FLOW GRAPH REDUCIBILITY*

MATTHEW S. HECHT AND JEFFREY D. ULLMAN \dagger

Abstract

The structure of programs can often be described by a technique called "interval analysis" on their flow graphs. Here, we characterize the set of flow graphs that can be analyzed in this way in terms of two very simple transformations on graphs. We then give a necessary and sufficient condition for analyzability and apply it to "goto-less programs," showing that they all meet the criterion.

Key words. Code optimization, flow graph, interval analysis, reducibility, goto-less program, Church-Rosser system.

1. Introduction. The application of many code improvement techniques depends on globally modeling a program by a directed graph called a "flow graph." This model provides a comprehensive view of the control flow of a program. Examples of improvement possible by flow graph analysis are the detection and removal of useless and redundant statements and the moving of loop independent computations outside loops. Much of the analysis for this type of improvement hinges on the property of a flow graph called "reducibility," e.g., [1]-[5].

In this paper the "interval" analysis technique of Cocke and Allen [1], [6] is reviewed and reducibility is defined. Next, we present a new technique for treating flow graph reducibility, called "collapsibility," and show it equivalent to reducibility. Finally, we give a structural characterization of nonreducible flow graphs and use this characterization to obtain an interesting result about flow graphs for "goto-less programs."
2. Necessary concepts from graph theory. In this section we present the concepts from graph theory which are used in this paper.

Definition. A directed graph G is a pair (N, E), where N is a set and E is a relation on N. The elements of N are called nodes, and the ordered pairs in E are called edges.

Let $G=(N, E)$ be a graph. A graph $G^{\prime}=\left(N^{\prime}, E^{\prime}\right)$ is said to be a subgraph of G if $N^{\prime} \subseteq N$ and $E^{\prime} \subseteq E \cap\left(N^{\prime} \times N^{\prime}\right)$.

Edge (n, m) is said to leave node n and enter node m. We say n is a predecessor of m, and m is a successor of n. The in-degree of a node is the number of edges entering and the out-degree is the number of edges leaving.

A sequence of nodes $\left(n_{0}, n_{1}, \cdots, n_{k}\right), k \geqq 0$, is a path of length k from node n_{0} to node n_{k} if there is an edge which leaves node n_{i-1} and enters node n_{i} for $1 \leqq i \leqq k$. A cycle is a path $\left(n_{0}, n_{1}, \cdots, n_{k}\right)$ in which $n_{0}=n_{k}$. If $k=1$, then the cycle is a loop. If (n, n) is an edge, we say node n has a loop.

A graph is rooted if there exists at least one node r such that there is a path to all nodes from r. The node r is called a root of the graph.

[^0]It is often useful to attach certain information to the nodes of a graph. Let (N, E) be a graph. A node labeling of the graph is a function from N to a set A of node labels.

A tree T is a graph $G=(N, E)$ with a specified node r in N such that:
(a) node r has in-degree zero;
(b) node r is a root of T;
(c) all other nodes of T have in-degree one.

An ordered tree is a tree with a linear order on the successors of each node.
We follow the convention of drawing trees with the root on top and having all edges directed downward. The successors of a node of an ordered tree are always linearly ordered from left to right in a diagram.

A spanning tree of graph G is a subgraph of G which is a tree and contains all nodes in the graph.

A flow graph is a 3-tuple $F=(N, E, i)$, where (N, E) is a finite graph and i is a root of (N, E), called the initial node.

Example 1. Figure 1(a) shows a flow graph with node 1 as the initial node. Figure 1(b) cannot be a flow graph, since it has no root.
3. Reducibility. A flow graph may be analyzed by constructs called "intervals." Definition. Let G be a flow graph and n a node of G. The interval with header n, denoted $I(n)$, is constructed by the following algorithm.

Algorithm A (Cocke and Allen) Interval construction.
Input: Flow graph G and designated node n.
Output: I(n).
Method:
A1. Place n in $I(n)$.
A2. If n^{\prime} is a node not yet in $I(n), n^{\prime}$ is not the initial node, and all edges entering n^{\prime} leave nodes in $I(n)$, add n^{\prime} to $I(n)$.
A3. Repeat step A2 until no more nodes can be added to $I(n)$.
It should be observed that although n^{\prime} in step A2 may not be well-determined, $I(n)$ does not depend on the order in which candidates for n^{\prime} are chosen. A candidate at one iteration of A2 will, if it is not chosen, still be a candidate at the next iteration.

Fig. 1. Examples of graphs

The next algorithm partitions a flow graph uniquely into disjoint intervals. Algorithm B (Cocke and Allen) Partition of a flow graph into intervals.
Input: A flow graph $G=(N, E, i)$.
Output : A set of disjoint intervals I_{1}, \cdots, I_{k}, whose union is N.

