
Uniqueness Typing Redefined

Edsko de Vries⋆1, Rinus Plasmeijer2, and David Abrahamson1

1 Trinity College Dublin, Ireland, {devriese,david}@cs.tcd.ie
2 Radboud Universiteit Nijmegen, Netherlands, rinus@cs.ru.nl

Abstract. We modify Clean’s uniqueness type system in two ways.
First, where in Clean functions that are partially applied to a unique
argument are necessarily unique (they cannot lose their uniqueness), we
just require that they must be unique when applied. This ultimately
makes subtyping redundant. Second, we extend the type system to al-
low for higher rank types. To be able to do this, we explicitly asso-
ciate type constraints (attribute inequalities) with type schemes. Con-
sequently, types in our system are much more precise about constraint
propagation.

1 Background

The problem of modelling side effects in pure functional languages, without losing
referential transparency, is well-known. Consider the function freadi that reads
the next integer from a file. The type of this function might be

freadi :: File → Int

To be able to return the next integer on every invocation, freadi advances
the file pointer before returning. This side effect causes a loss of referential
transparency. For instance, f and g are not interchangeable3:

f1 file = (freadi file) + (freadi file)

g1 file = (freadi file) ∗ 2

One way to make freadi’s side effect explicit is modifying its signature to

freadi :: World → File → (World, Int)

where World is some data type representing “the world”. We must then redefine
f and g as

f2 world file =

let (world1, a) = freadi world file in

let (world2, b) = freadi world1 file in

(a + b, world2)

⋆ Supported by the Irish Research Council for Science, Engineering and Technology:
funded by the National Development Plan

3 The subscripts of f and g are used only to be able to refer to particular versions of
f and g, and are not part of the code.



g2 world file =

let (world1, a) = freadi world file in

(a ∗ 2, world1)

which makes it clear that f and g are in fact different functions. But the problem
has not gone away, because nothing is stopping us from writing f as

f3 world file =

let (world1, a) = freadi world file in

let (world2, b) = freadi world file in

(a + b, world2)

In the language Haskell this problem is essentially solved by hiding the “state
threading” in a monad and never giving direct access to the World object. This
makes programs “correct by construction”, but rather affects the style of pro-
gramming. By contrast, uniqueness typing enforces correct state threading in the
type system. The main idea is to ensure that there is only ever a single (unique)
reference to a particular world state. This is reflected in the type of freadi:

freadi :: World• → File → (World•, Int)

The bullets (•) indicate that freadi requires a unique reference to the World,
and in turn promises to return a unique reference. When the compiler type-
checks f3, it finds that there are two references to world, which violates the
uniqueness requirements; f2 however is accepted.

The type system presented in this paper depends on a sharing analysis of
the program, which is explained briefly in Sect. 2. Since the typing rules for
rank-1 are easier to understand than the typing rules for arbitrary rank, we first
present the rank-1 typing rules in Sect. 3 and then extend them to arbitrary
rank in Sect. 4. We consider a few examples in Sect. 5, outline a type inference
algorithm in Sect. 6, compare our system to the original Clean type system in
Sect. 7, and present our conclusions and list future work in Sect. 8.

2 Sharing Analysis

The typing rules that we will present in this paper depend on a sharing analysis
that marks variable uses as unique (⊙) or non-unique (⊗). This sharing analysis
could be more or less sophisticated [1], but if in any derivation of the program
the same variable could be evaluated twice, it must be marked as non-unique. In
this paper, we assume sharing analysis has been done, leaving a formal definition
to future work. Here we look at an example only. Compare again the definitions
of f2 and f3 from Sect. 1. In the correct definition (f2), the variable marking
indicates that the reference to world is indeed unique (as required by freadi):

f2 world file =

let (world1, a) = freadi⊗ world⊙ file⊗ in

let (world2, b) = freadi⊗ world1⊙ file⊗ in

(a⊙ + b⊙, world2⊙)



The marking in the incorrect definition indicates that there is more than one
reference to the same world state, violating the uniqueness requirement:

f3 world file =

let (world1, a) = freadi⊗ world⊗ file⊗ in

let (world2, b) = freadi⊗ world⊗ file⊗ in

(a⊙ + b⊙, world2⊙)

In Sect. 5, we will look at an example that can be typed only if a more sophis-
ticated sharing analysis is applied.

3 Introducing Uniqueness Typing

We will present a uniqueness type system that allows for rank-1 types only,
before showing the full type system in Sect. 4. Although both the expression
language and the type language must be modified to support arbitrary rank
types, the typing rules as presented in this section are easier to understand and
are therefore a better way to introduce the type system.

