
FLOW GRAPH REDUCIBILITY t

Matthew S. Hecht
and

Jeffrey D. Ullman

Princeton University
Princeton, New Jersey 08540

Abstract this paper.

The structure of programs can often
be described by a technique called "inter-
val analysis" on their flow graphs. Here,
we characterize the set of flow graphs that
can be analyzed in this way in terms of
two very simple transformation on graphs.
We then give a necessary and sufficient
condition for analyzability and apply it
to "goto-less programs," showing that they
all meet the criterion.

i. Introduction

The application of many code improve-
ment techniques depends on globally model-
ing a program by a directed graph called a
"flow graph." This model provides a compre-
hensive view of the control flow of a pro-
gram. Examples of improvement possible by
flow graph analysis are the detection and
removal of useless and redundant statements
and the moving of loop independent compu-
tation outside loops. Much of the analysis
for this type of improvement hinges on the
property of a flow graph called "reduci-
bility," e.g. [1-5].

In this paper we give a definition of
a flow graph and treat it as a graph
theoretic construct. First, the "interval"
analysis technique of Cocke and Allen [1,6]
is reviewed and reducibility is defined.
Next, we present a new technique for treat-
ing flow graph reducibility, namely
"collapsibility," and show it equivalent to
reducibility. Finally, we give a structur-
al characterization of non-reducible flow
graphs and use this characterization to ob-
tain an interesting result about flow graphs
for "goto-less programs."

2. Necessary Concepts from Graph Theory

In this section we present the con-
cepts from graph theory which are used in

tThis work was supported by NSF grant
GJ-1052.

Definition 2.1: A directed graph G
is a pair (N,E), where N is a set and E is
a relation on N. The elements of N are
called nodes; and the ordered pairs in E
are called edges.

Definition 2.2: Let G= (N,E) be a
graph. A graph G' = (N',E') is said to be
a subgraph of G if N' c_N and E' CEN (N'XN').

Example 2. I:
graph G= ([1,2,3,4}, [(i,i),
(2,4), (3,4), (4,1), (4,3)])
graph S = ({3,4], [(3,4) }) .

Figure 2.1 depicts the
(1,2), (2,3),
and the sub-

[3

I
(b) Subgraph S of G

(a) Directed graph G

Figure 2.1

Example of directed graph and subgraph

Definition 2.3: Let (n,m) be an edge.
This edge is said to leave node n and enter
node m.

Definition 2.4: The in-degree of a
node is the number of edges entering n and
the out-degree of a node n is the number of
nodes leaving n.

Definition 2.5: A sequence of nodes
(no,nl,...,nk) , k~0, is a path of lengthk
from node n o to node n k if there is an edge
which leaves node ni_ 1 and enters node n i
for 1 < i <k.

Definition 2.6: A cycle (or loop) is
a path (no,nl,...nk) in which n o =n k.

Definition 2.7: A graph is connected
if, for each pair of distinct nodes (n,m),

-238-

there is a path from n to m and from m
to n.

Definition 2.8: A graph is rooted if
there exists at least one node r such
that there is a path to all nodes from r.
The node r is called a root of the graph.

Definition 2.9: Let (n~m) be an edge.
Node n is called a direct ancestor of node
m, and node m is called a direct descend-
ant of node n. If there is a path from
node n to node m, then n is said to be an
ancestor of m,and m is a descendant of n.

It is often useful to attach certain
information to either the nodes or edges
of a graph. Such information is called a
labeling.

Definition 2.10: Let (N,E) be a
graph. A node labeling of the graph is a
function f from N to a set A of node
labels. An edge labeling of the graph is
a function g from E to a set B of edge
labels. A labeled graph refers to a graph
with an associated labeling.

Example 2.2: The graph in Figure 2.1
is a rooted connected graph with node 1 as
one of its roots. Node 1 is an ancestor
of all other nodes in the graph. Node 2
is a direct descendant of node I. The
path (i~2,4,1) is a cycle. Node 3 has in-
degree two and out-degree one.

Definition 2.11: A tree T is a graph
G = (N,E) with a specified node r in N such
that:

(a) Node r has in-degree zero.

(b) Node r is a root of T.

(c) All other nodes of T have
in-degree one.

Definition 2.12: An ordered tree is
a tree with a linear order on the direct
descendants of each node.

We follow the convention of drawing
trees with the root on top and having all
edges directed downward. The direct
descendants of a node of an ordered tree
are always lineraly ordered from left to

right in a diagram.