Method:

B1. Establish a list H of header nodes and a list L of intervals. Initially, H consists only of i, and L is empty.
B2. If H is empty, halt ; L is the desired list of intervals.
B3. Otherwise, choose n on H, and compute $I(n)$ by Algorithm A.
B4. Add $I(n)$ to L. Delete n from H, but add to H any node which has a predecessor in $I(n)$, but which is not already in H or in one of the intervals on L. Return to B2.
Example 2. Let us consider the flow graph of Fig. 1(a). We begin with node 1, the initial node, on list H. Algorithm A tells us to add node 2 to $I(1)$, then to add nodes 3 and 4 . No further nodes can be added to $I(1)$. For example, node 5 has an edge entering from 6 , which is not currently in $I(1)$, and 6 has an edge entering from 5 .

We therefore place $I(1)=\{1,2,3,4\}$ on L, and add 5 and 6 to H. Then, we compute $I(5)=\{5,7\}$ and $I(6)=\{6,8\}$. Note that 1 is not added to $I(6)$, because it is the initial node.

Two important properties of intervals [1], [3], [4] are:
(i) every cycle within the interval includes the interval header; and
(ii) every edge entering a node of the interval from the outside enters the header.

Evidently, the intervals of one flow graph can be considered the nodes of another flow graph in which there is an edge between intervals I_{1} and I_{2} if and only if $I_{1} \neq I_{2}$, and there is an edge from a node in I_{1} to the header of I_{2}. Furthermore, this process may be performed repeatedly.

Definition. Let G be a flow graph. Then $I(G)$, the derived graph of G, is defined as follows:
(a) The nodes of $I(G)$ are the intervals of G.
(b) There is an edge from the node representing interval I_{1} to that representing I_{2} if there is any edge from a node in I_{1} to the header of I_{2}, and $I_{1} \neq I_{2}$.
(c) The initial node of $I(G)$ is the interval containing the initial node of G.

Flow graph G is called irreducible if and only if $I(G)=G$. The sequence $G=G_{0}, G_{1}, G_{2}, \cdots, G_{n}$ is called the derived sequence for G if $G_{i+1}=I\left(G_{i}\right)$, and G_{n} is irreducible. G_{n} is called the limit flow graph of G and is denoted by $\hat{I}(G)$.

Flow graph G is called reducible if and only if $\hat{I}(G)$ is a single node with no loop. Otherwise, it is called nonreducible.

Example 3. Let G_{0} be the graph of Fig. 1(a). Then $G_{1}=I\left(G_{0}\right)$ has three nodes, corresponding to the three intervals $\{1,2,3,4\},\{5,7\}$ and $\{6,8\}$ of G_{0}. Let these nodes be n_{1}, n_{2} and n_{3}, respectively. Then G_{1} is shown in Fig. 2. There is an edge from n_{1} to n_{2}, for example, because of the edge in G_{0} from node 3 to node 5 .
4. Collapsibility. We shall define a pair of simple transformations that together have the same effect on flow graphs as the interval construction does. Moreover, it will be apparent that the data flow analysis suggested in [1], [3], [4], [6], using the interval construction, could be equally well done if construction of

Fig. 2. Derived flow graph
the derived sequence of a graph G were replaced by repeated application of our transformations.

There are various advantages to the approach taken here, compared with the interval analysis approach. For example, [7] gives an $O(n \log n)$ algorithm to determine whether a flow graph is reducible. In comparison, the straightforward technique of constructing the derived sequence can take $O\left(n^{2}\right)$ steps if performed in the obvious way. Consider, for example, the flow graph of n nodes of Fig. 3. Also, [8] gives an algorithm taking $O(n \log n)$ bit vector operations to find common subexpressions in a reducible graph. In comparison, the techniques of [1], [4] can require $O\left(n^{2}\right)$ bit vector operations. (Fig. 3 again suffices.)

Moreover, these transformations seem to characterize the set of reducible flow graphs in a nice way, and they lead to a further characterization of reducibility that makes it clear in many cases that the control flow structure of a given programming language will yield only reducible flow graphs. For example, the D-charts developed from "goto-less programs" [16] are all reducible. We now give the definitions of the two transformations.

Definition. Let G be a flow graph. Suppose n is a node in G with a loop, that is, an edge from n to itself. Transformation T_{1} on node n is removal of this loop.

