
A Stochastic λ-Calculus

Content Areas: probabilistic reasoning, knowledge representation, causality
Tracking Number: 775

Abstract

There is an increasing interest within the research
community in the design and use of recursive
probability models. Although there still remains
much concern about computational complexity
costs, several research groups are developing
recursive stochastic languages. We have developed
an extension to the traditional λ-calculus as a
framework for families of Turing complete
stochastic languages. We have also developed a
class of exact inference algorithms based on the
traditional reductions in the λ-calculus. We further
propose that using the deBruijn notation (a λ-
calculus notation with nameless dummies) supports
effective caching in such systems (caching being
an essential component of efficient computation).
Finally, our extension to the λ-calculus offers a
foundation and general theory for the construction
of recursive stochastic modeling languages.

1. Introduction
The limitations of flat Bayesian Networks (BNs) using
simple random variables have been widely noted by
researchers [Xiang et al., 1993; Laskey and Mahoney,
1997]. These limitations have motivated a variety of recent
research projects in hierarchical and composable Bayesian
models [Koller and Pfeffer, 1997; Koller and Pfeffer, 1998;
Laskey and Mahoney, 1997; Pfeffer et al., 1999; Xiang et
al., 2000]. Most of these new Bayesian modeling
formalisms support model decomposition, often based on an
object-oriented approach. Although these approaches
provide more expressive and/or succinct representational
frameworks, few of these change the class of models that
may be represented.

Recent research has addressed this issue. One example is
the functional stochastic modeling language proposed by
[Koller et al., 1997]. Their language is Turing complete,
allowing the representation of a much broader class of
models. [Pless et al., 2000] extends and refines this
proposed framework to one which is more object-oriented
and which allows hierarchical encapsulation of models.
Both languages provide the ability to use functions to
represent general stochastic relationships. They both also
use lazy evaluation to allow computation over potentially
infinite distributions. Pfeffer [2000] and Pfeffer and Koller

[2000]  have also proposed a Turing complete framework
based on approximate inference.

What all these approaches have in common is the
development of recursive models that unify inference in
Bayesian Networks with more complex models such as
stochastic context free grammars. The result aims at
allowing the construction and inference in novel Bayesian
models. All of these depend on caching of partial results for
efficiency purposes, just as efficient inference in Bayesian
Networks requires the storage of intermediate values.

In this present paper we offer an extension of the
traditional λ-calculus as a foundation for building Turing
complete stochastic modeling languages. We have also
developed a class of exact stochastic inference algorithms
based on the traditional reductions in the λ-calculus. We
further propose the use of deBruijn [1972] notation to
support effective caching mechanisms for efficient
computation. As noted above, caching offers an important
technique for support of efficient inference in stochastic
networks.

As a final note, other recent research has viewed
stochastic modeling in terms of stochastic functions [Pearl,
2000; Koller, and Pfeffer, 1997]. For example, Pearl’s
[2000] recent book constructs a formalism for “causality” in
terms of stochastic functions. We have expanded these ideas
to offer a formal structure for such modeling, based on an
extension of the λ-calculus, in which the stochastic
functions themselves become first class objects.

2. The Extended λ-Calculus Formalism
We now construct a formal grammar reflecting our
extension of the λ-calculus to describe stochastic
distributions. The goal of this effort is to propose an
extended form that also supports an inference algorithm as a
set of standard transformations and reductions of λ-calculus
forms. Thus, inference in our modeling language is
equivalent to finding normal forms in the λ-calculus. We
also enhance our language through the use of deBruijn
notation [deBruijn, 1972]. This notation replaces arbitrarily
chosen variable names with uniquely determined numbers.
As a result all expressions that are α-equivalent in standard
notation are identical under deBruijn notation. This is very
useful in both constructing distributions as well as in
caching partial results.



2.1  Syntax
We next present a pseudo-BNF grammar to describe our
stochastic extension of the traditional λ-calculus:

<expr> ::= <var> | <λ> | <application> | <distribution>
<var> ::= <integer>
<λ> ::= (λ <expr>)
<application> ::= (<expr>1 <expr>2)
<distribution> ::= ∑i <expr> i: <p> i

p ∈ (0, 1]

Thus, our stochastic λ-calculus contains the same elements
as standard λ-calculus: variables, λ-abstraction, and
function application. In addition, in our stochastic λ-
calculus, it is legal to have an expression which is itself a
distribution of expressions.