3.1 The Language

We define our type system over a core lambda calculus4:

e ::= expression
x⊙, x⊗ variable
λx · e abstraction
e1 e2 application
i integer

The typing rules assign an attributed type τν to an expression e, given a type
environment Γ and a uniqueness attribute uγ (explained in Sect. 3.4), denoted

Γ, uγ ⊢ e : τν

The language of types and uniqueness attributes is defined as

τ ::= type ν ::= uniqueness attribute
a, b type variable u, v variable
τν1

1 −→
νa

τν2

2 function • unique

Int constant type × non-unique

The syntax for arrows warrants a closer look. The domain and codomain of the
arrow are two attributed types τν1

1 and τν2

2 . The arrow itself has an additional

4 Although we could include let definitions, the corresponding typing rule would look
quite different from the typing rule that we will eventually use, so there is no point
in including it here. We will give a typing rule for let definitions in Sect. 4.



attribute νa, whose role will be become apparent when we discuss the rule for
abstractions. We will adopt the notational convention of writing (τν1

1 −→
νa

τν2

2 )νf ,

where νf is “normal” uniqueness attribute of the arrow, as (τν1

1

νf

−→
νa

τν2

2 ).

As is customary, all type and attribute variables in an attributed type τν

are implicitly universally quantified at the outermost level (of course, that will
not be true for the arbitrary rank system). In this section, a type environment
maps variable names to attributed types (in Sect. 4, it will map variable names
to type schemes).

3.2 Integers

We can specify two alternative rules for integers:

Γ, uγ ⊢ i : Intν Int
Γ, uγ ⊢ i : Int•

Int
′

Int says that integers have type Intν , for an arbitrary ν: the programmer is free
to assume the integer is unique or non-unique. Alternatively, Int′ states that an
integer is always unique. We will discuss why we prefer Int in Sect. 3.4.

3.3 Variables

The rule for variables that are marked unique (Var⊙) simply states that to
find the type of the variable, we look up the variable in the environment. For
variables that are marked non-unique, we do the same, but then correct the type
to be non-unique:

(Γ, x : τν), uγ ⊢ x⊙ : τν
Var

⊙

(Γ, x : τν), uγ ⊢ x⊗ : τ×
Var

⊗

Note that Var⊗ leaves the uniqueness attribute of the variable in the envi-
ronment arbitrary. This means that variables can “lose” their uniqueness. For
example, the function mkPair defined as λx · (x⊗, x⊗) has type au → (a×, a×)
(assuming a product type); in other words, no matter what the uniqueness of a
on input is, the as in the pair will be non-unique.

3.4 Abstractions

Before we discuss the typing rule for abstractions, we must return to the example
discussed in Sect. 1 and point out a subtlety. Consider f3 again:

f3 world file =

let (world1, a) = freadi⊗ world⊗ file⊗ in

let (world2, b) = freadi⊗ world⊗ file⊗ in

(a⊙ + b⊙, world2⊙)



The compiler is able to reject this definition because world is marked as non-
unique, which will cause its type to be inferred as non-unique by rule Var⊗. But
what happens if we “curry” freadi?

f world file =

let curried = freadi⊙ world⊙ in

let (world1, a) = curried⊗ file⊗ in

let (world2, b) = curried⊗ file⊗ in

(a⊙ + b⊙, world2⊙)

Both programs are semantically equivalent, so the type-checker should reject
both programs. However, the argument world to freadi is in fact unique in the
second example, so how can we detect the type error? The general principle is

when a function accesses unique objects from its closure, that closure
(i.e., the function) must itself be unique (∗)

In the example above, curried accesses a unique file handle from its closure,
and must therefore itself be unique—but is not, resulting in a type error. We
can approximate5 (∗) by

if a function is curried, and the curried argument is unique, the result
function must be unique when applied (∗′)

In the lambda calculus, functions only ever have a single argument, and the
notion of currying translates into lambda abstractions returning new lambda
abstractions. Thus, we can rephrase (∗′) as

if a lambda abstraction returns a new lambda abstraction, and the ar-
gument to the outer lambda abstraction is unique, the inner lambda ab-
straction must be unique when applied (∗′′)

In our type language, the additional attribute νa in the arrow type τν1

1 −→
νa

τν2

2

indicates whether the function is required to be “unique when applied”. The
purpose of uγ in the typing rules is to indicate whether we are currently in the
body of an (outer) lambda abstraction whose argument must be unique. Thus
we arrive at rule Abs:

(Γ, x : τν1

1 ), uγ′ ⊢ e : τν2

2 νa ≤ uγ , uγ′ ≤ ν1, uγ′ ≤ uγ

Γ, uγ ⊢ λx · e : τν1

1

νf

−→
νa

τν2

2

Abs

This rule is very similar to the normal rule for abstractions in a Hindley/Milner
type system, with the exception of the attribute inequalities in the premise of
the rule. The u ≤ v operator can be read as an implication: if v is unique, then
u must be unique (v implies u, u← v).