Fig. 3. Flow graph requiring $O\left(n^{2}\right)$ steps for interval analysis

Let n_{1} and n_{2} be nodes in G such that n_{1} is the unique predecessor of n_{2}, and n_{2} is not the initial node. The transformation T_{2} on node pair (n_{1}, n_{2}) is merging nodes n_{1} and n_{2} to one node, which we may call n_{1} / n_{2}, and deleting the unique edge between them. Let $n \neq n_{1}$ and $n \neq n_{2}$. There is an edge from node n to n_{1} / n_{2} if there was previously an edge from n to n_{1} (there cannot be one from n to n_{2}), and there is an edge from n_{1} / n_{2} to n if there was previously one to n from either n_{1} or n_{2} or both. n_{1} / n_{2} has a loop if there was an edge from n_{2} to n_{1}.

Example 4. Figure 4 shows a flow graph which is transformed into a single node by one application of T_{1} and two of T_{2}. Although T_{2} is not applicable to the original graph, it becomes applicable after use of T_{1}.

Various authors have considered similar transformations, but from the point of view of generating graphs rather than analyzing (i.e., reducing) them. Cooper [9] considers three generating rules, one of which is the inverse of T_{1} (i.e., addition of loops). The other two together are equivalent to the inverse of T_{2}. It is shown in [9] that together with a construction which is the inverse of "node splitting" [10], these generating rules are capable of building an arbitrary flow graph.

Engeler [11], [12] considers "normal form flow charts," which are built by two generating rules, one of the inverse of T_{1} and the other equivalent to the inverse of T_{2}, restricted so that the two nodes involved have disjoint sets of successors. Thus, the normal form flow charts are a subset of the reducible graphs. They are characterized as trees with additional back edges.

We now proceed to develop useful properties of the transformations T_{1} and T_{2}.

Definition. A flow graph is called collapsible if and only if it can be transformed into a single node with no loop by repeated application of T_{1} and T_{2}. Otherwise, it is called noncollapsible.

Example 5. The flow graph of Fig. 2 is noncollapsible. There are no loops, and no node but the initial node has a unique entering edge, so neither T_{1} nor T_{2} is applicable. On the other hand, the flow graph of Fig. 4 is collapsible.
T_{1} and T_{2} have a useful property; they form a "finite Church-Rosser" transformation [13].

Definition. Let R be a relation on a set S. Let $x R y$ denote $(x, y) \in R$. The inverse of R, R^{-1}, is $\left\{(y, x)((x, y) \in R\} . R\right.$ is symmetric if $R=R^{-1} . R$ is reflexive if $(x, x) \in R$ for all $x \in S . R$ is transitive if $x R y$ and $y R z$ imply $x R z$ for all x, y, z in S.

Fig. 4. Applications of T_{1} and T_{2}

If R_{1} and R_{2} are relations on S, then the composition of R_{1} and R_{2}, denoted $R_{1} R_{2}$, is $\left\{(x, z) \mid\right.$ for some y in $S, x R_{1} y$ and $\left.y R_{2} z\right\}$. The reflexive closure of R, denoted $R^{\#}$, is $R \cup\{(x, x) \mid x \in S\}$. The transitive closure of R, denoted R^{+}, is $R^{1} \cup R^{2}$ $\cup R^{3} \cup \cdots$, where $R^{1}=R$ and $R^{i}=R R^{i-1}$ for $i \geqq 2$. The reflexive transitive closure of R, denoted R^{*} is $R^{\#} \cup R^{+}$. The completion of R, denoted \hat{R}, is $\left\{(x, y) \mid x R^{*} y\right.$ and there is no z such that $\left.y R z\right\}$.

A pair (S, \Rightarrow), where S is a set and \Rightarrow is a relation on S, is said to be finite if for each p in S, there is a constant k_{p} such that if ${ }^{1} p \stackrel{i}{\Rightarrow} q$, then $i \leqq k_{p}$. That is, there is a bound on the number of times \Rightarrow can be applied in succession, beginning with any element p. We say (S, \Rightarrow) is finite Church-Rosser (FCR) if it is finite, and \Rightarrow is a function, i.e., $p \Rightarrow q$ and $p \Rightarrow r$ implies $q=r$. If set S is understood, \Rightarrow is called an FCR transformation.

The following theorem gives a test for the FCR property which is simpler to apply than the definition. It is proved in [13].

Theorem 1. Let \Rightarrow be a relation on set S. Then (S, \Rightarrow) is $F C R$ if and only if it is finite, and for all p in S, if $p \Rightarrow p_{1}$ and $p \Rightarrow p_{2}$, then there is some q such that $p_{1} \stackrel{*}{\Rightarrow} q$ and $p_{2} \stackrel{*}{\Rightarrow} q$.

Definition. Let S be the set of flow graphs. We define the relation $\Rightarrow, i=1$ or 2 , by $G \underset{i}{\Rightarrow} G^{\prime}$ if and only if G can be transformed into G^{\prime} by an application of T_{i}. Let \Rightarrow denote the union of $\overrightarrow{1}$ and $\overrightarrow{2}$. The reflexive closure, k-fold product, transitive closure, reflexive transitive closure, and the completion of \Rightarrow are respectively given by $\stackrel{\#}{\Rightarrow}, \stackrel{k}{\Rightarrow}, \stackrel{+}{\Rightarrow}, \stackrel{*}{\Rightarrow}$ and $\stackrel{\hat{\Rightarrow}}{\Rightarrow}$.