Example 2.3: An ordered tree is
represented in Figure 2.2. Node 4 is the
first direct descendant of node 3 since it
is the left-most direct descendant of node

3. Node 3 is the second direct descendant
of the root.

Figure 2.2

Example of a tree

Definition 2.13: A spanning tree of
a graph G is a subgraph of G which is a
tree and contains all nodes in the graph.

Definition 2.14: A flow grap h is a
3-tuple F= (N,E~i)~ where (N,E) is a
finite graph and i is a root of (N,E),
called the initial node.

Example 2.4: Figure 2.3(a) shows a
flow graph with node 1 as the initial node.
Figure 2.3(b) can not be a flow graph,
since it has no root.

\

(b)

(a)

Figure 2.3

Examples of graphs

3. Reducibilit Y

A flow graph may be analyzed by con-
structs called "intervals."

Definition 3.1: Let G be a flow graph
and n a node of G. The interval with

-239-

header n, denoted I(n), is constructed by
the following algorithm.

Algorithm A: [Cocke and Allen]
val construction.

Input:
node n.

Output: I(n)

Method:
Ai.

A2.

Inter-

Flow graph G and designated

Place n in I(n).

If n' is a node not yet in
I(n), n' is not the initial
node, and all edges entering
n' leave nodes in I(n), add
n' to I(n).

A3. Repeat step A2 until no more
nodes can be added to I(n).

[]

It should be observed that although
n' in step A2 may not be well determined,
I(n) does not depend on the order in which
candidates for n' are chosen. A candidate
at one iteration of A2 will, if it is not
chosen, still be a candidate at the next
iteration.

The next algorithm partitions a flow
graph uniquely into disjoint intervals.

Algorithm B: [Cocke and Allen] Par-
tion of a flow graph into intervals.

Input: A flow graph G= (N,E,i).

Output: A set of disjoint intervals
Ii,...,Ik, whose union is G.

Method:
BI. Establish a list H of header

nodes and a list L of inter-
vals. Initially, H consists
only of i; and L is empty.

B2. If H is empty, halt; L is the
desired list of intervals.

B3. Otherwise, choose n on H, and
compute I(n) by Algorithm A.

B4. Add I(n) to L. Delete n from
H, but add to H any node
which has a direct ancestor
in I(n), but which is not al-
ready in H or in one of the
intervals on L. Return to B2.

D
Example 3.1: Let us consider the flow

graph of Fig. 2.3(a). We begin with node
i, the initial node, on list H. Algorithm
A tells us to add node 2 to I(1), then to
add nodes 3 and 4. No further nodes can

be added to I(1). For example, node 5 has
an edge entering from 6, which is not
currently in I(1), and 6 has an edge en-
tering from 5.

We therefore place I(1) = [1,2,3,4] on
L, and add 5 and 6 to H. Then, we compute
I(5) = [5,7] and I(6) = [6,8]. Note that 1
is not added to I(6), because it is the
initial node.

Two important properties of intervals
[1,3,4] are:

(i) every cycle within the interval
includes the interval header, and

(2) every edge entering a node of
the interval from the outside
enters the header.

An interesting aspect of interval
analysis is that the intervals of one flow
graph can be considered as the nodes of
another flow graph in which there is an
edge between intervals I 1 and 12 if and
only if I 1 ~ I2, and there is an edge from
a node in I 1 to the header of 12. Further-
more, this process may be repeatedly per-

formed.

Definition 3.2: Let G be a flow graph.
Then I(G), the derived graph of G, is de-
fined as follows.

(a) The nodes of I(G) are the inter-
vals of G.

(b) There is an edge from the node
representing interval I 1 to that
representing 12 if there is any
edge from a node in I 1 to the
header of 12 and I I~ 12.

(c) The initial node of I(G) is the
interval containing the initial
node of G.

Definition 3.3: Flow graph G is call-
ed irreducible if and only if I(G) =G.

Definition 3.4: Let G be a flow

graph. The sequence G=Go,Gi,G2,...,G n is
called the derived sequence for G if

Gi+ 1 = I(Gi) , and G n is irreducible. G n
is called the limit flow graph of G and is
denoted by ~(G).

Definition 3.5: Flow graph G is call-
ed reducible if and only if I(G) is a
single node with no self-loop. Otherwise,
it is called non-reducible.

-Z40-

Example 3.2: Let G o be the graph of
Fig. 2.3(a). Then G 1 =I(Go) has three
nodes, corresponding to the three inter-
vals, [1,2~3,4~ [5,7~ and [6,8~, of G O .
Let these nodes be nl, n 2 and n3, respec-
tively. Then G l is shown in Fig. 3.1.
There is an edge from n I to n2, for ex-
ample, because of the edge in G o from
node 3 to node 5.

