
Infrastructure

�
Front End

�
Optimizer

�
Back End

�

Chapter 10

Scalar Optimizations

10.1 Introduction

Code optimization in a compiler consists of analyses and transformations in-
tended to improve the quality of the code that the compiler produces. Data-flow
analysis, discussed in detail in Chapter 9, lets the compiler discover opportu-
nities for transformation and lets the compiler prove the safety of applying the
transformations. However, analysis is just the prelude to transformation: the
compiler improve the code’s performance by rewriting it.

Data-flow analysis serves as a unifying conceptual framework for the classic
problems in static analysis. Problems are posed as data-flow frameworks. In-
stances of these problems, exhibited by programs, are solved using some general
purpose solver. The results are produced as sets that annotate some form of
the code. Sometimes, the insights of analysis can be directly encoded into the
ir form of the code, as with ssa form.

Unfortunately, no unifying framework exists for optimizations—which com-
bine a specific analysis with the rewriting necessary to achieve a desired im-
provement. Optimizations consume and produce the compiler’s ir; they might
be viewed as complex rewriting engines. Some optimizations are specified with
detailed algorithms; for example, dominator-based value numbering builds up a
collection of facts from low-level details (§8.5.2). Others are specified with high-
level descriptions; for example, global redundancy elimination operates from a
set of data-flow equations (§8.6), and inline substitution is usually described
as replacing a call site with the text of the called procedure with appropriate
substitution of actual arguments for formal parameters (§8.7.2). The techniques
used to describe and implement transformations vary widely.

403

404 CHAPTER 10. SCALAR OPTIMIZATIONS

Optimization as Software Engineering

Having a separate optimizer can simplify the design and implementation of
a compiler. The optimizer simplifies the front end; it can generate general-
purpose code and ignore special cases. The optimizer simplifies the back end;
it can focus on mapping the ir version of the program to the target machine.
Without an optimizer, both the front end and back end must be concerned
with finding opportunities for improvement and exploiting them.

In a pass-structured optimizer, each pass contains a transformation and
the analysis required to support it. In principle, each task that the optimizer
performs can be implemented once. This provides a single point of control and
lets the compiler writer implement complex functions once, rather than many
times. For example, deleting an operation from the ir can be complicated. If
the deleted operation leaves a basic block empty, except for the block-ending
branch or jump, then the transformation should also delete the block, and
reconnect the block’s predecessors to its successors, as appropriate. Keeping
this functionality in one place simplifies implementation, understanding, and
maintenance.

From a software engineering perspective, the pass structure, with a clear
separation of concerns, makes sense. It lets each pass focus on a single task.
It provides a clear separation of concerns—value numbering ignores register
pressure and the register allocator ignores common subexpressions. It lets the
compiler writer test passes independently and thoroughly, and it simplifies
fault isolation.

The optimizer in a modern compiler is typically structured as a series of
filters. Each filter, or pass, takes as its input the ir form of the code. Each pass
produces as its output a rewritten version of the code, in ir form. This structure
has evolved for several practical reasons. It breaks the implementation into
smaller pieces, avoiding some of the complexity that arises in large, monolithic
programs. It allows independent implementation and testing of the passes,
which simplifies development, testing, and maintenance. It allows the compiler
to provide different levels of optimization by activating a different set of passes
for each level. Some passes execute once; others may execute several times in
the sequence.

One of the critical issues in the design of an optimizer, then, is selecting a
set of passes to implement and an order in which to run them. The selection of
passes determines what specific inefficiencies in the ir program are discovered
and improved. The order of execution determines how the passes interact.

For example, in the appropriate context (r2 ≥ 0 and r5 = 4), the optimizer
might rewrite mult r2,r5 ⇒ r17 as lshiftI r2,2 ⇒ r17. This improves the
code by reducing demand for registers and replacing a potentially expensive op-
eration, mult, with a cheap operation, lshiftI. In most cases, this is profitable.
If, however, the next pass relies on commutativity to rearrange expressions, then
replacing a multiply with a shift forecloses an opportunity (multiply is commuta-

JANUARY, 2003

10.2. A TAXONOMY FOR TRANSFORMATIONS 405

tive; shift is not). To the extent that it makes later passes less effective, it may
hurt overall code quality. Deferring the replacement of multiplies with shifts
may avoid this problem; the context needed to prove safety and profitability for
this rewrite is likely to survive the intervening passes.