Theorem 2. (S, \Rightarrow) is $F C R$.
Proof. We use Theorem 1 and note that in this case, we shall always be able to find q such that $p_{1} \stackrel{\#}{\Rightarrow} q$ and $p_{2} \stackrel{\#}{\Rightarrow} q$.

Finiteness property. Let G be a flow graph with n nodes. Each application of T_{1} or T_{2} deletes at least one edge. Thus, \Rightarrow is finite.

Commutativity property. Suppose $G \underset{i}{\Rightarrow} G_{1}$ and $G \vec{j} G_{2}$, where $i, j \in\{1,2\}$. There are three distinct cases to consider.

Case $1 . i=j=1$. Suppose T_{1} is applied to node n_{1} to yield G_{1} and to node n_{2} to yield G_{2}. If $n_{1}=n_{2}$, then $G_{1}=G_{2}$. If $n_{1} \neq n_{2}$, then T_{1} may be performed on n_{2} in G_{1} and on n_{1} in G_{2} to yield equal graphs.

Thus, $G \Rightarrow G_{1} \stackrel{\#}{\Rightarrow} H$ and $G \Rightarrow G_{2} \stackrel{\#}{\Rightarrow} H$, where H is the graph resulting after applying T_{1} to nodes n_{1} and n_{2} in G.

Case 2. $i=j=2$. Suppose T_{2} is applied to node pair $\left(n_{1}, n_{2}\right)$ in G to yield G_{1}, and to node pair (n_{3}, n_{4}) in G to yield G_{2}. If $n_{1}=n_{3}$ and $n_{2}=n_{4}$, then $G_{1}=G_{2}$. If all four nodes are distinct, then apply T_{2} to $\left(n_{3}, n_{4}\right)$ in G_{1}, and apply T_{2} to $\left(n_{1}, n_{2}\right)$ in G_{2} to yield equal graphs. Now suppose neither of the previous subcases holds. If $n_{1}=n_{3}$ and no other equalities hold, then Fig. 5 shows the subgraph of interest. Otherwise, if $n_{2}=n_{3}$ and no other equalities hold, then Fig. 6 shows the subgraph of interest. Thus, $G \Rightarrow G_{1} \stackrel{\#}{\Rightarrow} H$ and $G \Rightarrow G_{2} \stackrel{\#}{\Rightarrow} H$, where H is the graph resulting after applying T_{2} to $\left(n_{1}, n_{2}\right)$ and to $\left(n_{3}, n_{4}\right)$ in G.

[^1]

Fig. 5. Applications of T_{2}
The case in which $n_{1}=n_{4}$ and no other equalities hold is symmetric to the case $n_{2}=n_{3}$ above. The case $n_{1}=n_{4}$ and $n_{2}=n_{3}$ is impossible, because then the flow graph has two isolated nodes, and hence must consist of only n_{1} and n_{2}. But one of these must be the initial node, and T_{2} is thus either not applicable to $\left(n_{1}, n_{2}\right)$ or not applicable to (n_{3}, n_{4}). Since we have assumed $n_{1} \neq n_{2}$ and $n_{3} \neq n_{4}$, and n_{2} may not be n_{4} unless $n_{1}=n_{3}$, we have considered all possibilities.

Case 3 . $i \neq j$. Suppose T_{2} is applied to node pair $\left(n_{1}, n_{2}\right)$ in G to yield G_{1}, and T_{1} is applied to node n_{3} in G to yield G_{2}. Clearly, $n_{2} \neq n_{3}$. Consequently, T_{1} and T_{2} do not "interfere"; T_{1} may be applied to node n_{3} in G_{1}, and T_{2} may be applied to node pair $\left(n_{1}, n_{2}\right)$ in G_{2} to yield equal graphs. Thus, $G \Rightarrow G_{1} \Rightarrow H$ and $G \Rightarrow G_{2}$ $\Rightarrow H$, where H is the result of applying T_{2} to $\left(n_{1}, n_{2}\right)$ and T_{1} to n_{3}.
5. Equivalence of reducibility and collapsibility. Theorems 3 and 4 establish that a flow graph is reducible if and only if it is collapsible.

Definition. Let the first n nodes added to an interval $I(h)$ in Algorithm A be called a partial interval. We assume, of course, that the interval $I(h)$ has at least n nodes, and $n \geqq 1$.

