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Abstract this paper. 

The structure of programs can often 
be described by a technique called "inter- 
val analysis" on their flow graphs. Here, 
we characterize the set of flow graphs that 
can be analyzed in this way in terms of 
two very simple transformation on graphs. 
We then give a necessary and sufficient 
condition for analyzability and apply it 
to "goto-less programs," showing that they 
all meet the criterion. 

i. Introduction 

The application of many code improve- 
ment techniques depends on globally model- 
ing a program by a directed graph called a 
"flow graph." This model provides a compre- 
hensive view of the control flow of a pro- 
gram. Examples of improvement possible by 
flow graph analysis are the detection and 
removal of useless and redundant statements 
and the moving of loop independent compu- 
tation outside loops. Much of the analysis 
for this type of improvement hinges on the 
property of a flow graph called "reduci- 
bility," e.g. [1-5]. 

In this paper we give a definition of 
a flow graph and treat it as a graph 
theoretic construct. First, the "interval" 
analysis technique of Cocke and Allen [1,6] 
is reviewed and reducibility is defined. 
Next, we present a new technique for treat- 
ing flow graph reducibility, namely 
"collapsibility," and show it equivalent to 
reducibility. Finally, we give a structur- 
al characterization of non-reducible flow 
graphs and use this characterization to ob- 
tain an interesting result about flow graphs 
for "goto-less programs." 

2. Necessary Concepts from Graph Theory 

In this section we present the con- 
cepts from graph theory which are used in 

tThis work was supported by NSF grant 
GJ-1052. 

Definition 2.1: A directed graph G 
is a pair (N,E), where N is a set and E is 
a relation on N. The elements of N are 
called nodes; and the ordered pairs in E 
are called edges. 

Definition 2.2: Let G= (N,E) be a 
graph. A graph G' = (N',E') is said to be 
a subgraph of G if N' c_N and E' CEN (N'XN'). 

Example 2. I: 
graph G= ([1,2,3,4}, [ (i,i), 
(2,4), (3,4), (4,1), (4,3)]) 
graph S = ({3,4], [ (3,4) }) . 

Figure 2.1 depicts the 
(1,2), (2,3), 
and the sub- 

[3 

I 
(b) Subgraph S of G 

(a) Directed graph G 

Figure 2.1 

Example of directed graph and subgraph 

Definition 2.3: Let (n,m) be an edge. 
This edge is said to leave node n and enter 
node m. 

Definition 2.4: The in-degree of a 
node is the number of edges entering n and 
the out-degree of a node n is the number of 
nodes leaving n. 

Definition 2.5: A sequence of nodes 
(no,nl,...,nk) , k~0, is a path of lengthk 
from node n o to node n k if there is an edge 
which leaves node ni_ 1 and enters node n i 
for 1 < i <k. 

Definition 2.6: A cycle (or loop) is 
a path (no,nl,...nk) in which n o =n k. 

Definition 2.7: A graph is connected 
if, for each pair of distinct nodes (n,m), 
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there is a path from n to m and from m 
to n. 

Definition 2.8: A graph is rooted if 
there exists at least one node r such 
that there is a path to all nodes from r. 
The node r is called a root of the graph. 

Definition 2.9: Let (n~m) be an edge. 
Node n is called a direct ancestor of node 
m, and node m is called a direct descend- 
ant of node n. If there is a path from 
node n to node m, then n is said to be an 
ancestor of m,and m is a descendant of n. 

It is often useful to attach certain 
information to either the nodes or edges 
of a graph. Such information is called a 
labeling. 

Definition 2.10: Let (N,E) be a 
graph. A node labeling of the graph is a 
function f from N to a set A of node 
labels. An edge labeling of the graph is 
a function g from E to a set B of edge 
labels. A labeled graph refers to a graph 
with an associated labeling. 

Example 2.2: The graph in Figure 2.1 
is a rooted connected graph with node 1 as 
one of its roots. Node 1 is an ancestor 
of all other nodes in the graph. Node 2 
is a direct descendant of node I. The 
path (i~2,4,1) is a cycle. Node 3 has in- 
degree two and out-degree one. 

Definition 2.11: A tree T is a graph 
G = (N,E) with a specified node r in N such 
that: 

(a) Node r has in-degree zero. 

(b) Node r is a root of T. 

(c) All other nodes of T have 
in-degree one. 

Definition 2.12: An ordered tree is 
a tree with a linear order on the direct 
descendants of each node. 