Sometimes, a pass should be repeated multiple times in the sequence. For
example, eliminating dead, or useless, code benefits the compiler in several
ways. It shrinks the ir program, so later passes have less code to process. It
eliminates some definitions and uses, so it may make the results of data-flow
analysis sharper. Finally, it improves the resulting code—its actual purpose—
by removing operations whose execution cannot be noticed. Because of the first
two effects, dead-code elimination is often run early in compilation. For the
final effect, it should run late in the compilation. Some passes are known to
make code useless, so might also be run after such a pass. Thus, compilers often
run dead code elimination several times during a compilation.

This chapter presents a selected set of transformations. The material is or-
ganized around a taxonomy of transformations, presented in §10.2. Section 10.3
presents example optimizations for those parts of the taxonomy that are not well
covered in other chapters. The advanced topics section briefly discusses three
subjects: combining optimizations for better results, optimizing for objective
functions other than speed, and choosing an optimization sequence.

10.2 A Taxonomy for Transformations

The first hurdle in building an optimizer is conceptual. The literature on op-
timization describes hundreds, if not thousands, of distinct algorithms for im-
proving ir programs. The compiler writer must select a subset of these trans-
formations to apply. Reading the literature provides little help in the decision
process, since most of the authors recommend using their own transformations.

To organize the space of optimizations, we use a simple taxonomy that cat-
egorizes transformations by the effect that they have on the code. The tax-
onomy is, of necessity, approximate. For example, some transformations have
more than one effect. At a high level, we divide the transformations into two
categories: machine independent transformations and machine dependent trans-
formations.

Machine-independent transformations are those that largely ignore the de-
tails of the target machine. In many cases, the profitability of a transformation
actually depends on detailed machine-dependent issues, but the implementation
of the transformation ignores them.

For example, when local value numbering finds a redundant computation, it
replaces it with a reference. This eliminates a computation, but it may increase
the demand for registers. If the increased demand forces the register allocator
to spill some value to memory, the cost of the memory operations probably
exceeds the savings from eliminating the operation. However, value numbering
deliberately ignores this effect because it cannot accurately determine whether
a value must be spilled.

Machine-dependent transformations are those that explicitly consider details

SUBMITTED TO MORGAN-KAUFMANN

406 CHAPTER 10. SCALAR OPTIMIZATIONS

Machine Independent
�����������

�
�
�
�
�
�
�
�
�
�
�
�
�
���

�

�
�
�
�
�
�
�
�
�
�
�
�
�
��

����������	
eliminate useless

& unreachable code

code motion

specialize

enable other
transformations

eliminate
redundancy

useless-code elimination
unreachable-code

elimination
algebraic identities

lazy code motion
constant propagation

strength reduction
constant propagation
peephole optimization

inline substitution
cloning

algebraic reassociation

value numbering
lazy code motion

common-subexpression
elimination

Figure 10.1: Machine-Independent Transformations

of the target machine. Many of these transformations fall into the realm of code
generation, where the compiler maps the ir form of the code onto the target
machine. However, some machine-dependent transformations fall in the realm of
the optimizer. (Most are beyond the scope of this chapter, however.) Examples
include transformations that rearrange the code to improve its behavior with
regard to cache memory or that attempt to expose instruction-level parallelism.

While the distinction between these two categories is somewhat artificial, it
has long been used as a first cut at classifying transformations.

10.2.1 Machine-Independent Transformations

In truth, there are a limited number of “machine-independent” ways that the
compiler can improve the program. We will concern ourselves with five effects,
shown in Figure 10.1. They are

• eliminate useless or unreachable code: If the compiler can prove that
an operation is either useless or unreachable, it can eliminate the op-
eration. Methods include useless-code elimination and unreachable-code
elimination (§10.3.1), simplification of algebraic identities (part of local
value numbering in §8.3.2), and sparse conditional constant propagation
(§10.4.1) which discovers and removes some kinds of unreachable code.