Lemma 1. Let G be a flow graph. Then $G \stackrel{*}{\Rightarrow} I(G)$.
Proof. It suffices to show that a partial interval is collapsible to its header, and that connections (edges) between a partial interval and the other nodes in the flow graph are maintained. Thus, constructing the derived graph $I(G)$ of flow graph G corresponds exactly to collapsing the intervals of G.

Inductive hypothesis. A partial interval of n nodes is collapsible to its header, and edges between the partial interval and the other nodes of the flow graph are preserved. That is, edges leaving the partial interval to another node outside the partial interval remain. The header will have no loops.

Fig. 6. Applications of T_{2}

Basis. The first node added to an interval is the header node. The only collapsing possible is removal of a loop if present. This possible application of T_{1} will not destroy any edge to another node in the graph outside the partial interval.

Inductive step. Assume that the inductive hypothesis is true for a partial interval of n nodes, and consider the addition of another node m to the partial interval. This new node only has edges entering it from nodes in the partial interval. Since the first n nodes of the partial interval are collapsible by the induction hypothesis, there will be exactly one edge from the collapsed partial interval to m. Thus, T_{2} is applicable. Edges from m to nodes outside the partial interval now leave the node representing the collapsed partial interval. If there is a loop introduced by the application of T_{2}, it can be removed by T_{1}.

As an immediate consequence of Lemma 1, we have the following.
Theorem 3. If a flow graph is reducible, then it is collapsible.
Proof. If $\hat{I}(G)=0,{ }^{2}$ then $G \stackrel{*}{\Rightarrow} 0$ by Lemma 1, iterated.
The converse of Theorem 3 is easy to prove.
Theorem 4. If a flow graph is collapsible, then it is reducible.
Proof. Suppose $G \stackrel{\Rightarrow}{\Rightarrow} 0$, and let $\hat{I}(G)=G^{\prime}$. By Lemma 1 iterated, $G \stackrel{*}{\Rightarrow} G^{\prime}$. We must have $G^{\prime} \hat{\Rightarrow} 0$. (For if $G^{\prime} \hat{\Rightarrow} G^{\prime \prime}$, then $G \hat{\Rightarrow} G^{\prime \prime}$. Since $\hat{\Rightarrow}$ is a function, and $G \Rightarrow 0$, we have $G^{\prime \prime}=0$.)

If $G^{\prime} \neq 0$, then since $G^{\prime} \Rightarrow 0, T_{1}$ or T_{2} is applicable to G^{\prime}. We have assumed $I\left(G^{\prime}\right)=G^{\prime}$, so every node appears on the header list when Algorithm B is applied to G^{\prime}. If T_{1} is applicable to node n, then $I(n)$ does not have a loop in $I\left(G^{\prime}\right)$, so $I\left(G^{\prime}\right) \neq G^{\prime}$. If T_{2} is applicable to node pair (n_{1}, n_{2}), then n_{2} is in $I\left(n_{1}\right)$, so again, $I\left(G^{\prime}\right) \neq I(G)$. We conclude that $G^{\prime}=0$.
6. Characterization theorem for nonreducible flow graphs. We shall now show the existence of a certain subgraph in all and only the nonreducible flow graphs. Prior to showing this result, we present the concept of a "depth-first spanning tree" of a flow graph.

Definition. A depth-first spanning tree (DFST) of a flow graph G is a spanning tree that is constructed by Algorithm C.

Algorithm C. DFST of a flow graph.
Input: Flow graph G.
Output: DFST of G.
Method:
C1. The root of the DFST is the initial node of G. Let this node be the node n "under consideration."
C2. Perform step C3 until it is no longer applicable. Then perform C4 and C5.
C3. If the node n under consideration has a successor x not already on the DFST, we select node x as the right-most successor of n found so far in the spanning tree. If this step is successful, node x becomes the node n under consideration.
C4. If the node under consideration is the root, then halt.
C5. Otherwise, back up the DFST one node toward the root and consider this node by going to step C2.

[^2]Definition. We define the spine of a DFST T to be the sequence of nodes ($n_{1}, n_{2}, \cdots, n_{k}$) such that n_{1} is the root of T, n_{i+1} is the right-most successor of $n_{i}, 1 \leqq i \leqq k-1$, and n_{k} has no successors.

We can add to the DFST T of a flow graph G the edges of G which are not edges of T. Conventionally, we show edges of T as solid lines and edges of G not in T by dashed lines. An important property of DFST's is the following.

Lemma 2 [14]. Let $G=(N, E, i)$ be a flow graph and $T=\left(N, E^{\prime}\right)$ one of its DFST's. If there is an edge (n_{1}, n_{2}) in $E-E^{\prime}$, then either :
(i) there is a path from n_{1} to n_{2} in T;
(ii) there is a path from n_{2} to n_{1} in T;
(iii) $n_{1}=n_{2}$; or
(iv) n_{1} is to the right of n_{2} in T. ${ }^{3}$

Example 6. Let G be the flow graph of Fig. 7(a). If we consider nodes in the order $1,2,3,4$, then back to 3 , then to 5 , we obtain the DFST of Fig. 7(b). The spine is $1,2,3,5$.