Figure 3.1

4. Collapsibility

We will define a pair of simple
transformations that together have the
same effect On flow graphs as the interval
construction does. Moreover, it will be
apparent that the data flow analysis sug-
gested in [1,3,4,6], using interval con-
struction~ could be equally well done if
construction of the derived sequence of a
graph G were replaced by repeated applica-
tion of our transformations.

There are various advantages to the
approach taken here, compared with the
interval analysis approach. For example
[7] gives an 0(n logn) algorithm to deter-
mine whether a flow graph is reducible.
In comparison, the straightforward techni-
que of constructing the derived sequence
can take 0(n 2) steps if performed in the
obvious way. consider, for example, a
flow graph of n nodes of Fig. 4.1. Also,
[8] gives an algorithm taking 0(n log n)
bit vector operations to find common sub-
expressions in a reducible graph. In com-
parison~ the techniques of [1,4] can re-
quire 0(n 2) bit vector operations. (Fig.
4.1 again suffices.)

Moreover~ these transformations seem
to characterize the set of reducible flow
graphs in a nice way, and they lead to a
further characterization of reducibility
that makes it clear in many cases that the
control flow structure of a given program-
ming language will yield only reducible
flow graphs. For example, the D-charts

developed from "goto-less programs" [16] are
all reducible. We now give the definitions
of the two transformations.

Definition 4.1: Let G be a flow graph.
Suppose n is a node in G with a self-loops
that is~ an edge from n to itself. Trans-
formation T l on node n is removal of this
self-loop.~

Definition 4.2: Let n I and n 2 be nodes
in G such that n 2 has the unique direct
ancestor nl, and n 2 is not the initial node.
Then transformation T 2 on node pair (nl,n 2)
is merging nodes nl ~Tfd n 2 to one node,
named nl/n2, and deleting the unique edge
between them. Let n ~ n I and n ~ n 2. There
is an edge from node n to nl/n 2 if there
was previously an edge from n to n I (there
cannot be one from n to n2) , and there is
an edge from nl/n 2 to n if there was pre-
viously one to n from either n I or n 2 or
both. nl/n 2 has a self-loop if there was
an edge from n 2 to n I.

Figure 4.1

Flow Graph Requiring 0(n 2) Steps for Inter-
val Analysis

- 2 4 1 -

Example 4.1: Figure 4.2 shows a flow
graph which is transformed into a single
node by one application of T 1 and two of
T 2. Although T 2 is not applicable to the
original graph, it becomes applicable
after use of T I.

)

Figure 4.2

Applications of T 1 and T 2

Various authors have considered simi-
lar transformations~ but from the point o9
view of generating graphs rather than
analyzing (i.e., reducing) them. Cooper
[9] considers three generating rules, one
of which is the inverse of T 1 (i.e., addi-
tion of self-loops). The other two to-
gether are equivalent to the inverse of T 2.
It is shown in [9] that together with a
construction which is the inverse of "node
splitting" [I0] , these generating rules
are capable of building an arbitrary flow
graph.

Engeler [ii,12] considers "normal
form flow charts," which are built by two
generating rules, one the inverse of T 1
and the other equivalent to the inverse of
T2, restricted so that the two nodes in-
volved have disjoint sets of direct descend-
ants. Thus~ the normal form flow charts
are a subset of the reducible graphs. They
are characterized as trees with back edges.

We now proceed to develop useful
properties of the transformations T 1 and

T 2 •

Definition 4.3: A flow graph is call-
ed collapsible if and only if it can be
transformed into a single node with no
self-loop by repeated application of T 1 and
T 2. Otherwise, it is called non-collapsi-
ble.

Example 4.2: The flow graph of Fig-
ure 4.3 is non-collapsible. There are no
self-loops, and no node has a unique en-
tering edge, so neither T 1 nor T 2 is
applicable. On the other hand, the flow
graph of Figure 4.2 is collapsible.

Figure 4.3

Example of a non-collapsible flow graph

T 1 and T 2 have a useful property;
they form a "finite Church-Rosser" trans-
formation [13].

Definition 4.4: Let R be a relation
on a set S. Let xRy denote (x,y) eR. The

_ !(y,x)I (x,y) eR}. R inverse of R, R -1, s 1
is symmetric if R = R is reflexive
if (x,x) gR for all xeS. R is transitive
if xRy and yRz imply xRz for all x,y,z in S.

Definition 4.5: If R 1 and R 2 are
relations on S, then the composition of R 1
and R2, denoted RiR2, is ((x,z) I for some
y in S, XRlY and YR2z}. The reflexive
closure of R, denoted R #, is RU[(x,x) IxcS].
The transitive closure of R~ denoted R +,
isRiUR2UR3U..., where R 1 =R and R i =RR i-I

for i> 2. The reflexive transitive
closure of R, denoted R*,^is R#UR +. The
completion of R, denoted R, is [(x,y) IxR*y
and there is no z such that yRz].