• move an operation to a place where it executes less frequently: If the com-
piler can find a place where the operation will execute less frequently and
produce the same answer, it can move the operation there. Methods in-

JANUARY, 2003

10.2. A TAXONOMY FOR TRANSFORMATIONS 407

Machine Dependent
����������� �

����������
Special features Latency Resources

instruction selection instruction scheduling register allocation

Figure 10.2: Machine Dependent Transformations

clude lazy code motion (§10.3.2) and constant propagation (§9.2.4, 10.3.3,
and 10.4.1) which moves a computation from run time to compile time.

• specialize a computation: If the compiler can understand the specific con-
text in which an operation will execute, it can often specialize the code to
that context. Methods include operator strength reduction (§10.3.3), con-
stant propagation (§9.2.4, 10.3.3, and 10.4.1), and peephole optimization
(§11.4.1).

• enable other transformations: If the compiler can rearrange the code in
a way that exposes more opportunities for other transformations, it can
improve the overall effectiveness of optimization. Methods include inline
substitution (§8.7.2), cloning (§8.7.1 and §12.4.2), and algebraic reassoci-
ation (§10.3.4).

• eliminate a redundant computation: If the compiler can prove that a com-
putation is redundant, it can replace the computation with a reference
to the previously computed value. Methods include local value number-
ing (§8.3.2), superlocal value numbering (§8.5.1), dominator-based value
numbering (§8.5.2), and global common-subexpression elimination (§8.6).

We have already seen optimizations in each of these categories. Section 10.3
fills in the machine-independent part of the taxonomy more fully by presenting
additional optimizations in each category, except redundancy elimination, an
area already explored to a reasonable depth in Chapter 8.

Some techniques fit into several categories. Lazy code motion achieves both
code motion and redundancy elimination. Constant propagation achieves code
motion—by moving operations from run time to compile time—and specializa-
tion. In at least one form (see §10.4.1), it identifies and eliminates certain kinds
of unreachable code.

10.2.2 Machine-Dependent Transformations

In “machine-dependent” transformations, the effects that the compiler can ex-
ploit are more limited. It can

• take advantage of special hardware features: Often, processor architects
include features that they believe will help program execution. Such fea-
tures include specialized operations—like a load operation that bypasses

SUBMITTED TO MORGAN-KAUFMANN

408 CHAPTER 10. SCALAR OPTIMIZATIONS

the cache hierarchy, a branch operation that tells the prediction hard-
ware not to track its results, or an advisory prefetch operation. If the
compiler can make effective use of these features, they will, indeed, speed
program execution. Recognizing opportunities to use these features some-
times takes additional work. The compiler writer might add new trans-
formations to the optimizer or use a more complex instruction selection
process. Some of this work falls into the realm of instruction selection,
described in depth in Chapter 11.

• manage or hide latency: In some cases, the compiler can arrange the final
code in a way that hides the latency of some operations. For example,
memory operations can have latencies in the tens or hundreds of cycles. If
the target machine supports either a prefetch operation or a non-blocking
load, the compiler may find a schedule that issues a memory operation
far enough in advance of its use to hide the latency. Rearranging the
iteration space of a loop, or changing the packing of values into mem-
ory can improve the run-time cache locality and help to manage latency
problems by reducing the number of memory operations that miss in the
cache. Instruction scheduling, described in detail in Chapter 12, addresses
some of these problems. The compiler writer may, however, need to add
transformations that directly address these issues.

• manage bounded machine resources: Another source of complexity in
compilation comes from the fact that the target machine has bounded
resources—registers, functional units, cache memory, and main memory.
The compiler must map the needs of the computation onto the bounded
resources that the machine provides and, when the computation needs
more resources than are available, the compiler must rewrite the code in
a way that reduces its resource needs. For example, register allocation
maps a computation’s values to the target machine’s register set; Chap-
ter 13 describes this problem in detail.

Figure 10.2 shows the machine-dependent portion of the taxonomy. Because
an example of each of these effects is the subject of a separate chapter, we omit
them from this chapter.

10.3 Example Optimizations

This section describes additional optimizations in four of the five categories
that we identified as machine-independent transformations. Each is intended to
improve performance on a scalar uniprocessor machine. The selection of opti-
mizations is illustrative, rather than exhaustive. However, each transformations
is a good example of how to achieve that specific effect.