We follow the convention of drawing 
trees with the root on top and having all 
edges directed downward. The direct 
descendants of a node of an ordered tree 
are always lineraly ordered from left to 

right in a diagram. 

Example 2.3: An ordered tree is 
represented in Figure 2.2. Node 4 is the 
first direct descendant of node 3 since it 
is the left-most direct descendant of node 

3. Node 3 is the second direct descendant 
of the root. 

Figure 2.2 

Example of a tree 

Definition 2.13: A spanning tree of 
a graph G is a subgraph of G which is a 
tree and contains all nodes in the graph. 

Definition 2.14: A flow grap h is a 
3-tuple F= (N,E~i)~ where (N,E) is a 
finite graph and i is a root of (N,E), 
called the initial node. 

Example 2.4: Figure 2.3(a) shows a 
flow graph with node 1 as the initial node. 
Figure 2.3(b) can not be a flow graph, 
since it has no root. 

\ 

(b) 

(a) 

Figure 2.3 

Examples of graphs 

3. Reducibilit Y 

A flow graph may be analyzed by con- 
structs called "intervals." 

Definition 3.1: Let G be a flow graph 
and n a node of G. The interval with 
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header n, denoted I(n), is constructed by 
the following algorithm. 

Algorithm A: [Cocke and Allen] 
val construction. 

Input: 
node n. 

Output: I(n) 

Method: 
Ai. 

A2. 

Inter- 

Flow graph G and designated 

Place n in I(n). 

If n' is a node not yet in 
I(n), n' is not the initial 
node, and all edges entering 
n' leave nodes in I(n), add 
n' to I(n). 

A3. Repeat step A2 until no more 
nodes can be added to I(n). 

[] 

It should be observed that although 
n' in step A2 may not be well determined, 
I(n) does not depend on the order in which 
candidates for n' are chosen. A candidate 
at one iteration of A2 will, if it is not 
chosen, still be a candidate at the next 
iteration. 

The next algorithm partitions a flow 
graph uniquely into disjoint intervals. 

Algorithm B: [Cocke and Allen] Par- 
tion of a flow graph into intervals. 

Input: A flow graph G= (N,E,i). 

Output: A set of disjoint intervals 
Ii,...,Ik, whose union is G. 

Method: 
BI. Establish a list H of header 

nodes and a list L of inter- 
vals. Initially, H consists 
only of i; and L is empty. 

B2. If H is empty, halt; L is the 
desired list of intervals. 

B3. Otherwise, choose n on H, and 
compute I(n) by Algorithm A. 

B4. Add I(n) to L. Delete n from 
H, but add to H any node 
which has a direct ancestor 
in I(n), but which is not al- 
ready in H or in one of the 
intervals on L. Return to B2. 

D 
Example 3.1: Let us consider the flow 

graph of Fig. 2.3(a). We begin with node 
i, the initial node, on list H. Algorithm 
A tells us to add node 2 to I(1), then to 
add nodes 3 and 4. No further nodes can 

be added to I(1). For example, node 5 has 
an edge entering from 6, which is not 
currently in I(1), and 6 has an edge en- 
tering from 5. 

We therefore place I(1) = [1,2,3,4] on 
L, and add 5 and 6 to H. Then, we compute 
I(5) = [5,7] and I(6) = [6,8]. Note that 1 
is not added to I(6), because it is the 
initial node. 

Two important properties of intervals 
[1,3,4] are: 

(i) every cycle within the interval 
includes the interval header, and 

(2) every edge entering a node of 
the interval from the outside 
enters the header. 

An interesting aspect of interval 
analysis is that the intervals of one flow 
graph can be considered as the nodes of 
another flow graph in which there is an 
edge between intervals I 1 and 12 if and 
only if I 1 ~ I2, and there is an edge from 
a node in I 1 to the header of 12. Further- 
more, this process may be repeatedly per- 

formed. 

Definition 3.2: Let G be a flow graph. 
Then I(G), the derived graph of G, is de- 
fined as follows. 

(a) The nodes of I(G) are the inter- 
vals of G. 

(b) There is an edge from the node 
representing interval I 1 to that 
representing 12 if there is any 
edge from a node in I 1 to the 
header of 12 and I I~ 12. 

(c) The initial node of I(G) is the 
interval containing the initial 
node of G. 

Definition 3.3: Flow graph G is call- 
ed irreducible if and only if I(G) =G. 