When using deBruijn notation, we denote a variable by a
number. This number indicates how many λs one must go
out to find the one λ to which that variable is bound. We
denote a λ-abstraction in this form (λ e) where e is some
legal expression. For example (λ 1) represents the identity
function. In λ-calculus, boolean values are often represented
by functions that take two arguments. True returns the first
one, and false the second. In this notation true becomes (λ
(λ 2)) and false is (λ (λ 1)), or in an abbreviated form (λλ
2) and (λλ 1) respectively.

For a further example we can use deBruijn notation to
describe the S operator from combinatory logic. The S
operator may be described by the rule Sxyz = (xz)(yz)
which is equivalent to the standard λ term
(λxλyλz.(xz)(yz)). In deBruijn notation, this becomes: (λλλ
(3 1)(2 1)).

Function application is as one might expect: We have (e1
e2), where e1 is an expression whose value will be applied as
a function call on e2, where e2 must also be a valid
expression. We describe distributions as a set of expressions
annotated with probabilities. An example would be a
distribution that is 60% true  and 40% false. Using the
representation for boolean values given above, the resulting
expression would be: {(λλ 2): 0.6, (λλ 1): 0.4}. Note that
we use a summation notation in our BNF specification. The
set notation is convenient for denoting a particular
distribution, while the summation notation is better for
expressing general rules and algorithms .

2.2  Semantics
We next develop a specification for the semantics of our
language. For expressions that do not contain distributions,
the semantics (like the syntax) of the language is the same
as that of the normal λ-calculus. We have extended the this
semantics to handle distributions.

A distribution may be thought of as a variable whose
value will be determined randomly. It can take on the value
of any element of its set with a probability given by the
annotation for that element. For example, if T denotes true
as represented above, and F represents false, the
distribution {T: 0.6, F: 0.4} represents the distribution over
true and false with probability 0.6 and 0.4 respectively.

A distribution applied to an expression is viewed as
equivalent to the distribution of each element of the
distribution applied to the expression, weighted by the
annotated probability. An expression applied to a
distribution is likewise the distribution of the expression
applied to each element of the distribution annotated by the
corresponding probability. Note that in both these situations,
when such a distribution is formed it may be necessary to
combine identical terms by adding the annotated
probabilities.
 In all other situations an application of a function to an
expression follows the standard substitution rules for the λ-
calculus with only one exception: The substitution cannot be
applied to a general expression unless it is known that the
expression is not reducible to a distribution with more than
one term. For example, an expression of the form ((λ e1) (λ
e2)) can always be reduced to an equivalent expression by
substituting e2 into e1 because (λ e2) is not reducible. We
describe this situation formally with our presentation of the
reductions in the next section on stochastic inference.

There is an important implication of the above
semantics. Every application of a function whose body
includes a distribution causes an independent sampling of
that distribution. There is no correlation between these
samples. On the other hand, a function applied to a
distribution induces a complete correlation between
instances of the bound variables in the body of the function.

For example, using the symbols T and F as described
earlier, we produce two similar expressions. The first
version, (λ 1 F  1){T: 0.6, F: 0.4}, demonstrates the induced
correlations. This expression is equivalent to F (false).  This
expression is always false because the two 1’s in the
expression are completely correlated (see the discussion of
the inference reductions below for a more formal
demonstration). Now to construct the second version let G =
(λ {T: 0.6, F: 0.4}). Thus G applied to anything produces
the distribution {T: 0.6, F: 0.4}. So the second version ((G
T)  F (G T)) looks similar to the first one in that they both
look equivalent to ({T: 0.6, F: 0.4} F {T: 0.6, F: 0.4}). The
second one is equivalent because separate calls to the same
function produce independent distributions. The first one is
not due to the induced correlation.

Finally, it should be noted that we can express Bayesian
Networks and many other more complex stochastic models,
including Hidden Markov Models, with our language. As
the language is Turing complete, it can represent everything



that other Turing complete languages can. For illustration,
we next show how to represent the traditional Bayesian
Network in our stochastic λ-calculus.