5 This is an approximation since the function may not use the curried argument. In
λx · λy · y⊙, x is not used in the body of the function, so that its uniqueness need
not affect the type of the function.



The first constraint establishes the conclusion of (∗′′): if we are in the body of
an outer lambda abstraction whose argument must be unique (uγ), then the inner
lambda abstraction must be unique when applied (νa). The second constraint
uγ′ ≤ ν1 is a near direct translation of the premise of (∗′′). Finally, uγ′ ≤ uγ

simply propagates uγ : if the premise of (∗′′) already holds (uγ), it will continue
to do so in the body of the abstraction (uγ′). Note that Abs is the only rule that
changes the value of uγ ; all the other rules simply propagate it. When typing an
expression, uγ is initially assumed to be non-unique.

It is probably instructive to consider an example at this point. We show the
type derivation for λx · λy · x⊙, the function that returns the first of its two
arguments:

(x : τν1

1 , y : τν2

2 ), uγ′′ ⊢ x⊙ :: τν1

1 νa′ ≤ uγ′ , uγ′′ ≤ ν2, uγ′′ ≤ uγ′

Var
⊙

(x : τν1

1 ), uγ′ ⊢ λy · x⊙ :: τν2

2

νf′

−−→
νa′

τν1

1 νa ≤ ×, uγ′ ≤ ν1, uγ′ ≤ ×
Abs

∅,× ⊢ λx · λy · x⊙ :: τν1

1

νf

−→
νa

(τν2

2

νf′

−−→
νa′

τν1

1 )
Abs

Noting that νa ≤ × and uγ′ ≤ × are vacuously true, that uγ′′ ≤ ν2 and uγ′′ ≤ uγ′

are irrelevant because uγ′′ is never referenced, and that νa′ ≤ uγ′ and uγ′ ≤ ν1

imply that νa′ ≤ ν1 (by transitivity), we arrive at the type

λx · λy · x⊙ :: τν1

1

νf

−→
νa

(τν2

2

νf′

−−→
νa′

τν1

1 ) νa′ ≤ ν1

where the constraint νa′ ≤ ν1 says that if we curry the function (specify x but
not y), and x happens to be unique, the result function must be unique on
application (its attribute νa′ must be •).

If we now consider rule Int
′, which says that integers are always unique,

this definition of Abs would imply that if we curry a function by passing in an
integer, the result function must be unique on application, which is unnecessary.
For example, we want the following expression to be type correct:

let fst = λx · λy · x in let one = fst 1 in (one 2, one 3)

For the same reason, nothing in Abs constrains νf : the actual uniqueness of the
function is left free.

3.5 Application

The rule for function application is relatively straightforward. The only difference
between the rule as presented here and the usual definition is that App enforces
the constraint that functions that must be unique when applied, are in fact
unique when applied (νf ≤ νa):

Γ, uγ ⊢ e1 : τν1

1

νf

−→
νa

τν2

2 Γ, uγ ⊢ e2 : τν1

1 νf ≤ νa

Γ, uγ ⊢ e1 e2 : τν2

2

App



4 Arbitrary Rank Types

In the rank-1 system (as well as in Clean’s type system), constraints are never
explicitly associated with types, but are left implicit in the typing rules. Although
that makes the types simpler, we can no longer do so if we want to support
arbitrary rank types. When we generalise a type τν to a type scheme σ, τν may
be constrained by a set of constraints C. Those constraints should be associated
with the type scheme σ, because if at a later stage we instantiate σ to get a type
τν ′, the same set of constraints should apply to τν ′ as well. Although this makes
the types more complicated, it also makes them more precise (see also sections
7 and 8). So, we define a type scheme as

σ ::= ∀~x.τν , C type scheme

Type inference for arbitrary rank types is undecidable, but it is possible to
combine type inference with type checking and allow for higher rank types only if
lambda arguments have an explicit type annotation [2]. We extend the expression
language with annotated lambda expressions (and let expressions):

e += expression (ctd.)
λx :: σ · e annotated abstraction
let x = e in e′ local definition

We modify the type language to allow for type schemes in the domain of the
arrow type. We follow [3] and do not allow for type schemes in the codomain:

τ ::= type
a, b type variable
σ −→

νa

τν2

2 arrow type (functions)

Int constant type

Typing derivations now have the structure

Γ, uγ ⊢ e : τν | C

which says that e has type τν , given an environment Γ and uniqueness attribute
uγ (see Sect. 3.4), provided constraints C are satisfied (where environments now
map variable names to type schemes). The full typing rules are listed in Fig. 1;
we will explain them separately below.