Definition 4.6: A pair (S,=), where
S is a set and = is a relation on S is
said to be finite if for each p in S,
there is a constant kp such that if
p~q,t then iSkp. That is, there is a
bound on the number of times ~ can be
applied in succession, beginning with any
element p. We say (S,=) is finite Church-
Rosser (FCR) if it is finite, and ~ is a

t We place the symbols ^,#,*~+ and i above
the relation symbol = instead of at the
upper right corner, as indicated for rela-
tion R in Definition 4.5.

- 2 4 2 -

function, i.e., p ~ q and p ~ r implies
q=r. If set S is understood, = is called
an FCR transformation.

The following theorem gives a test
for the FCR property which is simpler to
apply than Definition 4.6. It is proved
in [13].

Theorem 4.1: Let ~ be a relation on
set S. Then (S,=) if FCR if and only if
it is finite, and for all p in S, if
p = p~ and p=p2, then there is some q

such ~hat Pl ~ q and P2 ~ q"

Definition 4.7: Let S be the set of
flow graphs. We define the relation ~,
i = 1 or 2, by g ~ g' if and only if g can
be transformed into g' by an application
of T i. Let = denote the union of ~ and ~.
The reflexive closure, k-fold products
transitive closure, reflexive transitive
closure, and the completion of = are re-

. ~ k + * _ & speetively given Dy ~, =, =, ~, ane •

Theorem 4.2: (S,=) is FCR.

Proof: We use Theorem 4.1 and note
that in this case, we will always be able
to find q such that Pl ~ q and P2 ~ q"

(Finiteness property). Let g be a
flow graph with n nodes. Each applica-
tion of T 1 or T 2 deletes at least one edge.
Thus, = is finite.

("Commutativity" property). Suppose

g ~ gl and g ~ g2, where gcS and
i,je{l,2}. There are three distinct cases
to consider.

Case i: (i= j =I). Suppose T 1 is
applied to node n I to yield gl and to node

n 2 to yield g2" If n I =n2, then gl =g2"
If n l~n2, then T 1 may be performed on n 2
in gl and on n I in g2 to yield equal graphs.

Thus, g = gl ~ h and g ~ g2 ~ h, where h
is the graph resulting after applying T 1

to nodes n I and n 2 in g.

Case 2: (i= j =2). Suppose T 2 is
applied to node pair (nl,n 2) in g to yield
gl, and to node pair (n3,n 4) in g to yield

g2" If n I =n 3 and n 2 =n4, then gl =g2"
If all four nodes are distinct, then apply

T 2 to (n3,n 4) in gl, and apply T 2 to
(nl,n 2) in g2 to yield equal graphs. Now
suppose neither of the previous subcases
holds. If n I =n 3 and no other equalities
hold, then Figure 4.4 shows the subgraph
of interest.

F i g u r e 4 . 4

Applications of T 2

Otherwise~ if n 2 =n 3 and no other equali-
ties hold, then Figure 4.5 shows the sub-
graph of interest.

%

Figure 4.5

Applications of T 2

Thus, g = gl ~ h and g = g2 = h, where h
is the graph resulting after applying T 2

to (nl,n 2) and to (n3,n4) in g.

The case in which n I =n 4 and no other
equalities hold is symmetric to the case
n 2 =n 3 above. The case n I =n 4 and n 2 =n 3
is impossible, because then the flow
graph has two isolated nodes, and hence
must consist of only n I and n 2. But one
of these must be the initial node, and T 2
is thus either not applicable to (nl,n2)
or not applicable to (n3,n4). Since we
have assumed n l~n 2 and n 3 /n4, and n 2 may
not be n 4 unless .n l=n3, we have consider-
ed all possibilities.

- 2 4 3 -

Case 3: (i~ j). Suppose T 2 is
applied to node pair (nl,n2)in g to yield

gl' and T 1 is applied to node n 3 in g to
yield g2" Clearly, n 2 ~n 3. Consequently,
T 1 and T 2 do not "interfere;" T 1 may be
applied to node n 3 in gl, and T 2 may be
applied to node pair (nl,n2) in g2 to
yield equal graphs. Thus, g = gl = h and
g ~ g2 ~ h, where h is the result of

applying T 2 to (nl,n2) and T 1 to n 3.

5. Equivalence of Reducibility
and Collapsibility

Theorems 5.1 and 5.2 establish that
a flow graph is reducible if and only if
it is collapsible.