Definition. Let (*) denote any of the graphs represented in Fig. 8, where the wiggly lines denote node disjoint (except for the endpoints, of course) paths; a, b, c and i, the initial node, are distinct, except that a and i may be the same.

Lemma 3. The absence of subgraph (*) in a flow graph is preserved by T_{1} and T_{2}.
Proof. Let G be a flow graph and let n_{1} and n_{2} be any two nodes in G. We observe that if a path does not exist between n_{1} and n_{2}, then neither T_{1} nor T_{2} will create such a path; neither will they make two paths be node disjoint if they were not so already.

Theorem 5. If a flow graph is nonreducible, then it has a subgraph of form (*).
Proof. We prove the theorem by induction on n, the number of nodes of G.
Inductive hypothesis. Flow graph G with n nodes has a subgraph of form (*).

Fig. 7. Example of Algorithm C

[^3]

Fig. 8. The graph (*)
Basis. $n=3$. This is an elementary consideration of the three cases in Fig. 9 with the initial nodes at the top.

Inductive step. $n>3$. Assume that the inductive hypothesis is true, and consider a nonreducible flow graph G with n nodes. By Lemma 3, we may assume without loss of generality that T_{1} is not applicable to G. That is, if G can become G^{\prime} under repeated application of T_{1}, and we can show that G^{\prime} has (*), then we will also have shown that G has (*). By the inductive hypothesis and Lemma 3, it follows that T_{2} is not applicable to G. Thus, we may assume that G is irreducible. Let T be a DFST for G, and let the spine of T be $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$.

We claim that $k \geqq 3$. The initial node n_{1} is on the spine. Now consider the right-most successor of the root, namely n_{2}. Surely n_{2} exists, since $n>1$. Node n_{2} must have at least two entering edges in G, since G is irreducible (else T_{2} would be applicable). By Lemma 2, other entering edges must come from nodes having a path from n_{2} in the tree. Thus, n_{2} must have at least one successor, n_{3}.

Now find the highest number d, such that n_{d} has an edge (in G but not T) to some $n_{i} \neq n_{1}$ on the spine, with $i<d$. n_{d} always exists because, in particular, n_{2} has such an edge entering. Let b be the largest number in the range $1<b<d$, such that there is an edge from n_{d} to n_{b} in G.

Find (if possible) the first node n_{a} on the spine starting from the root with a forward edge (in G but not in T) entering a node n_{c}, such that n_{c} is below n_{b} on the spine and equal to or below n_{d}. Figure 10 depicts this situation. Notice that nodes n_{a}, n_{b}, and n_{c} correspond to nodes a, b, and c in $(*)$, and n_{1} corresponds to i.

Suppose that there is no such edge $\left(n_{a}, n_{c}\right)$ in G. Let us consider the subgraph H of G consisting of the nodes on the spine from n_{b} to n_{d}, together with their connecting edges in G. There are no edges of G entering a node in H from above other than n_{b} by assumption, and there are no edges of G entering a node in H below n_{d} on the spine since $\left(n_{d}, n_{b}\right)$ is the "lowest" backward edge. Furthermore,

Fig. 9. 3-Node irreducible flow graphs

Fig.10. Paths in spanning tree
by Lemma 2 no other edges enter nodes in H. Thus, any reduction by T_{1} or T_{2} taking place in H, with n_{b} treated as the initial node, will also be a valid reduction in G. Since G is irreducible, we conclude that H is likewise irreducible. Finally, since $b>1$, the induction hypothesis applies to H. This ends the induction.

But, since H has a subgraph of form (*) with initial node n_{b}, it is easy to show that G has a subgraph (*) with initial node n_{1} by adding the path from n_{1} to n_{b}.

Corollary. If G is irreducible, then it has a subgraph (*) in which the path from a to c is a single edge.

Theorem 5 is stronger than a previously known result [4], [15], which states that every nonreducible graph has a double entry cycle. For example, Fig. 11 shows a graph which has a double entry cycle, but which is a " D-chart." In the next section we use Theorem 5 to prove that all D-charts are reducible.