10.3.1 Eliminating Useless and Unreachable Code

Sometimes, a program contains computations that have no externally visible
effect. If the compiler can determine that a given operation has this property,

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 409

it can remove the operation from the program. In general, programmers do
not intentionally create such code. However, it arises in most programs as the
direct result of analysis and optimization in the compiler, and even from macro
expansion in the compiler’s front end.

Two distinct effects can make an operation eligible for removal. The oper-
ation can be dead or useless—that is, no operation uses its value, or any use
of its value cannot be detected. The operation can be unreachable—that is, no
valid control-flow path contains the operation. If a computation falls into either
category, it can be eliminated.

Removing useless or unreachable code shrinks the program. This produces a
smaller ir program, which leads to a smaller executable program and to faster
compilation. It may also increase the compiler’s ability to improve the code.
For example, unreachable code may have effects that show up in the results
of static analysis and prevent the application of some transformation. In this
case, removing the unreachable block may change the analysis results and allow
further transformations (see, for example §10.20).

Some forms of redundancy elimination also remove useless code. For ex-
ample, local value numbering applies algebraic identities to simplify the code.
Examples include x + 0 ⇒ x, y × 1 ⇒ y, and max(z,z) ⇒ z. Each of these
eliminates a useless operation—by definition, an operation that, when removed,
makes no difference in the program’s externally visible behavior.

The algorithms in this section modify the control-flow graph (cfg). Thus,
they distinguish branches (cbr) from jumps (jmp). Close attention to this dis-
tinction will help the reader understand the algorithms.

Eliminating Useless Code

The classic algorithms for eliminating useless code operate in a manner similar
to mark-sweep garbage collectors (See §6.7.3). Like mark-sweep collectors, they
need two passes over the code. The first pass begins by clearing all the mark
fields and marking “critical” operations—such as input/output statements, code
in the procedure’s entry and exit blocks, calls to other procedures, and code that
sets return values.1 Next, it traces the operands of critical operations back to
their definitions, and marks those operations as useful. This process continues,
in a simple worklist iterative scheme, until no more operations can be marked as
useful. The second pass walks the code and removes any operation not marked
as useful.

Figure 10.3 makes these ideas concrete. The algorithm, which we call Dead,
assumes that the code is in ssa form. This simplifies the process because each
use refers to a single definition. Dead consists of two passes. The first, called
MarkPass, discovers the set of useful operations. The second, called SweepPass,
removes useless operations. MarkPass relies on reverse dominance frontiers,
defined below.

The treatment of operations other than branches or jumps is straightforward.
1This can happen in any of several ways, including an assignment to a call-by-reference

parameter, assignment through an unknown pointer, or an actual return statement.

SUBMITTED TO MORGAN-KAUFMANN

410 CHAPTER 10. SCALAR OPTIMIZATIONS

Dead()
MarkPass()
SweepPass()

SweepPass()
for each operation i

if i is unmarked then
if i is a branch then

rewrite i with a jump
to i’s nearest marked
postdominator

if i is not a jump then
delete i

MarkPass()
WorkList ← ∅
for each operation i

clear i’s mark
if i is critical then

mark operation i
WorkList ← WorkList ∪ {i}

while (WorkList �= ∅)
remove i from WorkList

(assume i is x ← y op z)

if def(y) is not marked then
mark def(y)
WorkList ← WorkList ∪ {def(y)}

if def(z) is not marked then
mark def(z)
WorkList ← WorkList ∪ {def(z)}

for each b ∈ rdf(block(i))
let j be the branch that ends b
if j is unmarked then

mark j
WorkList ← WorkList ∪ {j}

Figure 10.3: Useless code elimination

The marking phase determines whether an operation is useful. The sweep phase
removes operations that have not been marked as useful.

The treatment of control-flow operations is more complex. Every jump is
considered useful. Branches are considered useful only if the execution of a
useful operation depends on their presence. As the marking phase discovers
useful operations, it also marks the appropriate branches as useful. To map
from a marked operation to the branches that it makes useful, the algorithm
relies on the notion of control dependence.