4.1 Variables

Because the type environment now associates variable names with type schemes
rather than types, to find the type of a variable we must lookup the associated
type scheme in the environment, and instantiate it. Instantiation is defined as

⊢
inst
∀~x.τν , C � Sxτν | SxC

Inst



Γ, uγ ⊢ i : Intν | ∅
Int

⊢
inst

σ � τν | C

(Γ, x : σ), uγ ⊢ x⊙ : τν | C
Var

⊙

⊢
inst

σ � τν | C

(Γ, x : σ), uγ ⊢ x⊗ : τ× | C
Var

⊗

(Γ, x : ∀.τν1

1 , C1), uγ′ ⊢ e : τν2

2 | C2

Γ, uγ ⊢ λx · e : (∀.τν1

1 , C1)
νf
−→
νa

τν2

2 | C2, νa ≤ uγ , uγ′ ≤ uγ , uγ′ ≤ ν1

Abs

Γ, uγ ⊢ e1 : σ1

νf
−→
νa

τν2

2 | C Γ, uγ ⊢
gen

e2 : σ2 ⊢
subs

σ2 � σ1

Γ, uγ ⊢ e1 e2 : τν2

2 | C, νf ≤ νa

App

Γ, uγ ⊢
gen

e : σ (Γ, x : σ), uγ ⊢ e′ : τν | C

Γ, uγ ⊢ let x = e in e′ : τν | C
Let

(Γ, x : σ), uγ′ ⊢ e : τν2

2 | C

Γ, uγ ⊢ λx :: σ · e : σ
νf
−→
νa

τν2

2 | C, νa ≤ uγ , uγ′ ≤ uγ , uγ′ ≤ ⌈σ⌉
Annot

Γ, uγ ⊢ e : τν | C ~x = freevars(τν) − freevars(Γ )

Γ, uγ ⊢
gen

e : ∀~x.τν , C
Gen

⊢
inst

∀~x.τν , C � Sxτν | SxC
Inst

~y /∈ freevars(∀~x.τν1

1 ) ⊢
subs

Sxτν1

1 � τν2

2 C2 � SxC1

⊢
subs

∀~x.τν1

1 , C1 � ∀~y.τν2

2 , C2

Subs
σ

⊢
subs

σ2 � σ1 ⊢
subs

∀.τν1

1 , ∅ � ∀.τν2

2 , ∅

⊢
subs

σ1 → τν1

1 � σ2 → τν2

2

Subs
→

⊢
subs

τν � τν
Subs

τ

Fig. 1. Uniqueness Typing Rules



where Sx is some substitution [~x 7→ . . . ] mapping all variables ~x to fresh vari-
ables. Since we associate a set of constraints C with a type scheme, a type Sxτν

is only an instance of a type scheme σ if those constraints are satisfied.

4.2 Abstraction

The rule for abstraction remains unchanged except for the fact that the domain of
the arrow operator is now a type scheme. However, since we can only infer rank-1
types, the type scheme for annotated lambda expressions must be a “degenerate”
type scheme with no quantified variables (∀.τν , C)—in other words, a type6.

4.3 Application

The rule for application does look slightly different from the rank-1 version.
Previously, App required that the type of the actual parameter must equal the
type of the formal parameter of the function:

Γ, uγ ⊢ e1 : τν1

1

νf

−→
νa

τν2

2 Γ, uγ ⊢ e2 : τν1

1 νf ≤ νa

Γ, uγ ⊢ e1 e2 : τν2

2

App1

In the rank-n case, the only requirement is that the type of the actual parameter
is an instance of the type of the formal parameter. To this end, we infer a type
scheme for the actual parameter, and do a subsumption check:

Γ, uγ ⊢ e1 : σ1

νf
−→
νa

τν2

2 | C Γ, uγ ⊢
gen

e2 : σ2 ⊢
subs

σ2 � σ1

Γ, uγ ⊢ e1 e2 : τν2

2 | C, νf ≤ νa

App

(We will explain subsumption separately in section 4.5.) To infer a type scheme,
we first infer a type, and then generalise over all the free variables in the type,
excluding the free variables in the environment:

Γ, uγ ⊢ e : τν | C ~x = freevars(τν)− freevars(Γ )

Γ, uγ ⊢
gen

e : ∀~x.τν , C
Gen

4.4 Annotated Lambda Abstractions

The rule for annotated lambda abstractions is very similar to the rule for “ordi-
nary” lambda abstractions, except that the programmer can now specify a type
scheme manually, allowing for higher rank types:

(Γ, x : σ), uγ′ ⊢ e : τν2

2 | C

Γ, uγ ⊢ λx :: σ · e : σ
νf
−→
νa

τν2

2 | C, νa ≤ uγ , uγ′ ≤ uγ , uγ′ ≤ ⌈σ⌉
Annot

6 In [3] the arrow → is overloaded; there is an arrow τ → τ and an arrow σ → τ . Since
we do not use the notion of ρ–types, our arrows always have type σ → τν.