Definition 3.4: Let G be a flow 

graph. The sequence G=Go,Gi,G2,...,G n is 
called the derived sequence for G if 

Gi+ 1 = I(Gi) , and G n is irreducible. G n 
is called the limit flow graph of G and is 
denoted by ~(G). 

Definition 3.5: Flow graph G is call- 
ed reducible if and only if I(G) is a 
single node with no self-loop. Otherwise, 
it is called non-reducible. 
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Example 3.2: Let G o be the graph of 
Fig. 2.3(a). Then G 1 =I(Go) has three 
nodes, corresponding to the three inter- 
vals, [1,2~3,4~ [5,7~ and [6,8~, of G O . 
Let these nodes be nl, n 2 and n3, respec- 
tively. Then G l is shown in Fig. 3.1. 
There is an edge from n I to n2, for ex- 
ample, because of the edge in G o from 
node 3 to node 5. 

Figure 3.1 

4. Collapsibility 

We will define a pair of simple 
transformations that together have the 
same effect On flow graphs as the interval 
construction does. Moreover, it will be 
apparent that the data flow analysis sug- 
gested in [1,3,4,6], using interval con- 
struction~ could be equally well done if 
construction of the derived sequence of a 
graph G were replaced by repeated applica- 
tion of our transformations. 

There are various advantages to the 
approach taken here, compared with the 
interval analysis approach. For example 
[7] gives an 0(n logn) algorithm to deter- 
mine whether a flow graph is reducible. 
In comparison, the straightforward techni- 
que of constructing the derived sequence 
can take 0(n 2) steps if performed in the 
obvious way. consider, for example, a 
flow graph of n nodes of Fig. 4.1. Also, 
[8] gives an algorithm taking 0(n log n) 
bit vector operations to find common sub- 
expressions in a reducible graph. In com- 
parison~ the techniques of [1,4] can re- 
quire 0(n 2) bit vector operations. (Fig. 
4.1 again suffices.) 

Moreover~ these transformations seem 
to characterize the set of reducible flow 
graphs in a nice way, and they lead to a 
further characterization of reducibility 
that makes it clear in many cases that the 
control flow structure of a given program- 
ming language will yield only reducible 
flow graphs. For example, the D-charts 

developed from "goto-less programs" [16] are 
all reducible. We now give the definitions 
of the two transformations. 

Definition 4.1: Let G be a flow graph. 
Suppose n is a node in G with a self-loops 
that is~ an edge from n to itself. Trans- 
formation T l on node n is removal of this 
self-loop.~ 

Definition 4.2: Let n I and n 2 be nodes 
in G such that n 2 has the unique direct 
ancestor nl, and n 2 is not the initial node. 
Then transformation T 2 on node pair (nl,n 2) 
is merging nodes nl ~Tfd n 2 to one node, 
named nl/n2, and deleting the unique edge 
between them. Let n ~ n I and n ~ n 2. There 
is an edge from node n to nl/n 2 if there 
was previously an edge from n to n I (there 
cannot be one from n to n2) , and there is 
an edge from nl/n 2 to n if there was pre- 
viously one to n from either n I or n 2 or 
both. nl/n 2 has a self-loop if there was 
an edge from n 2 to n I. 

Figure 4.1 

Flow Graph Requiring 0(n 2) Steps for Inter- 
val Analysis 
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Example 4.1: Figure 4.2 shows a flow 
graph which is transformed into a single 
node by one application of T 1 and two of 
T 2. Although T 2 is not applicable to the 
original graph, it becomes applicable 
after use of T I. 

) 

Figure 4.2 

Applications of T 1 and T 2 

Various authors have considered simi- 
lar transformations~ but from the point o9 
view of generating graphs rather than 
analyzing (i.e., reducing) them. Cooper 
[9] considers three generating rules, one 
of which is the inverse of T 1 (i.e., addi- 
tion of self-loops). The other two to- 
gether are equivalent to the inverse of T 2. 
It is shown in [9] that together with a 
construction which is the inverse of "node 
splitting" [ I0] , these generating rules 
are capable of building an arbitrary flow 
graph. 

Engeler [ii,12] considers "normal 
form flow charts," which are built by two 
generating rules, one the inverse of T 1 
and the other equivalent to the inverse of 
T2, restricted so that the two nodes in- 
volved have disjoint sets of direct descend- 
ants. Thus~ the normal form flow charts 
are a subset of the reducible graphs. They 
are characterized as trees with back edges. 