Theorem 6. If a flow graph G has a subgraph (*), then G is nonreducible.
Proof. We proceed by induction on the number of nodes, n, in G. The basis is again trivial. For the induction, suppose that G of $n>3$ nodes is reducible, but has a subgraph (*). Let G^{\prime} be the graph formed by applying T_{1} to G until no longer possible. It is easy to see that G^{\prime} also contains (*), and by Theorem 2 is reducible. Therefore T_{2} is applicable to some node pair $\left(n_{1}, n_{2}\right)$ of G^{\prime}. Let n_{2} be the successor of n_{1}, and let $G^{\prime \prime}$ be the result of applying T_{2} to G^{\prime}. We consider cases, depending on the relation of n_{2} to (*).

Case 1. n_{2} is not one of the nodes represented by $(*)$, including the paths shown. It is straightforward in this case to show that (*) is present in $G^{\prime \prime}$.

Case 2. n_{2} is a of (*). Then n_{1} must be the predecessor of a on the path from i to a. Again, (*) exists in $G^{\prime \prime}$.

Case 3. n_{2} is b or c. Since b and c each have at least two distinct predecessors, this case is impossible.

Fig．11．Reducible flow graph with double entry cycle

Case 4．n_{2} is a node on one of the paths of $(*)$ ．Then n_{1} is on the same path （possibly an endpoint）．（＊）clearly exists in $G^{\prime \prime}$ ．

Since $G^{\prime \prime}$ has one fewer node than G ，the inductive hypothesis applies to $G^{\prime \prime}$ ． Therefore $G^{\prime \prime}$ is nonreducible．But by Theorem 2，since $G \stackrel{*}{\Rightarrow} G^{\prime \prime}$ ，and $G \hat{\Rightarrow} 0$ ，it follows that $G^{\prime \prime} \xlongequal[\Rightarrow]{\Rightarrow}$ ，i．e．，$G^{\prime \prime}$ is reducible．We have a contradiction，and conclude that G is nonreducible．

7．Applications of the characterization theorem．D－charts［16］－［19］or＂block form programs＂［20］are a restricted class of flow charts which can be imple－ mented by a programming language having no explicit＂goto＂statements．They are as powerful as general flow charts provided additional variables called＂flags＂ are introduced to represent a history of control flow［17］．

We define D－charts by informal＂graph grammars．＂（See［21］，for example．） The graph grammars we use are similar to the grammars for formal languages， except that the production rules indicate the replacement of nodes in a labeled graph by subgraphs．For example，Fig． 12 presents a simple definition of D－charts． The start symbol is 〈block〉．Rule（3）in Fig． 12 shows that a 〈block〉may be replaced by an＂iteration＂structure，（while－do），and rule（2）enables possible replacement of a 〈block〉 by an＂if－then－else＂structure．

Definition．A D－chart is a flow graph which can be produced by the following rules．

1．Begin with a single node，the initial node，labeled 〈block〉．
2．Replace，at will，a node n ，labeled 〈block〉，by one of the structures on the right of the \rightarrow in Fig．12．Edges entering n now enter the highest node in each of the replacement structures．Edges leaving n now leave the lowest node in structures 1,2 and 4 and the higher node in structure 3.

3．If the node replaced is the initial node，the highest replacing node becomes initial．

4．Terminate the generation process if there are no nodes labeled 〈block〉． Otherwise return to step 2.

Fig. 12. Graph grammar for D-charts
Example 7. The sequence of graphs shown in Fig. 13 illustrate the generation of a D-chart. Figs. 13(b), (c) and (d) are produced by rules 2,1 and 3, respectively. Figure 13(e), the D-chart, is produced by three applications of rule 4.

Theorem 7. Every D-chart is reducible.
Proof. We shall use Theorem 5 and show that (*) cannot appear in a D-chart. If (*) does appear, then node a, which has at least two direct descendants, must be created as the highest node in one of the replacement structures of rules (2) and (3) in Fig. 12. These possibilities are shown in Figs. 14(a) and (b) respectively.

In Fig. 14(a), regions R_{1} and R_{2} are the sets of nodes generated by the two nodes labeled 〈block〉 in Fig. 12 (2). Since paths in (*) are node disjoint, nodes b

Fig. 13. Generation of a D-chart

（a）

（b）

Fig．14．Portions of a D－chart
and c must be found in R_{1} and R_{2} ，respectively．But it is elementary that there can be no paths from R_{1} to R_{2} that do not pass through a ．Thus，no（＊）exists in this case．

In Fig．14（b），region R_{4} represents the nodes generated by the node 〈block〉 in Fig． 12 （3），and R_{3} represents the nodes accessible from a without entering R_{4} ． We note that any node labeled 〈block〉 in the generation scheme for D－charts has out－degree at most one．Thus，b and c of $(*)$ must appear in R_{3} and R_{4} ，re－ spectively．Again，we observe that a path from b to c must pass through a ，and we conclude the theorem．

Another simple example of the application of Theorem 5 is the following．
Theorem 8．The flow graphs of those Fortran programs whose transfers to previous statements are all caused by the normal termination of DO loops are reducible．