We have to be careful defining ⌈∀~x.τν⌉. The obvious answer (ν) is only correct
if ν is not itself universally quantified. For example, consider

λx :: ∀u · au.λy.x⊙ :: (∀u · au)
uf

−−→
ua

bv
uf′

−−→
ua′

au, ?

(Note that this is a rank-2 type.) The question is what the constraint at the
question mark should be. One possible solution is

∀u · ua′ ≤ u

but that is equivalent to saying
ua′ ≤ •

So, to avoid unnecessary complication by introducing universal quantification
into the constraint language, we define ⌈ ⌉ as

⌈∀~x.τν⌉ =

{

ν if ν /∈ ~x

• otherwise

4.5 Subsumption

The rules for subsumption are defined nearly exactly as in [3], except that we
have collapsed rules Skol and Spec into one rule (Subs

σ) and added one addi-
tional premise. Subsσ is the main rule that checks whether one type scheme is
a (generic) instance of another:

~y /∈ freevars(∀~x.τν1

1 ) ⊢
subs

Sxτν1

1 � τν2

2 C2 � SxC1

⊢
subs
∀~x.τν1

1 , C1 � ∀~y.τν2

2 , C2
Subs

σ

The constraint C2 � SxC1 is new, and is probably best explained by example.
Suppose we have two functions f , g with types

f :: (∀.au uf
−−→
ua

bv)→ . . .

g :: au uf

−−→
ua

bv, [u ≤ v]

Should the application f g type-check? Intuitively, f expects to be able to use
the function it is passed to obtain a b with uniqueness v (say, a unique b),
independent of the uniqueness of a. However, g only promises to return a unique
b if a is also unique! Thus, the application f g should be disallowed. Conversely,
if we instead define f ′ and g′ as

f ′ :: (∀.au uf
−−→
ua

bv, [u ≤ v])→ . . .

g′ :: au uf

−−→
ua

bv



the application f ′ g′ should be allowed because the type of g′ is more general
than the type expected by f ′. The condition C2 � SxC1, where the � symbol
is logical entailment from propositional logic, says that if constraints C2 are
satisfied, constraints C1 must also be satisfied7. In other words, the constraints
of the offered type must be the same or less restrictive than the constraints of
the requested type.

5 Examples

In this section we consider a few example expressions and their associated types.
We start with very simple expressions and slowly build up from there. First, we
consider a single integer:

5 :: ∀u.Intu, ∅

Rule Int says that integers have type Int with an arbitrary uniqueness, hence
the universally quantified u. Next we consider the identity function id:

λx.x⊙ :: ∀a, u, uf , ua, c.(∀.au, c)
uf

−−→
ua

au, c

This type may look a bit more complicated than it really is, because we show
top-level attributes and degenerate type schemes. If we are slightly less formal:

λx.x⊙ :: (au, c)
uf

−−→
ua

au, c

Either way, this is the type one would expect an identity function to have.
Note that this function is polymorphic in the constraints of its argument: if the
argument has type au under constraints c, then the result has type au only if
the same set of constraints is satisfied.

The function apply ($ in Haskell) behaves like the identity function restricted
to function types:

λf.λx.f⊙ x⊙ ::

(

(au, c1)
uf′′

−−→
ua′′

bv, c2

)

uf
−−→
ua

(

(au, c1)
uf′

−−→
ua′

bv

)

, [c2,

ua′ ≤ ua′′ , ua′ ≤ uf ′′ , uf ′′ ≤ ua′′ ]

This type of apply should be self-explanatory, with the exception perhaps of the
constraints. We consider each constraint in turn:

7 If either C1 or C2 in C1 � C2 is a constraint variable, we apply unification instead of
the entailment check.



c2 If f has type (au, c1)
uf′′

−−→
ua′′

bv only when constraints c2 are

satisfied, then apply f also has that type only when those con-
straints are satisfied (cf. the constraint c in the type of id.)

ua′ ≤ ua′′ If f can only be executed once (in other words, if f must be
unique on application, if ua′′ is unique), then apply f can also
only be executed once.

ua′ ≤ uf ′′ If f is unique, then apply f can only be executed once; this is
a direct consequence of the “currying rule” from Sect. 3.4.

uf ′′ ≤ ua′′ Finally, apply f does actually apply f , so if f must be unique
on application, we require that it is in fact unique.