2.3  An Example: Representing Bayesian Networks
To express a BN, we first construct a basic expression for
each variable in the network. These expressions must then
be combined to form an expression for a query. At first we
just show the process for a query with no evidence. The
technique for adding evidence will be shown later. A basic
expression for a variable is simply a stochastic function of
its parents.

To then form an expression for the query, one must form
each variable in turn by passing the distribution for its
parents in as arguments. When a variable has more than one
child, an abstraction must be formed to bind its value to be
passed to each child separately.

Our example BN has three Boolean variables: A, B, and
C. Assume A is true with probability of 0.5. If A is true,
then B is always true, otherwise B is true with probability
of  0.2. Finally, C is true when either A or B is true. Any
conditional probability table can be expressed in this way,
but the structured ones given in this example yield more
terse expressions. The basic expressions (shown in both
standard and deBruijn notation) are shown below:

A = {T: 0.5, F: 0.5}
B = (λA.(A T {T: 0.2, F: 0.8})) = (λ 1 T {T: 0.2, F: 0.8})
C = (λAλB.(A T B)) = (λλ 2 T 1)

The complete expression for the probability distribution
for C is then ((λ C 1 (B  1)) A ). One can use this to express
the conditional probability distribution that A is true given
that C is true: ((λ (C 1  (B 1)) 1 N) A) where N is an
arbitrary term (not equivalent to T or F) that denotes the
case that is conditioned away. To infer this probability
distribution, one can use the reductions (defined below) to
get to a normal form. This will be a distribution over T, F ,
and N, with the subsequent marginalizing away of N.

In general, to express evidence, one can create a new
node in the BN with three states. One state is that the
evidence is false, the second is the evidence and the variable
of interest are true, and the third represents the evidence is
true and the variable of interest is false. One can then get the
distribution for the variable of interest by marginalizing
away the state representing the evidence being false. The
extension to non boolean variables of interest is
straightforward.

Of course, a language with functions as first class objects
can express more than Bayesian Networks. It is capable of
expressing the same set of stochastic models as the earlier
Turing complete modeling languages proposed by [Koller et
al., 1997; Pless et al., 2000; Pfeffer, 2000; Pfeffer and

Koller, 2000]. Any of those languages could be
implemented as a layer on top of our stochastic λ-calculus.
In [Pless et al., 2000] the modeling language is presented in
terms of an outer language for the user which is then
transformed into an inner language appropriate for
inference. Our stochastic λ-calculus could also be used as a
compiled form for a more user friendly representation.

3. Stochastic Inference through λ-Reductions
We next describe exact stochastic inference through the
traditional methodology of the λ-calculus, a set of λ-
reductions. In addition to the β and η reductions, we also
define a new type:  γ reductions.

β: ((λ e1) e2) à substitute(e1, e2)
γL: ((∑i fi: pi) e) à ∑i (fi e): pi

γR: (f ∑i ei: pi) à ∑i (f ei): pi

η: (λ (e 1)) à e

We have defined  β reductions in a fashion similar to
standard λ-calculus. Since we are using deBruijn notation,
α transformations become unnecessary (as there are no
arbitrary dummy variable names). β and η reductions are
similar to their conventional counterparts (see deBruijn
[1972] for restrictions on when they may be applied). The
one in our case difference is that β reductions are more
restricted in that expressions that are reducible to
distributions cannot be substituted. In addition to those two
standard reductions we define two additional reductions that
we term γL and γR. The γ reductions are based on the fact
that function application and distributions distribute.

One important advantage of using deBruijn notation is
the ability to reuse expressions when performing
substitutions. We next present a simple algorithm for
substitutions when e2 is a closed expression:

level(expr) = case expr
var à expr
(λ e) à max(level(e) – 1, 0)
(e1 e2) à max(level(e1), level(e2))
∑i ei: pi à max i(level(ei))

substitute((λ e1), e2) = substitute(e1, e2, 1)

substitute(expr, a, L) =  if level(expr) < L then expr
else case expr

var à a
(λ e) à (λsubstitute(e, a, L+1))
(e1 e2) à (substitute(e1, a, L)