We now proceed to develop useful 
properties of the transformations T 1 and 

T 2 • 

Definition 4.3: A flow graph is call- 
ed collapsible if and only if it can be 
transformed into a single node with no 
self-loop by repeated application of T 1 and 
T 2. Otherwise, it is called non-collapsi- 
ble. 

Example 4.2: The flow graph of Fig- 
ure 4.3 is non-collapsible. There are no 
self-loops, and no node has a unique en- 
tering edge, so neither T 1 nor T 2 is 
applicable. On the other hand, the flow 
graph of Figure 4.2 is collapsible. 

Figure 4.3 

Example of a non-collapsible flow graph 

T 1 and T 2 have a useful property; 
they form a "finite Church-Rosser" trans- 
formation [13]. 

Definition 4.4: Let R be a relation 
on a set S. Let xRy denote (x,y) eR. The 

_ !(y,x)I (x,y) eR}. R inverse of R, R -1, s 1 
is symmetric if R = R is reflexive 
if (x,x) gR for all xeS. R is transitive 
if xRy and yRz imply xRz for all x,y,z in S. 

Definition 4.5: If R 1 and R 2 are 
relations on S, then the composition of R 1 
and R2, denoted RiR2, is ((x,z) I for some 
y in S, XRlY and YR2z}. The reflexive 
closure of R, denoted R #, is RU[(x,x) IxcS]. 
The transitive closure of R~ denoted R +, 
isRiUR2UR3U..., where R 1 =R and R i =RR i-I 

for i> 2. The reflexive transitive 
closure of R, denoted R*,^is R#UR +. The 
completion of R, denoted R, is [ (x,y) IxR*y 
and there is no z such that yRz]. 

Definition 4.6: A pair (S,=), where 
S is a set and = is a relation on S is 
said to be finite if for each p in S, 
there is a constant kp such that if 
p~q,t then iSkp. That is, there is a 
bound on the number of times ~ can be 
applied in succession, beginning with any 
element p. We say (S,=) is finite Church- 
Rosser (FCR) if it is finite, and ~ is a 

t We place the symbols ^,#,*~+ and i above 
the relation symbol = instead of at the 
upper right corner, as indicated for rela- 
tion R in Definition 4.5. 
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function, i.e., p ~ q and p ~ r implies 
q=r. If set S is understood, = is called 
an FCR transformation. 

The following theorem gives a test 
for the FCR property which is simpler to 
apply than Definition 4.6. It is proved 
in [13]. 

Theorem 4.1: Let ~ be a relation on 
set S. Then (S,=) if FCR if and only if 
it is finite, and for all p in S, if 
p = p~ and p=p2, then there is some q 

such ~hat Pl ~ q and P2 ~ q" 

Definition 4.7: Let S be the set of 
flow graphs. We define the relation ~, 
i = 1 or 2, by g ~ g' if and only if g can 
be transformed into g' by an application 
of T i. Let = denote the union of ~ and ~. 
The reflexive closure, k-fold products 
transitive closure, reflexive transitive 
closure, and the completion of = are re- 

. ~ k + * _ & speetively given Dy ~, =, =, ~, ane • 

Theorem 4.2: (S,=) is FCR. 

Proof: We use Theorem 4.1 and note 
that in this case, we will always be able 
to find q such that Pl ~ q and P2 ~ q" 

(Finiteness property). Let g be a 
flow graph with n nodes. Each applica- 
tion of T 1 or T 2 deletes at least one edge. 
Thus, = is finite. 

("Commutativity" property). Suppose 

g ~ gl and g ~ g2, where gcS and 
i,je{l,2}. There are three distinct cases 
to consider. 

Case i: (i= j =I). Suppose T 1 is 
applied to node n I to yield gl and to node 

n 2 to yield g2" If n I =n2, then gl =g2" 
If n l~n2, then T 1 may be performed on n 2 
in gl and on n I in g2 to yield equal graphs. 

Thus, g = gl ~ h and g ~ g2 ~ h, where h 
is the graph resulting after applying T 1 

to nodes n I and n 2 in g. 

Case 2: (i= j =2). Suppose T 2 is 
applied to node pair (nl,n 2) in g to yield 
gl, and to node pair (n3,n 4) in g to yield 

g2" If n I =n 3 and n 2 =n4, then gl =g2" 
If all four nodes are distinct, then apply 

T 2 to (n3,n 4) in gl, and apply T 2 to 
(nl,n 2) in g2 to yield equal graphs. Now 
suppose neither of the previous subcases 
holds. If n I =n 3 and no other equalities 
hold, then Figure 4.4 shows the subgraph 
of interest. 