The definition of control dependence relies on postdominance. In a cfg,
node j postdominates node i if every path from i to the cfg’s exit node passes
through i. Using postdominance, we can define control dependence as follows:
in a cfg, node j is control-dependent on node i if and only if

1. There exists a nonnull path from i to j where j postdominates every node
on the path after i. Once execution begins on this path, it must flow
through j to reach the exit of the cfg (from the definition of postdomi-
nance), and

2. j does not strictly postdominate i. Another edge leaves i and takes control
to a node outside the path to j. There must be a path beginning with
this edge that leads to the cfg’s exit without passing through j.

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 411

Bi

Bj
� �

⇒
Bi

Bj

�

Folding a redundant
branch

&&� %%�
Bi

Bj

�%%� ⇒
4
4
4
45

,
,
,
,-

Bj

%%�

Removing an empty block

Bi

Bj

�

�
⇒ Bi

Bj

�

Combining blocks

Bi

�
Bj

%� &�

%%� ⇒
Bi

.
.
.
./

9
9
9
98

Bj

%� &�

%%�

Hoisting a branch

Figure 10.4: Transformations used in CLEAN

In other words, two or more edges leave i. One edge leads to j, and one or more
of the other edges do not. Thus, the decision made at the branch ending block
i can determine whether or not j executes. If an operation in j is useful, then
the branch ending i is also useful.

This notion of control dependence is captured precisely by the reverse dom-
inance frontier of j, denoted rdf(j). Reverse dominance frontiers are simply
dominance frontiers computed on the reverse cfg. When MarkPass marks an
operation useful, it visits every block in the reverse dominance frontier of the
block that contains this useful operation, and marks its block-ending branch as
useful. As it marks these branches, it adds them to the worklist.

SweepPass replaces any unmarked branch with a jump to its first postdomi-
nator that contains a marked operation or branch. If the branch is unmarked,
then its successors, down to its immediate postdominator, contain no useful
operations. (Otherwise, when those operations were marked, the branch would
have been marked.) A similar argument applies if the immediate postdominator
contains no marked operations or branch. To find the nearest useful postdomi-
nator, the algorithm can walk up the postdominator tree until it finds a block
that contains a useful operation. Since, by definition, the exit block is useful,
the search must terminate.

After Dead runs, the code contains no useless computations. It may contain
empty blocks, which can be removed by the next algorithm.

Eliminating Useless Control Flow

Optimization can change the ir form of the program so that it has extraneous,
or useless, control flow. If this happens, the compiler should include a pass that
simplifies the cfg and eliminates useless control flow. This section presents a
simple algorithm called Clean that handles this task.

Clean uses four transformations on the cfg, shown in Figure 10.4. They are

SUBMITTED TO MORGAN-KAUFMANN

412 CHAPTER 10. SCALAR OPTIMIZATIONS

applied in the following order:

Folding a redundant branch: If Clean finds a block that ends in a branch, and
both sides of the branch target the same block, it should replace the branch
with a jump to the target block. This situation arises as the result of other
simplifications. For example, Bi might have had two successors, each with
a jump to Bj . If another transformation removed all the computations
from those blocks, then removing the empty blocks might produce the
initial graph shown in the figure.

Removing an empty block: If Clean finds a block that contains only a jump, it
can merge the block into its successor. This situation arises when other
passes remove all of the operations from a block Bi. Since Bi has only
one successor, the transformation retargets the edges that enter Bi to Bj

and deletes Bi from Bj’s set of predecessors. This simplifies the graph. It
should also speed up execution. In the original graph, the paths through
Bi needed two control-flow operations to reach Bj . In the transformed
graph, those paths use one operation to reach Bj .

Combining blocks: If Clean finds a block Bi that ends in a jump to Bj and Bj has
only one predecessor, it can combine the two blocks. This situation can
arise in several ways. Another transformation might eliminate other edges
that entered Bj , or Bi and Bj might be the result of folding a redundant
branch (described above). In either case, the two blocks can be combined
into a single block. This eliminates the jump at the end of Bi.