                        substitute(e2, a, L))
∑i ei: pi à ∑i substitute(ei, a, L): pi



As noted above, we have defined two additional
reductions that we call γL and γR. The γR reduction is
essential for reducing applications where the β reduction
cannot be applied. Continuing the example introduced
earlier in the paper:

           γR

(λ 1 F 1){T: 0.6, F: 0.4} à
{((λ 1 F 1) T): 0.6, ((λ 1 F 1) F): 0.4)}

Now since both T and F do not contain distributions, β
reductions can be applied:

       β
{((λ 1 F 1) T): 0.6, ((λ 1 F 1) F): 0.4)} à

{(T F T): 0.6, ((λ 1 F 1) F): 0.4}

           β
{(T F T): 0.6, ((λ 1 F 1) F): 0.4} à

{(T F T): 0.6, (F F F): 0.4}

And now, using the definitions of T and F it is easy to see
that (T F T) and (F F F) both are reducible to F.

4. Inference
The task of inference in our stochastic λ-calculus is the
same as the problem of finding a normal form for an
expression. In standard λ-calculus a normal form is a term
to which no β reduction can be applied. In the stochastic
version, this must be modified to be any term to which no β
or γ reduction can be applied. It is a relatively simple task to
extend the Church-Rosser theorem [Hindley and Seldin,
1986; deBruijn, 1972] to show that this normal form, when
it exists for a given expression, is unique. Thus one can
construct inference algorithms in a manner similar to doing
evaluation in a λ-calculus system.

4.1  A Simple Inference Algorithm
We next show a simple algorithm for doing such evaluation.
This algorithm doesn’t reduce to a normal form, rather to
the equivalent of a weak head normal form [Reade, 1989].

peval(expr) = case expr
(λ e) à expr
(e1 e2) à papply(peval(e1), e2)
∑i ei: pi à ∑i peval(ei): pi

papply(f, a) = case f
∑i fi: pi à ∑i papply(fi, a)::pi

(λ fe) à case a
(λ e) à peval(substitute(f, a))
(e1 e2) à papply(f, peval(a))
∑i ei: pi à ∑i papply(f, ei): pi

Peval and papply are the extended version of eval and
apply from languages such as LISP. Peval implements left
outermost first evaluation for function applications ((e1 e2)).
For λ-abstractions ,(λ e), no further evaluation is needed (it
would be if one wanted a true normal form). For
distributions, it evaluates each term in the set and then
performs a weighted sum.

Papply uses a γL reduction when a distribution is being
applied to some operand. When a λ-abstraction is being
applied, its behavior depends on the operand. When the
operand is an abstraction, it applies a β reduction. If the
operand is an application, it uses eager evaluation
(evaluating the operand). When the operand is a
distribution, it applies a γR reduction.

4.2  Efficiency Issues
We have presented this simple, but not optimal, algorithm
for purposes of clarity. One key problem is that it uses lazy
evaluation only when the operand is a λ-abstraction. One
would like to use lazy evaluation as much as possible. An
obvious improvement would be to check to see if the bound
variable in an operator is used more than one time. If it is
used only once (or not at all) then lazy evaluation can be
used regardless of whether the operand will evaluate to a
distribution. This is true because there are no correlations in
the different instances of the bound variable to keep track
of, as there is at most one such instance.

Another potential improvement would be to expand the
set of cases in which it is determined that the operand
cannot be reduced to a distribution. To make this
determination in all cases is as hard as evaluating the
operand, which is exactly what one tries to avoid through
lazy evaluation. However, some cases may be easy to
detect. For example, an expression that doesn’t contain any
distributions in its parse tree clearly will not evaluate to a
distribution. Finally, we may tailor the algorithm using the
reductions in different orders for particular application
domains. The algorithm we presented doesn’t utilize the η
reduction, which may help in some cases. Also identifying
more cases when β reductions can be applied may allow for
more efficient algorithms for specific applications.

4.3  Caching
Efficient computational inference in probabilistic systems
generally involves the saving and reuse of partial and
intermediate results [Koller et al., 1997]. Algorithms for
BBNs as well as for HMMs and other stochastic problems
are often based on some form of dynamic programming
[Dechter, 1996, Koller et al., 1997]. Using deBruijn notation
makes caching expressions easy. Without the ambiguity that
arises from the arbitrary choice of variable names (α-
equivalence), one needs only to find exact matches for
expressions.