Definition 5.1: Let the first n
nodes added to an interval I(h) in Algo-
rithm A be called a partial interval. We

assume, of course, that the interval I(h)
has at least n nodes, and n> i.

Le~na 5.1: Let G be a flow graph.
Then G ~ I(G).

Proof: It suffices to show that a
partial interval is collapsible to its
header, and that connections (edges) be-
tween a partial interval and the other
nodes in the flow graph are maintained.
Thus, constructing the derived graph I(G)
of flow graph G corresponds exactly to
collapsing the intervals of G.

Inductive Hypothesis: A partial in-
terval of n nodes is collapsible to its
header, and edges between the partial in-
terval and the other nodes of the flow
graph are preserved. That is, edges leav-
ing the partial interval to another node
outside the partial interval remain. The
header will have no self-loops.

Basis: The first node added to an
interval is the header node. The only
collapsing possible is removal of a self-
loop if present. This possible applica-

tion of T 1 will not destroy any edge to
another node in the graph outside the
partial interval.

Inductive Step: Assume that the in-
ductive hypothesis is true for a partial
interval of n nodes, and consider the addi-
tion of another node m to the partial in-
terval. This new node only has edges
entering it from nodes in the partial in-
terval. Since the first n nodes of the

partial interval are collapsible by the
induction hypothesis, there will be ex-
actly one edge from the collapsed partial
interval to m. Thus~ T 2 is applicable.
Edges from m to nodes outside the partial
interval now leave the node for the
collapsed partial interval. If there is
a self-loop introduced by the application

of T2, it can be removed by T I.
[]

As an immediate consequence of
Lemma 5.1, we have the following.

Theorem 5.1: If a flow graph is re-
ducible, then it is collapsible.

Proof: If I(G) = 0 ~, then G ~ 0, is
by Lemma 5.1, iterated.

The converse of Theorem 5.1 is easy

to prove.

Theorem 5.2: If a flow graph is
collapsible, then it is reducible.

^

Proof: Suppose G = 0, and let
I(G) =G'. By Lemma 5.1 iterated,^G ~ G'.

We must have G' = 0. (For if G' = G",
then G ~ G". Since & is a function, and

^

G = 0, we have G" = 0.)

If G' ~0, then since G' ~ 0, T 1 or T 2
is applicable to G'. We have assumed
I(G') =G', so every node appears on the
header list when Algorithm B is applied to
G'. If T 1 is applicable to node n, then
I(n) does not have a self-loop in I(G'),
sO I(G') ~G' If T 2 is applicable to node

pair (n~,n2) , then n 2 is in I(nl) , so
again, I(G') ~I(G). We conclude that

G'=0.
D

6. Characterization Theorem for
Non-Reducible Flow Graphs

We will now show the existence of a
certain subgraph in all and only the non-
reducible flow graphs. Prior to showing
this result, we present the concept of a

"depth-first spanning tree" of a flow

graph.

Definition 6.1: A depth-first span-
nin~ tree (DFST) of a flow graph G is a
spanning tree that is constructed by Algo-

rithm C.

t Let 0 represent the graph with one node

and no edges.

-Z44-

Algorithm C: DFST of a flow graph.
Input: Flow graph G.
Output: DFST of G.
Method:

Ci. The root of the DFST is the
initial node of G. Let this
node be the node n "under
consideration."

C2. Perform step C3 until it is
no longer applicable.
Then perform C4 and C5.

C3. If the node n under consider-
ation has a direct descendant
x not already on the DFST, we
select node x as the right-
most direct descendant of n
so far found. If this step
is successful, node x be-
comes the node n under con-
sideration.

C4. If the node under considera-
tion is the root, then halt.

C5. Otherwise, back up the DFST
one node toward the root and
consider this node by going
to step C2.

Definition 6.2: We define the spine
of a DFST T to be the sequence of nodes

(nl,n2,...,nk) such that n I is the root of
T, ni+ 1 is the rightmost direct descendant
of ni, 1 <i <k-l, and n k has no direct
descendants.

We can add to the DFST T of a flow
graph G the edges of G which are not
edges of T. Conventionally, we will show
edges of T as solid lines and edges of G
not in T by dashed lines. An important
property of DFST's is the following.

Lemma 6.1: [14] Let G = (N,E,i) be
a flow graph and T = (N,E') one of its

DFST's. If there is an edge (nl,n2) in
E- E', then either:

(i) n I is a descendant of n 2 in T,

(2) n I is an ancestor of n 2 in T,

(3) n I = n2, or
t

(4) n I is to the right of n 2 in T.

% The notion of "to the right" has only
been defined for nodes with the same
direct ancestor. We can extend it natural-
ly by saying that if n is to the right of
m, then all n's descendants are to the
right of all of m's descendants.