The next example emphasises a point with respect to the sharing analysis (the
marking of variable uses). Suppose that we have a primitive type Array and two
functions resize to (destructively) resize the array, and size to return the current
size of the array:

resize :: Array•
uf
−−→
ua

Intv
uf′

−−→
•

Array•

size :: Arrayu uf

−−→
ua

Intv

Then the following expression is correctly marked and type correct:

λarr · if size⊙ arr⊗ < 10 then resize⊗ arr⊙ 20 else resize⊗ arr⊙ 30

This expression is marked correctly, because only one of the two branches of the
conditional will be executed, and the non-unique mark arr⊗ in the condition
guarantees that the condition cannot modify arr .

To conclude this section, we consider two examples that contain a type error,
which in both cases will be detected in the subsumption check (although for
different reasons). In the first example, it is a simple case of an argument not
being polymorphic enough:

let id f = λf :: ∀u.au uf

−−→
ua

au · f⊙

in let id int = λi :: Int• · i⊙

in id⊙

f id⊙

int

In this example, id f demands that its argument is polymorphic in u, but id int

is not (in fact, works only on unique integers). So, the type-checker will give an
error message similar to

Cannot unify rigid attribute u and •



The second “wrong” example that we consider fails due to the entailment check
explained in section 4.5:

let first = λf :: au uf

−−→
ua

bv
uf′

−−→
ua′

au · λx · λy · f⊙ x⊙ y⊙

in first⊙ (λx · λy · x⊙)

Function first returns the first of two arguments x and y, but it delegates that
task to a function f , which must also be passed in. However, the function that
is passed in has type8

λx · λy · x⊙ :: au uf

−−→
ua

bv
uf′

−−→
ua′

au, [ua′ ≤ u]

whereas the type specified for the argument f of first does not allow for the
constraint ua′ ≤ u; so, the type-checker will fail with

[] does not entail [ua′ ≤ u]

6 Type Inference

We have written a prototype implementation of the type system presented in
this paper. The typing rules as presented in Fig. 1 allow for a relatively straight-
forward translation to an algorithm W [4] style type-checker (our prototype is
just under a thousand lines long), once the following subtleties are observed.

When doing unification, a unification goal, τν1

1 ≡ τν2

2 should be expanded
into two subgoals τ1 ≡ τ2 and ν1 ≡ ν2. In other words, the base types and the
uniqueness attributes should be unified independently.

Unification should not be used to unify functions, because as far as unification
is concerned, σ1 → τν1

1 ≡ σ2 → τν2

2 is the same as σ2 → τν2

2 ≡ σ1 → τν1

1 , but
to compare two type schemes we need to use subsumption, which obviously

does give different answers for ⊢
subs

σ1 � σ2 and ⊢
subs

σ2 � σ1. However, when
implemented properly, by the time we need unification, the subsumption rules
will have taken care of all arrows9.

To implement the subsumption check, the technique suggested by Peyton
Jones [3] of using skolem constants can be used without modification; all one
has to do is to introduce skolem constants for the uniqueness attributes too
(these are “rigid attributes” in the type error in Sect. 5).

Logical entailment of two sets of constraints C1 and C2 can be implemented
as a validity check for the propositional logic formula C1 → C2, where the
u ≤ v operator is regarded as an implication v → u. Although the complexity of

8 There are additional “polymorphic” constraint variables in these types that we are
leaving out for conciseness.

9 In [3], due to the distinction between ρ functions and τ functions, unification must
still deal with arrows τ → τ ; since we only have one arrow type, this is unnecessary
in our approach.



checking the validity of functions in propositional logic is exponential, that will
not matter much in practice as the formulae generated by the type-checker will
be small. See [5, Sect. 1.5] for a simple algorithm.

Finally, when generalising a type τν with respect to a set of constraints C,
that set should be checked for inconsistencies, which should be reported as type
errors. For readability of the types, it is also useful to take the transitive closure
of C instead of C itself, and only add the “relevant” inequalities to the type
scheme (rule Abs might generate unnecessary constraints [uγ′ ≤ uγ , uγ′ ≤ ν1]
if uγ′ is never used in the body of the abstraction); this is demonstrated in the
example in Sect. 3.4.

7 Comparison with Clean

The uniqueness type system presented here is based on the uniqueness type
system of the functional programming language Clean [1, 6], which is in turn
strongly related to substructural logics (see [7] for an accessible introduction).
There are however a number of important differences. The first obvious difference
is that Clean’s system is defined over graph rewrite rules rather than the lambda
calculus; this gives the type system a very different “feel”.