F i g u r e  4 . 4  

Applications of T 2 

Otherwise~ if n 2 =n 3 and no other equali- 
ties hold, then Figure 4.5 shows the sub- 
graph of interest. 

% 

Figure 4.5 

Applications of T 2 

# 
Thus, g = gl ~ h and g = g2 = h, where h 
is the graph resulting after applying T 2 

to (nl,n 2) and to (n3,n4) in g. 

The case in which n I =n 4 and no other 
equalities hold is symmetric to the case 
n 2 =n 3 above. The case n I =n 4 and n 2 =n 3 
is impossible, because then the flow 
graph has two isolated nodes, and hence 
must consist of only n I and n 2. But one 
of these must be the initial node, and T 2 
is thus either not applicable to (nl,n2) 
or not applicable to (n3,n4). Since we 
have assumed n l~n 2 and n 3 /n4, and n 2 may 
not be n 4 unless .n l=n3, we have consider- 
ed all possibilities. 
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Case 3: (i~ j). Suppose T 2 is 
applied to node pair (nl,n2)in g to yield 

gl' and T 1 is applied to node n 3 in g to 
yield g2" Clearly, n 2 ~n 3. Consequently, 
T 1 and T 2 do not "interfere;" T 1 may be 
applied to node n 3 in gl, and T 2 may be 
applied to node pair (nl,n2) in g2 to 
yield equal graphs. Thus, g = gl = h and 
g ~ g2 ~ h, where h is the result of 

applying T 2 to (nl,n2) and T 1 to n 3. 

5. Equivalence of Reducibility 
and Collapsibility 

Theorems 5.1 and 5.2 establish that 
a flow graph is reducible if and only if 
it is collapsible. 

Definition 5.1: Let the first n 
nodes added to an interval I(h) in Algo- 
rithm A be called a partial interval. We 

assume, of course, that the interval I(h) 
has at least n nodes, and n> i. 

Le~na 5.1: Let G be a flow graph. 
Then G ~ I(G). 

Proof: It suffices to show that a 
partial interval is collapsible to its 
header, and that connections (edges) be- 
tween a partial interval and the other 
nodes in the flow graph are maintained. 
Thus, constructing the derived graph I(G) 
of flow graph G corresponds exactly to 
collapsing the intervals of G. 

Inductive Hypothesis: A partial in- 
terval of n nodes is collapsible to its 
header, and edges between the partial in- 
terval and the other nodes of the flow 
graph are preserved. That is, edges leav- 
ing the partial interval to another node 
outside the partial interval remain. The 
header will have no self-loops. 

Basis: The first node added to an 
interval is the header node. The only 
collapsing possible is removal of a self- 
loop if present. This possible applica- 

tion of T 1 will not destroy any edge to 
another node in the graph outside the 
partial interval. 

Inductive Step: Assume that the in- 
ductive hypothesis is true for a partial 
interval of n nodes, and consider the addi- 
tion of another node m to the partial in- 
terval. This new node only has edges 
entering it from nodes in the partial in- 
terval. Since the first n nodes of the 

partial interval are collapsible by the 
induction hypothesis, there will be ex- 
actly one edge from the collapsed partial 
interval to m. Thus~ T 2 is applicable. 
Edges from m to nodes outside the partial 
interval now leave the node for the 
collapsed partial interval. If there is 
a self-loop introduced by the application 

of T2, it can be removed by T I. 
[] 

As an immediate consequence of 
Lemma 5.1, we have the following. 

Theorem 5.1: If a flow graph is re- 
ducible, then it is collapsible. 

Proof: If I(G) = 0 ~, then G ~ 0, is 
by Lemma 5.1, iterated. 

The converse of Theorem 5.1 is easy 

to prove. 

Theorem 5.2: If a flow graph is 
collapsible, then it is reducible. 

^ 

Proof: Suppose G = 0, and let 
I(G) =G'. By Lemma 5.1 iterated,^G ~ G'. 

We must have G' = 0. (For if G' = G", 
then G ~ G". Since & is a function, and 

^ 

G = 0, we have G" = 0.) 

