if independent studies yield comparable results.

While gathering these statistics we became convinced that a comparatively simple change
to the present method of program preparation can make substantial improvements in the
efficiency of computer usage. The program profiles (i.e. collections of frequency counts)
which we used in our analyses turned out to be so helpful that we believe profiles should be
made available routinely to all programmers by all of the principal software systems.

The ‘ideal system of the future’ will keep profiles associated with source programs, using
the frequency counts in virtually all phases of a program’s life. During the debugging stage
the profiles can be quite useful, e.g. for selective tracing; statements with zero frequency
indicate untested sections of the program. After the program has been debugged it may
already have served its purpose, but if it is to be a frequently used program the high counts
in its profile often suggest basic improvements that can be made. An optimizing compiler
can also make very effective use of the profile, since it often suffices to do time-consuming
optimization on only one-tenth or one-twentieth of a program. The profile can also be used
effectively in storage management schemes.

In early days of computing, machine time was king, and people worked hard to get
extremely efficient programs. Eventually machines got larger and faster, and the pay off for
writing fast programs was measured in minutes or seconds instead of hours. Moreover, in
considering the total cost of computing, people began to observe that program development
and maintenance costs often overshadowed the actual cost of running the programs.
Therefore most of the emphasis in software development has been in making programs
easier to write, easier to understand and easier to change. There is no doubt that this
emphasis has reduced total system costs in many installations, but there is also little doubt
that the corresponding lack of emphasis on efficient code has resulted in systems which can
be greatly improved, and it seems to be time to right the balance. Frequency counts give an
important dimension to programs, showing programmers how to make their routines more
efficient with comparatively little effort. A recent study'® showed that this approach led to
an elevenfold increase in a particular compiler’s speed. It appears useful to develop
interactive systems which tell the programmer the most costly parts of his program and which
give him positive reinforcement for his improvements so that he might actually enjoy
making the changes! For most of the examples studied in the previous section we found that
it was possible for a programmer to obtain noticeably better performance by making
straightforward modifications to the inner loop of his FORTRAN source language program.

In the above remarks we have implicitly assumed that the design of compilers should be
strongly influenced by what programmers want to do. An alternate point of view is that
programmers should be strongly influenced by what their compilers do; a compiler writer in
his infinite wisdom may in fact know what is really good for the programmer and would like
to steer him towards a proper course. This viewpoint has some merit, although it has often
been carried to extremes in which programmers have to work harder and make unnatural
constructions just so the compiler writer has an easier job. When weighted frequency counts
are supplied to a programmer, it will become clear to him just which aspects of a language
the implementor has chosen to treat most efficiently; the reporting of this information
seems to be the best way to exert a positive influence on the users of a language.

The results of our study suggest several avenues for further research. For example,
additional static and dynamic statistics should be gathered which are more meaningful with
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respect to local optimizations. A more sophisticated study of these statistics would also be
desirable.

Our survey seems to have given a reasonably clear picture of FORTRAN as it is now used.
Other languages should be studied in a similar way, so that software designers can
conceptualize the notion of ‘typical’ programs in COBOL, ALGOL, PL/I, LISP, APL,
SNOBOL, etc.

We found that well-done optimization leads to at least a four- or five-fold increase in
program speed (exclusive of input/output editing) over straight translation in about half
of the programs we analysed. This figure is based on a computer such as the 360/67 at
Stanford, and it may prove to be somewhat different on other configurations; it would be
interesting to see how much different the results would be if the seventeen examples were
worked out carefully for other types of computers. Furthermore, a study of the performance
gain which would be achieved by in-line format editing is definitely called for.

As we discussed the example programs we saw many occasions where it is natural for
compiler optimization to be done interactively. The programmer could perhaps be asked
in Example 11 whether or not J will be non-negative and less than 22¢ throughout the loop
(so that J = J+1 can be done with a ‘load address’ instruction); in Example 8 he might be
asked whether the distributive law could be used on his formulae; in Example 7 he might

be asked if X**2 4 Y**2 can ever overflow (if not, this calculation may be taken out of the
loop); and so on.