Proof．If the flow graph for such a program had subgraph（＊），then the loop between nodes b and c would be part of a DO loop，and the paths from a to b and c could not be part of that DO loop．Since DO loops may be entered at only one point，we would conclude that b and c are the same node．Thus，（＊）does not appear in such a flow graph．

8．Conclusions．We have demonstrated that interval analysis is a special case of a more general reduction technique．This technique，the application of two transformations：
$T_{1}=$ removal of loops，
$T_{2}=$ merging of a node with a unique predecessor with that predecessor， can be used for data flow analysis exactly as interval analysis is used．

We then showed that all and only the nonreducible flow graphs have a subgraph（＊）consisting of at least three nodes，a, b and c ，with node disjoint paths from the initial node to a ，from a to b and c and from b to c and back．（ a may be the initial node．）We used this result to prove that certain kinds of programs have reducible flow graphs．

REFERENCES

［1］F．E．Allen，Control flow analysis，SIGPLAN Notices， 5 （1970），pp．1－19．
［2］——，Program Optimization，Annual Review in Automatic Programming，vol．5，Pergamon Press，New York， 1969.
[3] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation and Compiling, vol. II, Compiling, Prentice-Hall, Englewood Cliffs, N.J., to appear.
[4] M. Schaefer, A mathematical theory of global program analysis, unpublished notes, System Devel. Corp., Santa Monica, Calif., 1971.
[5] K. Kennedy, A global flow analysis algorithm, Internat. J. Computer Math., 3 (1971), pp. 5-15.
[6] J. Cocke, Global common subexpression elimination, SIGPLAN Notices, 5 (1970), pp. 20-24.
[7] J. E. Hopcroft and J. D. Ullman, An n log n algorithm for detecting reducible graphs, Proc. 6th Annual Princeton Conference on Information Sciences and Systems, Princeton, N.J., 1972.
[8] J. D. Ullman, Fast algorithms for the elimination of common subexpressions, TR 106, Computer Science Laboratory, Princeton Univ., Princeton, 1972.
[9] D. E. Cooper, Programs for mechanical program verification, Machine Intelligence 6, American Elsvier, New York, 1971, pp. 43-62.
[10] J. Cocke and R. E. Miller, Some analysis techniques for optimizing computer programs, Proc. 2nd Internat. Conf. of System Sciences, Hawaii, 1969.
[11] E. Engler, Structure and meaning of elementary programs, Symposium on Semantics of Algorithmic Languages, E. Engeler, ed., Springer-Verlag, New York, 1971, pp. 89-101.
[12] ——, Algorithmic approximations, J. Comput. System Sci., 5 (1971), pp. 61-82.
[13] A. V. Аho, R. Sethi and J. D. Ullman, Code optimization and finite Church-Rosser systems, TR 92, Computer Science Laboratory, Princeton University, Princeton, N.J., 1971.
[14] R. Tarjan, Depth first search and linear graph algorithms, Proc. IEEE 12th Annual Symposium on Switching and Automata Theory, 1971.
[15] F. E. Allen, private communication.
[16] E. W. Diskstra, GOTO statement considered harmful, Comm. ACM, 11 (1968), pp. 147-148.
[17] J. Bruno and K. Steiglitz, The expression of algorithms by charts, TR 88, Computer Science Laboratory, Princeton University, Princeton, 1971.
[18] D. E. Knuth and R. W. Floyd, Notes on avoiding "GOTO" statements, TR-CS 148, Computer Science Department, Stanford University, Stanford, Calif., 1970.
[19] J. R. Rice, The GOTO statement reconsidered, Comm. ACM, 11 (1968), p. 538, and reply by E. W. Dijkstra, p. 538 and p. 541, 11 (1968).
[20] D. C. COOPER, Some transformations and standard forms of graphs, with applications to computer programs, Machine Intelligence 2, American Elsevier, New York, 1968, pp. 21-32.
[21] T. Pavlidis, Linear and Context Free Graph Grammars, J. Assoc. Comput. Mach., 19 (1972), pp. 11-22.

[^0]: * Received by the editors August 26, 1971, and in revised form March 6, 1972.
 \dagger Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540. This work was supported by the National Science Foundation under Grant GJ-1052.

[^1]: ${ }^{1}$ We place the symbols $\hat{,} \#,{ }^{*},+$ and i above the relation symbol \Rightarrow instead of at the upper right corner, as indicated for relation R in the above definition.

[^2]: ${ }^{2}$ Let 0 represent the graph with one node and no edges.

[^3]: ${ }^{3}$ The notion of "to the right" has only been defined for nodes with the same predecessor. We can extend it naturally by saying that if n is to the right of m, then all n 's successors are to the right of all of m 's successors.