Example 6.1: Let G be the flow graph
of Figure 6.1(a). If we consider nodes
in the order 1,2,3,4, then back to 3, then
to 5, we obtain the DFST of Figure 6.1(b).
The spine is 1,2,3,5.

D

%

b

J I

i i"
I

(b)

Figure 6.1

Example of Algorithm C

Definition 6.3: Let (*) denote any
of the gra~s represented in Figure 6.2
where the wiggly lines denote node dis-
joint (except for the endpoints, of court)
paths; a,b,c and i are distinct, except
that a and i may be the same.

(*) :

Figure 6.2

Lemma 6.2: The absence of subgraph
(*) in a flow graph is preserved by T 1 and

T 2 •

Proof: Let G be a flow graph and let

n I and n 2 be any two nodes in G. We ob-
serve that if a path does not exist be-

tween n I and n2, then neither T 1 nor T 2
will create such a path; neither will they
make two paths be node disjoint if they
were not so already.

Theorem 6.1: If a flow graph is non-
reducible, then it has a subgraph of form
(*).

Proof: We prove the theorem by induc-
tion on n, the number of nodes of G.

- 2 4 5 -

Inductive Hypothesis: Flow graph G
with n nodes has a subgraph of form (*).

Basis: (n= 3). This is an elemen-
tary consideration of the three cases in
Figure 6.3, with the initial nodes at the
top.

Figure 6.3

Indugtive Step: (n> 3). Assume that
the inductive hypothesis is true, and con-
sider a non-reducible flow graph G with n
nodes. By Lemma 6.2, we may assume with-
out loss of generality that T 1 is not
applicable to G. That is, if G can become

G' under repeated application of Tie and
we can show that G' has (*), then we will
also have shown that G has (*). By the
inductive hypothesis and Lemma 6.2, it
follows that T 2 is not applicable to G.
Thus, we may assume that G is irreducible.

Let T be a DFST for G, and let the spine

of T be (nl,n2,...,nk).

We claim that k > 3. The initial node
n I is on the spine. Now consider the
rightmost direct descendant of the root,

namely n 2. Surely n 2 exists, since n> i.
Node n 2 must have at least two entering
edges in G, since G is irreducible (else
T2 would be applicable). By Lemma 6.1,
other entering edges must come from
descendants of n 2. Thus, n 2 must have at
least one direct descendant, n 3.

Now find the highest number d~ such
that n d has an edge (in G but not T) to
some n i~n I on the spine, with i <d. n d
always exists because, in particular, n 2
has such an edge entering. Let b be the
largest number in the range 1 <b < d, such
that there is an edge from n d to n b in G.

Find (if possible) the first node n a
on the spine starting from the root with a
forward edge (in G but not in T) entering
a node no, such that n c is below n b on the

spine and equal to or below n d. Figure
6.4 depicts this situation. Notice that

nodes na, nb, and n c correspond to nodes
a,b, and c in (*), and n I corresponds to
i.

,)

!

I

Figure 6.4

Suppose that there is no such edge

(na,nc) in G. Let us consider the sub-
graph H of G consisting of the nodes on
the spine from n b to nd, together with
their connecting edges in G. There are no
edges of G entering a node in H from above
other than to n b by assumption, and there
are no edges of G entering a node in H
from below n d on the spine since (nd,nb)
is the "lowest" backward edge. Further-
more, by Lemma 6.1 no other edges enter
nodes in H. Thus, any reduction by T 1 or
T 2 taking place in H, with n b treated as
the initial node, will also be a valid re-
duction in G. Since G is irreducible, we
conclude that H is likewise irreducible.
Finally, since b > i, the induction hy-
pothesis applies to H. This ends the in-
duction.

But, since H has a subgraph of form
(*) with initial node nb, it is easy to
show that G has a subgraph (*) with initial

node n I by adding the path from n I to n b.

D
Corollary: If G is irreducible, then

it has a subgraph (*) in which the path
from a to c i~ a single edge.

[]

Theorem 6.1 is stronger than a pre-
viously known result [4,15], which states
that every non-reducible graph has a
double entry loop. For example, Figure 6.5

-Z46-

shows a graph with a double entry loop
which not only is reducible~ but which is
a "D-chart." In the next section we use
Theorem 6.1 to prove that all D-charts
are reducible.

Figure 6.5

Theorem 6.2: If a flow graph G has
a subgraph (*), then G is non-reducible.