A rather more important difference is the treatment of curried functions.
In Clean, a function that is (partially) applied to a unique argument, is it-
self unique. Moreover, unique functions are necessarily unique: they cannot lose
their uniqueness. In the curry example in Sect. 3.4, there are two references to
curried, causing curried to be marked as ⊗. The type correction in rule Var⊗

(a trivial operation in our system) must then check whether the variable in fact
represents a function, and if so, reject the program. While this does solve the
curried function problem, it has far reaching consequences for the type system.

The first consequence is that type variables are not allowed to lose their
uniqueness either, since a type variable can be instantiated to a function type.
For example, in Clean, the function mkPair has type

λx · (x⊗, x⊗) :: a× → (a×, a×)

instead of
λx · (x⊗, x⊗) :: au → (a×, a×)

The type assigned by Clean is not as restrictive at is seems, however, due to
Clean’s subtyping relation: a unique type is considered to be subtype of its non-
unique counterpart. For example, the following is a correct Clean program:

five :: Int•

five = 5

mkPair :: a× → (a×, a×)
mkPair x = (x, x)

Start = mkPair five



where Start is assigned the type (Int×, Int×). Of course, the subtyping relation
is adapted for arrows [6]:

S
u
−→ S′ ≤ T

v
−→ T ′ iff u = v and T ≤ S and S′ ≤ T ′

There are two things to note about this definition. First of all, a unique function
is never a subtype of its non-unique version (condition u = v), since functions
are not allowed to lose their uniqueness (a similar restriction applies to type
variables). The second thing to note is that the subtyping is contravariant in
the function argument. Although that is not surprising, it complicates the type
system, especially in the presence of algebraic data types. We have not discussed
algebraic data types at all in this paper (see Sect. 8), but they are easy to add to
our system. However, algebraic data constructors can include arrows, for example

data Fun a b = Fun (a → b)

which means that arguments to constructors must be analysed to check whether
they have covariant, contravariant or invariant subtyping behaviour.

By contrast, in our system we do not have the notion of “necessarily unique”;
instead, we add a single additional attribute νa as explained before, and the con-
dition that (some) curried functions can only be executed once becomes a local
constraint νf ≤ νa in the rule for function application. There are no global effects
(for example, type variables are unaffected) and we do not need subtyping10.

That last point is worth emphasising. The subtyping relation in Clean is very
shallow. The only advantage of subtyping is that we can pass in a unique object
to a function that expects a non-unique object. So, in Clean, marking a formal
parameter as non-unique really means, “I do not care about the uniqueness
of this parameter”. However, in our system, we can always use an attribute
variable to mean the same thing. That is not always possible in Clean, since
type variables are not allowed to lose their uniqueness (the type we assign to the
function mkPair above would be illegal in Clean).

Since we do not have subtyping, functions can require their arguments to
be unique (a•), non-unique (a×), or indicate that the uniqueness of the input
does not matter (au). In Clean, it is only possible to require that arguments are
unique (a•) or that the uniqueness of the attribute does not matter (au or, due
to subtyping, a×). Experience will tell whether this extra functionality is useful.

Finally, [6, p. 30, Sect. Uniqueness Type Inference] states:

However, because of our treatment of higher-order functions (involving
a restricting on the subtype relation w.r.t variables), it might be the case
that lifting this most general solution fails, whereas some specific instance
is attributable. (...) Therefore, there is no “Principal Uniqueness Type
Theorem”.

10 One might argue that subsumption introduces subtyping between type schemes;
however, due to the predicative nature of our type system, this does not have an
effect on algebraic data type arguments; see the discussion in [3, Sect. 7.3].



Although a formal proof is future work, the authors hope that the system pre-
sented here does have principal types.

Finally, the original motivation for this work was the fact that Clean’s unique-
ness system does not allow for arbitrary rank types. An additional benefit of
allowing for type schemes in the domain of arrows (necessary to support higher
rank types) is the fact that we can be more conscientious about associating
uniqueness inequalities (constraints) with types. For example, in Clean, the func-
tion apply from Sect. 5 has type

λf · λx · f x :: (au → bv)→ au → bv

But given a function f with type

f :: au → bv, [u ≤ v]

the Clean type-checker assigns the following type to apply f :

apply f :: au → bv, [u ≤ v]

That type is quite reasonable, and in fact very similar to the type we would
assign. It does however contain constraints that do not appear in the type of
apply, which suggests that the type of apply as assigned by the Clean type-
checker is somehow “incomplete”. The type we assign to apply is very explicit
about the propagation of constraints (leaving out the attributes on the arrows):

λf · λx · f x :: ((au, c1)→ bv, c2)→ (au, c1)→ bv, c2

8 Future Work and Conclusions

We have designed a uniqueness type system for the lambda calculus that can be
used to add side effects to a pure functional language without losing referential
transparency. This type system is based on the type system of the functional
programming language Clean, but modifies it in a number of ways. First, it is
defined over the lambda calculus rather than a graph rewrite system. Second,
our treatment of curried functions is completely different and makes the type
system much simpler; in particular, there is no need for subtyping anymore.
Finally, our system supports arbitrary rank types, and is much more careful
about associating constraints with types.