If G' ~0, then since G' ~ 0, T 1 or T 2 
is applicable to G'. We have assumed 
I(G') =G', so every node appears on the 
header list when Algorithm B is applied to 
G'. If T 1 is applicable to node n, then 
I(n) does not have a self-loop in I(G'), 
sO I(G') ~G' If T 2 is applicable to node 

pair (n~,n2) , then n 2 is in I(nl) , so 
again, I(G') ~I(G). We conclude that 

G'=0. 
D 

6. Characterization Theorem for 
Non-Reducible Flow Graphs 

We will now show the existence of a 
certain subgraph in all and only the non- 
reducible flow graphs. Prior to showing 
this result, we present the concept of a 

"depth-first spanning tree" of a flow 

graph. 

Definition 6.1: A depth-first span- 
nin~ tree (DFST) of a flow graph G is a 
spanning tree that is constructed by Algo- 

rithm C. 

t Let 0 represent the graph with one node 

and no edges. 
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Algorithm C: DFST of a flow graph. 
Input: Flow graph G. 
Output: DFST of G. 
Method: 

Ci. The root of the DFST is the 
initial node of G. Let this 
node be the node n "under 
consideration." 

C2. Perform step C3 until it is 
no longer applicable. 
Then perform C4 and C5. 

C3. If the node n under consider- 
ation has a direct descendant 
x not already on the DFST, we 
select node x as the right- 
most direct descendant of n 
so far found. If this step 
is successful, node x be- 
comes the node n under con- 
sideration. 

C4. If the node under considera- 
tion is the root, then halt. 

C5. Otherwise, back up the DFST 
one node toward the root and 
consider this node by going 
to step C2. 

Definition 6.2: We define the spine 
of a DFST T to be the sequence of nodes 

(nl,n2,...,nk) such that n I is the root of 
T, ni+ 1 is the rightmost direct descendant 
of ni, 1 <i <k-l, and n k has no direct 
descendants. 

We can add to the DFST T of a flow 
graph G the edges of G which are not 
edges of T. Conventionally, we will show 
edges of T as solid lines and edges of G 
not in T by dashed lines. An important 
property of DFST's is the following. 

Lemma 6.1: [14] Let G = (N,E,i) be 
a flow graph and T = (N,E') one of its 

DFST's. If there is an edge (nl,n2) in 
E- E', then either: 

(i) n I is a descendant of n 2 in T, 

(2) n I is an ancestor of n 2 in T, 

(3) n I = n2, or 
t 

(4) n I is to the right of n 2 in T. 

% The notion of "to the right" has only 
been defined for nodes with the same 
direct ancestor. We can extend it natural- 
ly by saying that if n is to the right of 
m, then all n's descendants are to the 
right of all of m's descendants. 

Example 6.1: Let G be the flow graph 
of Figure 6.1(a). If we consider nodes 
in the order 1,2,3,4, then back to 3, then 
to 5, we obtain the DFST of Figure 6.1(b). 
The spine is 1,2,3,5. 

D 

% 

b 

J I  

i i" 
I 

(b) 

Figure 6.1 

Example of Algorithm C 

Definition 6.3: Let (*) denote any 
of the gra~s represented in Figure 6.2 
where the wiggly lines denote node dis- 
joint (except for the endpoints, of court) 
paths; a,b,c and i are distinct, except 
that a and i may be the same. 

(*) : 

Figure 6.2 

Lemma 6.2: The absence of subgraph 
(*) in a flow graph is preserved by T 1 and 

T 2 • 

Proof: Let G be a flow graph and let 

n I and n 2 be any two nodes in G. We ob- 
serve that if a path does not exist be- 

tween n I and n2, then neither T 1 nor T 2 
will create such a path; neither will they 
make two paths be node disjoint if they 
were not so already. 

Theorem 6.1: If a flow graph is non- 
reducible, then it has a subgraph of form 
(*). 

Proof: We prove the theorem by induc- 
tion on n, the number of nodes of G. 
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Inductive Hypothesis: Flow graph G 
with n nodes has a subgraph of form (*). 

Basis: (n= 3). This is an elemen- 
tary consideration of the three cases in 
Figure 6.3, with the initial nodes at the 
top. 

Figure 6.3 

Indugtive Step: (n> 3). Assume that 
the inductive hypothesis is true, and con- 
sider a non-reducible flow graph G with n 
nodes. By Lemma 6.2, we may assume with- 
out loss of generality that T 1 is not 
applicable to G. That is, if G can become 

G' under repeated application of Tie and 
we can show that G' has (*), then we will 
also have shown that G has (*). By the 
inductive hypothesis and Lemma 6.2, it 
follows that T 2 is not applicable to G. 
Thus, we may assume that G is irreducible. 

Let T be a DFST for G, and let the spine 

of T be (nl,n2,...,nk). 