As the reader can see, there is considerable work yet to be done on empirical studies of
programming, much more than we could achieve in one summer.
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APPENDIX
Examples of hand translation
The following code was produced from

DO2J=1,N
T =ABS(A(L]))
IF (T-S) 2,2,1

1 8S=T

2 CONTINUE

using the various styles of hand translation described in the fourth section. Only the inner
loop is shown, not the initialization.



130 DONALD E. KNUTH

Level 0
Cost

Q1 ST 5,7 2

L 3,7 2

M 2, = A(AROWS) 7

A 3,1 2

SLL 3,2 2

LE 0, A(3) 2

LPER 0,0 1

STE 0, T 2

LE 0,T 2

SE 0,8 3

BNH L2 1-5

B L1 2x0-5
L1 LE 0, T 2x0-5

STE 0,8 2x0-5
12 L 5,7 2

A 5, = F'l' 2

C ~ 5N 2

BNH Qt 2

A ‘dedicated’ use of registers, and a straightforward statement-by-statement approach, are

typical of level 0.

Level 1
Cost
Q1 ST 5] 2
LA 3,AROWS 1
MR 2,5 6
A 3,1 2
SLL 3,2 2
LE 0,A(3) 2
LPER 0,0 1
STE 0, T 2
CE 0,5 2
BNH L2 1-5
L1 LE 0, T 2x0-5
STE 0,8 2%x0-5
L2 LA 5, 1{(0,5) 1
C 5N 2
BNH Q1 2

Note the uses of LA and CE, the knowledge of register .contents, and the removal of the
redundant branch. The redundant LE in location L1 is still present because the occurrence
of a label potentially destroys the register contents.
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Level 2

Q1

L1
L2

LE
LPER

LER
SER
BNH
LER
A

C
BNH

0,0(0,3)
0,0

4,0
4,2

L2

2,0

3, = A(AROWS*4)
3,SPEC

Q1

131

Cost
2
1

1

2

1-5
1x0-5
2

2

2

Here SPEC contains the precomputed address of A(I,N); S is maintained in floating

register 2.

Level 3
Q1
L1
L2

LE
LPER
CER
BNHR
LER
BXLE

0, 0(0, 3)
0,0

0,2

2

2,0
3,4,Q1

Cost
2
1
1
1-5
1x0-5
2

Here register 2 is preloaded with the address of L2 (for a microscopic improvement), and
registers 4 and 5 are preloaded with appropriate values governing the BXLE.

Level 4

Q1

L11
L2.1

L11
L1.2

LE
LPER
CER
BNHR
LER
LE
LPER
CER
BNHR
LER
BXLE

0,0(0,3)
0,0

0,2

2

2,0
0,4(0,3)
0,0

0,2

6

2,0
3,4,Q1

Cost
2x05
1x0-5
1x0-5
1-5x0-5
1x0-25
2x0-5
1x05
1x0-5
1-5x0-5
1x0-25
2x05

Since the loop program is so short it has been duplicated, saving half of the BXLE’s, when
proper initialization and termination routines are appended. (The code would have been

written
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Ql LE 0,0(0, 3)

LPER 0,0
CER 0,2
BHR 2

L21 LE 0,4(0,3)
LPER 0,0
CER 0,2
BHR 6

122 BXLE 3,4,Q1

L11 LER 2,0

, B 1.2.1
L12 LER 2,0
B L2.2

if the frequency counts of this program would have given less weight to statement 1.)

Note that the FORTRAN convention of storing arrays by columns would make these

loops rather inefficient in a paging environment; a compiler should make appropriate
changes to the storage mapping function for arrays in such a case.

10.
11.
12.
13.

14,
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CORRIGENDA

Owing to the U.K. postal strike it was not possible to include the following corrections
in the text as published.

Page 116, line 37, change ‘the running time’ to ‘the (level 0) running time’.

Page 118, in Example 4 after ‘SUBROUTINE RAND(RY insert the line ‘COMMON
LK.

Page 119, after line 11, insert the new sentence (no paragraph): ‘Indeed, a careful
FORTRAN programmer would never convert to floating point at all in the above use of
RAND, he would simply compare J to the constant -81x 23

Page 120, line before Example 6, change ‘is necessary’ to ‘is a necessary auxiliary variable’.

Page 126, line 6, before “This must be’ insert the new sentence: ‘(Idiosyncrasies of
spacing indicate that it was generated by hand, not by program.)’
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