The system as presented in this paper deals with the core lambda calculus
only; however, extensions to deal with algebraic data types and recursive defini-
tions are straightforward. For recursive definitions µ ·e, the type of e is corrected
to be non-unique (this is the same approach as taken in [6] for letrec expres-
sions). The main principle in dealing with algebraic data types is that if a unique
object is extracted from an enclosing container, the enclosing container must in
turn be unique (this is a slightly more permissive definition than the one used
in Clean).



We need to define a semantics for our small core language and show a number
of standard properties of the type system with respect to this semantics (in
particular, subject reduction). Also, we would like to prove that our system has
principal types. Given an appropriate semantics with an explicit representation
of sharing (for example, Launchbury’s natural semantics for lazy evaluation [8],
or perhaps a graph rewriting semantics), we should also prove that our type
system does in fact guarantee that there is never more than one reference to an
object with a unique type.

The inference algorithm described briefly in Sect. 6 is based on algorithm
W and inherits its associated problems, in particular unhelpful error messages.
We are planning to investigate the feasibility of other approaches; the constraint
based algorithm proposed by Heeren looks promising [9].

The formalisation of the constraint language in this paper is not as precise
as it could be, but a more precise definition is difficult to give. Moreover, the
constraints considerably complicate the type system and the types assigned to
terms. We are currently investigating whether it is possible to remove the con-
straints altogether by replacing the inequalities in the constraints by equalities.
This will make the type system more restrictive, but will also make the type
system much simpler. It remains to be seen whether this trade-off between sim-
plicity and generality is desirable.

In the explanation of the rule for abstractions Abs in Sect. 3.4, it is mentioned
that our method of constraining νa is conservative. For example, the constraint
ua′ ≤ u in

λx.λy.y⊙ :: (au, c1)
uf
−−→
ua

(bv, c2)
uf′

−−→
ua′

bv, [c2, ua′ ≤ u]

is not actually necessary since x is not referenced in λy · x. It may be possible
to relax the rules to be less conservative. That would only affect how νa is
established; it would not change the type language.

Finally, the original motivation for wanting to extend Clean’s uniqueness
system to arbitrary rank is the fact that generic programming [10] frequently
generates higher rank types. We plan to extend our prototype implementation
of the system with support for generics, with the ultimate goal of proving that
if a function defined generically is type correct (with respect to some “generic”
uniqueness type system), then the functions derived from the generic function
will also be type correct. This will also give us some experience with the type
system, which may give us more insights into whether the extra power that our
uniqueness system gives over Clean’s system (see Sect. 7) is useful in practice.

Acknowledgements

We wish to thank Bastiaan Heeren, Dervla O’Keeffe, John Gilbert, Wendy Ver-
bruggen, and Sjaak Smetsers for their comments on various drafts of this paper.



References

1. Barendsen, E., Smetsers, S.: Conventional and uniqueness typing in graph rewrite
systems. Technical Report CSI-R9328, University of Nijmegen (1993)

2. Odersky, M., Läufer, K.: Putting type annotations to work. In: POPL ’96: Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, New York, NY, USA, ACM Press (1996) 54–67

3. Peyton Jones, S., Shields, M.: Practical type inference for arbitrary rank types.
Under consideration for publication in J. Functional Programming (2004)

4. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL
’82: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, New York, NY, USA, ACM Press (1982) 207–212

5. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, New York, NY, USA (2004)

6. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph
rewriting semantics. Mathematical Structures in Computer Science 6 (1996) 579–
612

7. Wadler, P.: A taste of linear logic. In: MFCS ’93: Proceedings of the 18th Inter-
national Symposium on Mathematical Foundations of Computer Science, London,
UK, Springer-Verlag (1993) 185–210

8. Launchbury, J.: A natural semantics for lazy evaluation. In: POPL ’93: Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, New York, NY, USA, ACM Press (1993) 144–154

9. Heeren, B., Hage, J., Swierstra, S.D.: Generalizing Hindley-Milner type inference
algorithms. Technical Report UU-CS-2002-031, Institute of Information and Com-
puting Science, University Utrecht, Netherlands (2002)

10. Alimarine, A., Plasmeijer, M.J.: A generic programming extension for Clean. In:
IFL ’02: Selected Papers from the 13th International Workshop on Implementation
of Functional Languages, London, UK, Springer-Verlag (2002) 168–185