Proof: We prove the result by the
number of nodes~ n, in G. The basis
is again trivial. For the induction, sup-
pose that G of n> 3 nodes is reducible,
but has a subgraph (*). Let G' be the
graph formed by applying T 1 to G until no
longer possible. It is easy to see that
G' also contains (*), and by Theorem 4.2
is reducible. Therefore T 2 is applicable
to some node pair (nl,n 2) of G' Let n 2
be the direct descendant of nl, and let
G" be the result of applying T 2 to G'. We
consider cases, depending on the relation
of n 2 to (*).

Case i: n 2 is not one of the nodes
represented by (*), including the paths
shown. It is straightforward in this case
to show that (*) is present in G".

Case 2: n 2 is a of (*). Then n I must
be the predecessor of a on the path from i
to a. Again, (*) exists in G".

Case 3: n 2 is b or c. Since b and
c each have at least two distinct prede-
cessors, this case is impossible.

Case 4: n 2 is a node on one of the
paths of (*). Then n I is on the same path
(possibly an endpoint). (*) clearly
exists in G".

Since G" has one fewer node than G,
the inductive hypothesis applies to G".
Therefore G" is non-reducible. But by
Theorem 4.2, since G ~ G", and G ~ 0, it

follows that G" ~ 0, i.e., G" is reducible.
We have a contradiction, and conclude that
G is non-reducible.

7. Applications of the
Characterization Theorem

D-charts [16-19] or "block form pro-
grams" [20] are a restricted class of flow
charts which can be implemented by a pro-
gramming language having no explicit "go-
to" statements. They are as powerful as
general flow charts provided additional
variables called "flags" are introduced to
represent a history of control flow [17].

We define D-charts by informal "graph
grammars." (See [21], e.g.) The graph
grammars we use are similar to the grammars
for formal languages, except that the pro-
duction rules indicate the replacement of
nodes in a labeled graph by subgraphs.
For example, Figure 7.1 presents a simple
definition of D-charts. The start symbol
is <block>. Rule (3) in Figure 7.1 shows
that a <block> may be replaced by an "iter-
ation" structure, (while-do), and rule (2)
enables possible replacement of a <block>
by an "if-then-else" structure.

(i) <block>

(2) <block>

(3) <block>

<block>

<block>

<blo~lock>

~<block>

(4) <block> - O

Figure 7.1

Definition 7.1: A D-chart is a flow
graph which can be produced by the follow-
ing rules.

(i) Begin with a single node, the
initial node, labeled <block>.

(2) Replace, at will, a node n,
labeled <block>, by one of the

structures on the right of the ~ in Fig-
ure 7.1. Edges entering n now enter the
highest node in each of the replacement
structures. Edges leaving n now leave the
lowest node in structures i, 2 and 4 and
the higher node in structure 3.

-247-

(3) If the node replaced is the
initial nodes the highest replacing node
becomes initial.

(4) Terminate the generation process
if there are no nodes labeled <block>.
Otherwise return to step (2).

.Example 7. i: The sequence of graphs
shown in Figure 7.2 illustrate the genera-
tion of a D-chart. Figures 7.2(b)~ (c)
and (d) are produced by rules (2), (i)
and (3), respectively. Figure 7.2(e), the
D-chart is produced by three applications
of rule (4).

m

<block> ~ A ~

(a)

<block> <block>

(b)

io OCk
(c) <blo~ "

(d)

(e)

F i g u r e 7.2

Generation of a D-chart

Theorem 7.1: Every D-chart is re-
ducible.

Proof: We will use Theorem 6.1 and
show that (*) cannot appear in a D-chart.

If (*) does appear, then node a, which has

at least two direct descendants must be
created as the highest node in one of the
replacement structures of rules (2) and (3)
in Figure 7.1. These possibilities are
shown in Figure 7.3 (a) and (b) respectively.

(a)

Figure 7.3

Portions of a D-chart

In Figure 7.3(a), regions R 1 and R 2
are the sets of nodes generated by the two
nodes labeled <block> in Figure 7.1 (2).
Since paths in (*) are node disjoint, nodes
b and c must be found in R 1 and R2, respec-
tively. But it is elementary that there
can be no paths from R 1 to R 2 that do not
pass through a. Thus, no (*) exists in
this case.

In Figure 7.3(b), region R 4 represents
the nodes generated by the node <block> in
Figure 7.1 (3), and R 3 represents the nodes
accessible from a without entering R 4. We
note that any node labeled <block> in the
generation scheme of Definition 7.1 has
out-degree at most one. Thus~ b and c of
(*) must appear in R 3 and R4, respectively.
Again, we observe that a path from b to c
must pass through a, and we conclude the
theorem. []

Another simple example of the applica-
tion of Theorem 6.1 is the following.