We claim that k > 3. The initial node 
n I is on the spine. Now consider the 
rightmost direct descendant of the root, 

namely n 2. Surely n 2 exists, since n> i. 
Node n 2 must have at least two entering 
edges in G, since G is irreducible (else 
T2 would be applicable). By Lemma 6.1, 
other entering edges must come from 
descendants of n 2. Thus, n 2 must have at 
least one direct descendant, n 3. 

Now find the highest number d~ such 
that n d has an edge (in G but not T) to 
some n i~n I on the spine, with i <d. n d 
always exists because, in particular, n 2 
has such an edge entering. Let b be the 
largest number in the range 1 <b < d, such 
that there is an edge from n d to n b in G. 

Find (if possible) the first node n a 
on the spine starting from the root with a 
forward edge (in G but not in T) entering 
a node no, such that n c is below n b on the 

spine and equal to or below n d. Figure 
6.4 depicts this situation. Notice that 

nodes na, nb, and n c correspond to nodes 
a,b, and c in (*), and n I corresponds to 
i. 

, ) 

! 

I 

Figure 6.4 

Suppose that there is no such edge 

(na,nc) in G. Let us consider the sub- 
graph H of G consisting of the nodes on 
the spine from n b to nd, together with 
their connecting edges in G. There are no 
edges of G entering a node in H from above 
other than to n b by assumption, and there 
are no edges of G entering a node in H 
from below n d on the spine since (nd,nb) 
is the "lowest" backward edge. Further- 
more, by Lemma 6.1 no other edges enter 
nodes in H. Thus, any reduction by T 1 or 
T 2 taking place in H, with n b treated as 
the initial node, will also be a valid re- 
duction in G. Since G is irreducible, we 
conclude that H is likewise irreducible. 
Finally, since b > i, the induction hy- 
pothesis applies to H. This ends the in- 
duction. 

But, since H has a subgraph of form 
(*) with initial node nb, it is easy to 
show that G has a subgraph (*) with initial 

node n I by adding the path from n I to n b. 

D 
Corollary: If G is irreducible, then 

it has a subgraph (*) in which the path 
from a to c i~ a single edge. 

[] 

Theorem 6.1 is stronger than a pre- 
viously known result [4,15], which states 
that every non-reducible graph has a 
double entry loop. For example, Figure 6.5 
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shows a graph with a double entry loop 
which not only is reducible~ but which is 
a "D-chart." In the next section we use 
Theorem 6.1 to prove that all D-charts 
are reducible. 

Figure 6.5 

Theorem 6.2: If a flow graph G has 
a subgraph (*), then G is non-reducible. 

Proof: We prove the result by the 
number of nodes~ n, in G. The basis 
is again trivial. For the induction, sup- 
pose that G of n> 3 nodes is reducible, 
but has a subgraph (*). Let G' be the 
graph formed by applying T 1 to G until no 
longer possible. It is easy to see that 
G' also contains (*), and by Theorem 4.2 
is reducible. Therefore T 2 is applicable 
to some node pair (nl,n 2) of G' Let n 2 
be the direct descendant of nl, and let 
G" be the result of applying T 2 to G'. We 
consider cases, depending on the relation 
of n 2 to (*). 

Case i: n 2 is not one of the nodes 
represented by (*), including the paths 
shown. It is straightforward in this case 
to show that (*) is present in G". 

Case 2: n 2 is a of (*). Then n I must 
be the predecessor of a on the path from i 
to a. Again, (*) exists in G". 

Case 3: n 2 is b or c. Since b and 
c each have at least two distinct prede- 
cessors, this case is impossible. 

Case 4: n 2 is a node on one of the 
paths of (*). Then n I is on the same path 
(possibly an endpoint). (*) clearly 
exists in G". 

Since G" has one fewer node than G, 
the inductive hypothesis applies to G". 
Therefore G" is non-reducible. But by 
Theorem 4.2, since G ~ G", and G ~ 0, it 

follows that G" ~ 0, i.e., G" is reducible. 
We have a contradiction, and conclude that 
G is non-reducible. 

7. Applications of the 
Characterization Theorem 

D-charts [16-19] or "block form pro- 
grams" [20] are a restricted class of flow 
charts which can be implemented by a pro- 
gramming language having no explicit "go- 
to" statements. They are as powerful as 
general flow charts provided additional 
variables called "flags" are introduced to 
represent a history of control flow [17]. 