5. Conclusions and Future Work
We have presented a formal framework for recursive
modeling languages. We are currently working on extending
the family of algorithms in a systematic way to include
approximation schemes. It would be useful to analyze the
efficiency of various algorithms on standard problems (such
as polytrees [Pearl, 1988]) where the efficiency of the
optimal algorithm is known. This may point to optimal
reduction orderings and other improvements to inference.
We are also looking at constructing formal models of the
semantics of the language. Finally, we are considering the
implications of moving from the pure λ-calculus presented
here to an applicative λ-calculus. The results of that
representational change, along with type inference
mechanisms, may be important in further development in
the theory of recursive stochastic modeling languages.

6. Acknowledgements
We will acknowledge financial support and useful
discussions in the final paper.

References
 [deBruijn, 1972] N.G. deBruijn. Lambda Calculus Notation
with Nameless Dummies, A Tool for Automatic Formula
Manipulation, with Application to the Church-Rosser
Theorem. In Indagationes mathematicae. 34:381-392 1972.

[Dechter, 1996] R. Dechter. Bucket elimination: A unifying
framework for probabilistic inference. In Proceedings of the
Twelfth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-96). 1996.

[Hindley and Seldin, 1989] J.R. Hindley and J.P. Seldin.
Introduction to Combinators and λ-Calculus. Cambridge,
UK: Cambridge University Press. 1989.

[Koller et al., 1997] D. Koller, D. McAllester, and A.
Pfeffer. Effective Bayesian Inference for Stochastic
Programs. In Proceedings of American Association of
Artificial Intelligence Conference, Cambridge: MIT Press.
1997.

[Koller and Pfeffer, 1997] D. Koller and A. Pfeffer. Object-
oriented Bayesian Networks. In Proceedings of the
Thirteenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-97), San Francisco: Morgan Kaufmann.
1997.

[Koller and Pfeffer, 1998] D. Koller and A. Pfeffer.
Probabilistic Frame-Based Systems. In Proceedings of
American Association of Artificial Intelligence Conference,
Cambridge: MIT Press. 1998.

[Laskey and Mahoney, 1997] K. Laskey and S. Mahoney.
Network Fragments: Representing Knowledge for
Constructing Probabilistic Models. In Proceedings of the
Thirteenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-97), San Francisco: Morgan Kaufmann.
1997.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, San Mateo CA:
Morgan Kaufmann. 1988.

[Pearl,  2000] J. Pearl. Causality. Cambridge, UK:
Cambridge University Press. 2000.

[Pfeffer, 2000] A. Pfeffer. Probabilistic Reasoning for
Complex systems. Ph.D. Dissertation, Stanford University.
2000.

[Pfeffer and Koller, 2000] A. Pfeffer and D. Koller.
Semantics and Inference for Recursive Probability Models.
In Proceedings of the Seventeenth National Conference on
Artificial Intelligence . 538-544 Cambridge: MIT Press.
2000.

[Pfeffer et al., 1999] A. Pfeffer, D. Koller, B. Milch, and K.
Takusagawa. SPOOK: A System for Probabilistic Object-
Oriented Knowledge Representation. In Proceedings of the
15th Annual Conference on Uncertainty in AI (UAI), San
Francisco: Morgan Kaufmann. 1999.

[Pless et al., 2000] D. Pless, G. Luger, and C. Stern. A New
Object-Oriented Stochastic Modeling Language.
Proceedings of the IASTED International Conference,
Zurich: IASTED/ACTA Press. 2000.

[Reade, 1989] C. Reade. Elements of Functional
Programming. New York: Addison-Wesley. 1989.

[Xiang et al., 2000] Y. Xiang, K.G. Olesen and F.V. Jensen.
Practical Issues in Modeling Large Diagnostic Systems with
Multiply Sectioned Bayesian Networks, International
Journal of Pattern Recognition and Artificial Intelligence .
2000.

[Xiang et al., 1993] Y. Xiang, D. Poole, and M. Beddoes.
Multiply Sectioned Bayesian Networks and Junction Forests
for Large Knowledge-Based Systems. Computational
Intelligence, 9(2): 171-220. 1993.