Theorem 7.2: The flow graphs of those
FORTRAN programs whose transfers to pre-
vious statements are all caused by DO loops
are reducible.

Proof: If the flow graph for such a
program had subgraph (*), then the loop be-
tween nodes b and c would be part of a DO-
loop, and the paths from a to b and c can-
not be part of that DO loop. Since DO
loops may be entered at only one point, we
would conclude that b and c are the same

-248-

node. Thus, (*) does not appear in such
a flow graph. D

8. Conclusions

We have demonstrated that interval
analysis is a special case of a more gen-
eral reduction technique. This technique,
the application of two transformations:

T I

T 2

= removal of self-loops

= collapsing of a node with a
single direct ancestor into
that ancestor,

can be used for data flow analysis exactly
as interval analysis is used.

[8]

[9]

[lO]

We then showed that all and only the
non-reducible flow graphs have a subgraph [ii]
(*) consisting of at least three nodes,
a, b and c, with node disjoint paths from
the initial node to a, from a to b and c
and from b to c and back. (a may be the
initial node.) We used this result to
prove that certain kinds of programs have [12]
reducible flow graphs.

Re ferences [13]

[1] F.E. Allen, "Control Flow Analysis,"
SIGPLAN Notices, Vol. 5, pp 1-19,
July 1970.

[2] F.E. Allen, "Program Optimization," [14]
Annual Review in Automatic Program-

[3]

ming, Vol.5, Pergamon Press, New
York, 1969.

[4]

A.V. Aho and J.D. Ullman, The Theory [15]
of Parsing, Translation and Compiling,
Vol. II - Compiling, Prentice Hall, [16]
Englewood cliffs, N.J., 1973.

[5]

M. Schaefer, A Mathematical Theory of
Global Program Analysis, unpublished
notes, System Devel. Corp., Santa
Monica, Calif. 1971.

K. Kennedy, "A Global Flow Analysis
Algorithm," International Journal
o_~ Computer Mathematics, Vol. 3,
pp 5-15, December 1971.

[6] J. Cocke, "Global Common Subexpression
Elimination," SIGPLAN Notices , vol. 5,
pp 20-24, July 1970.

[7] J.E. Hopcroft and J.D. Ullman, "An

[17]

[18]

[19]

n log n Algorithm for Detecting Reduci-
ble graphs," to appear in Proc. 6 th
Annl. Princeton Conference on Infor-
mation Sciences and Systems, 1972.

J.D. Ullman, "Fast Algorithms for
the Elimination of Common Subexpres-
sions," manuscript in preparation.

D.E. Cooper, "Programs for Mechanical
Program verification," Machine In-
telligence 6, pp 43-62, American
Elsivier, New York, 1971.

J. Cocke and R.E. Miller, "Some
Analysis Techniques for Optimizing
Computer Programs," Proc. 2nd Intl.
conf. of System Sciences, Hawaii,
1969.

E. Engeler, "Structure and Meaning
of Elementary Programs," Symposium on
Semantics of Algorithmic Languages
(Engeler Ed.) Springer-Verlag, New
York, 1971.

E. Engeler, "Algorithmic Approxima-
tions," JCSS, vol. 5, pp 61-82, 1971.

A.V. Aho, R. Sethi, and J.D. Ullman,
"Code Optimization and Finite Church-
Rosser Systems," Computer Science
Laboratory, Princeton University,
TR 92, April 1971.

R. Tarjan, "Depth First Search and
Linear Graph Algorithms," Proc. IEEE
12th Annl. Symposium on_ Switching
and Automata Theory, Oct. 1971.

F.E. Allen, private communication.

E.W. Dijkstra, "Goto Statement Con-
sidered Harmful," CACM, vol. ii, no.
3, pp 147-148, March 1968.

J. Bruno and K. 8teiglitz, "The Ex-
pression of Algorithms by Charts,"
computer Science Laboratory, Prince-
ton University, TR88, July 1971.

D.E. Knuth and R.W. Floyd, "Notes on
Avoiding 'GOTO'Statements," TR-CS
148, Computer Science Department,
Stanford University, January 1970.

J.R. Rice, "The GOTO Statement Re-
considered," CACM, vol. ll, no. 8,
p. 538, and reply by E.W. Dijkstra,
p. 538 and p. 541, August 1968.

-249-

[20] D.C. Cooper, "Some Transformations
and Standard Forms of Graphs, with
Applications to Computer Programs,"
Machine Intelligence ~ pp 21-32,
American Elsivier, New York, 1968.

[21] T. Pavlidis, "Linear and Context
Free Graph Grammars," unpublished
memorandum, Princeton Univ., Dept.
of Elec. Eng., 1970.

-Z50-