We define D-charts by informal "graph 
grammars." (See [21], e.g.) The graph 
grammars we use are similar to the grammars 
for formal languages, except that the pro- 
duction rules indicate the replacement of 
nodes in a labeled graph by subgraphs. 
For example, Figure 7.1 presents a simple 
definition of D-charts. The start symbol 
is <block>. Rule (3) in Figure 7.1 shows 
that a <block> may be replaced by an "iter- 
ation" structure, (while-do), and rule (2) 
enables possible replacement of a <block> 
by an "if-then-else" structure. 

(i) <block> 

( 2 ) <block> 

( 3 ) <block> 

<block> 

<block> 

<blo~lock> 

~<block> 

(4) <block> - O 

Figure 7.1 

Definition 7.1: A D-chart is a flow 
graph which can be produced by the follow- 
ing rules. 

(i) Begin with a single node, the 
initial node, labeled <block>. 

(2) Replace, at will, a node n, 
labeled <block>, by one of the 

structures on the right of the ~ in Fig- 
ure 7.1. Edges entering n now enter the 
highest node in each of the replacement 
structures. Edges leaving n now leave the 
lowest node in structures i, 2 and 4 and 
the higher node in structure 3. 
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(3) If the node replaced is the 
initial nodes the highest replacing node 
becomes initial. 

(4) Terminate the generation process 
if there are no nodes labeled <block>. 
Otherwise return to step (2). 

.Example 7. i: The sequence of graphs 
shown in Figure 7.2 illustrate the genera- 
tion of a D-chart. Figures 7.2(b)~ (c) 
and (d) are produced by rules (2), (i) 
and (3), respectively. Figure 7.2(e), the 
D-chart is produced by three applications 
of rule (4). 

m 

<block> ~ A ~  

(a) 

<block> <block> 

(b) 

io OCk 
(c) <blo~ " 

(d) 

(e) 

F i g u r e  7.2 

Generation of a D-chart 

Theorem 7.1: Every D-chart is re- 
ducible. 

Proof: We will use Theorem 6.1 and 
show that (*) cannot appear in a D-chart. 

If (*) does appear, then node a, which has 

at least two direct descendants must be 
created as the highest node in one of the 
replacement structures of rules (2) and (3) 
in Figure 7.1. These possibilities are 
shown in Figure 7.3 (a) and (b) respectively. 

(a) 

Figure 7.3 

Portions of a D-chart 

In Figure 7.3(a), regions R 1 and R 2 
are the sets of nodes generated by the two 
nodes labeled <block> in Figure 7.1 (2). 
Since paths in (*) are node disjoint, nodes 
b and c must be found in R 1 and R2, respec- 
tively. But it is elementary that there 
can be no paths from R 1 to R 2 that do not 
pass through a. Thus, no (*) exists in 
this case. 

In Figure 7.3(b), region R 4 represents 
the nodes generated by the node <block> in 
Figure 7.1 (3), and R 3 represents the nodes 
accessible from a without entering R 4. We 
note that any node labeled <block> in the 
generation scheme of Definition 7.1 has 
out-degree at most one. Thus~ b and c of 
(*) must appear in R 3 and R4, respectively. 
Again, we observe that a path from b to c 
must pass through a, and we conclude the 
theorem. [] 

Another simple example of the applica- 
tion of Theorem 6.1 is the following. 

Theorem 7.2: The flow graphs of those 
FORTRAN programs whose transfers to pre- 
vious statements are all caused by DO loops 
are reducible. 

Proof: If the flow graph for such a 
program had subgraph (*), then the loop be- 
tween nodes b and c would be part of a DO- 
loop, and the paths from a to b and c can- 
not be part of that DO loop. Since DO 
loops may be entered at only one point, we 
would conclude that b and c are the same 
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node. Thus, (*) does not appear in such 
a flow graph. D 

8. Conclusions 

We have demonstrated that interval 
analysis is a special case of a more gen- 
eral reduction technique. This technique, 
the application of two transformations: 

T I 

T 2 

= removal of self-loops 

= collapsing of a node with a 
single direct ancestor into 
that ancestor, 

can be used for data flow analysis exactly 
as interval analysis is used. 

[8] 

[9] 

[lO] 

We then showed that all and only the 
non-reducible flow graphs have a subgraph [ii] 
(*) consisting of at least three nodes, 
a, b and c, with node disjoint paths from 
the initial node to a, from a to b and c 
and from b to c and back. (a may be the 
initial node.) We used this result to 
prove that certain kinds of programs have [12] 
reducible flow graphs. 
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