Hoisting a branch: If Clean finds a block Bi that ends with a jump to an empty
block Bj , and Bj ends with a branch, Clean can replace the block-ending
jump in Bi with a copy of the branch from Bj . In effect, this hoists
the branch into Bi. This situation arises when other passes eliminate
the operations in Bj , leaving a jump to a branch. The transformed code
achieves the same effect with just a branch. This adds an edge to the cfg.
Notice that Bi cannot be empty, or else empty block removal would have
eliminated it. Similarly, Bi cannot be Bj ’s sole predecessor, or else Clean
would have combined the two blocks. (After hoisting, Bj still has at least
one predecessor.)

Some bookkeeping is required to implement these transformations. Some of the
modifications are trivial. To fold a redundant branch in a program represented
with iloc and a graphical cfg, Clean simply overwrites the block-ending branch
with a jump and adjusts the successor and predecessor lists of the blocks. Oth-
ers are more difficult. Merging two blocks may involve allocating space for the
merged block, copying the operations into the new block, adjusting the prede-
cessor and successor lists of the new block and its neighbors in the cfg, and
discarding the two original blocks.

Clean applies these four transformations in a systematic fashion. It traverses
the graph in postorder, so that Bi’s successors are simplified before Bi, unless the

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 413

OnePass()
for each block i, in postorder

if i ends in a conditional branch then
if both targets are identical then

replace the branch with a jump

if i ends in a jump to j then
if i is empty then

replace transfers to i with transfers to j

if j has only one predecessor then
coalesce i and j

if j is empty and ends in a conditional branch then
overwrite i’s jump with a copy of j’s branch

Clean()
while the CFG keeps changing

compute postorder
OnePass()

Figure 10.5: The algorithm for CLEAN

successor lies along a back edge with respect to the postorder numbering. In that
case, Clean will visit the predecessor before the successor. This is unavoidable in
a cyclic graph. Simplifying successors before predecessors reduces the number
of times that the implementation must move some edges.

In some situations, more than one of the transformations may apply. Careful
analysis of the various cases leads to the order shown in Figure 10.5. The
algorithm uses a series of if statements rather than an if-then-else to let it
apply multiple transformations in a single visit to a block.

If the cfg contains back edges, then a pass of Clean may create additional
opportunities—unprocessed successors along the back edges. These, in turn may
create other opportunities. To handle this problem, Clean can iterate. It must
compute a new postorder numbering between calls to OnePass because each
pass changes the underlying graph. Figure 10.5 shows pseudocode for Clean.

Clean does not handle all the cases that can arise. For example, it cannot,
by itself, eliminate an empty loop. Consider the cfg shown on the left side of
Figure 10.6. Assume that block B2 is empty. None of Clean’s transformations
can eliminate B2. The branch that ends B2 is not redundant. B2 does not end
with a jump, so Clean cannot combined it with B3. Its predecessor ends with
a branch rather than a jump, so Clean can neither combine it with B1 nor its
branch into B1.

However, cooperation between Clean and Dead can eliminate the empty loop.
Dead used control dependence to mark useful branches. If B1 and B3 contain
useful operations, but B2 does not, then the marking pass in Dead will not mark
the branch ending B2 as useful because B2 /∈ rdf(B3). Because the branch is

SUBMITTED TO MORGAN-KAUFMANN

414 CHAPTER 10. SCALAR OPTIMIZATIONS

��B1

�

�

�B2

�
� �
� �
�

�B3

�

Original

��B1

�

�

�B2

��B3

�

After DEAD

��B1

���B3

�

Removing B2

��B1

��B3

�

Folding the Branch

Figure 10.6: Removing an empty loop

useless, the code that computes the branch condition is also useless. Thus, Dead
eliminates all of the operations in B2 and converts the branch that ends it into a
jump to its closest useful postdominator, B3. This eliminates the original loop
and produces the second cfg shown in the figure.

In this form, Clean folds B2 into B3, shown in the third cfg in the figure.
This also makes the branch at the end of B1 redundant. Clean rewrites it with
a jump, producing the final cfg shown in the figure. At this point, if B1 is B3’s
sole remaining predecessor, Clean coalesces the two blocks into a single one.

This cooperation is simpler and more effective than adding another trans-
formation to Clean that handles empty loops. Such a transformation might
recognize a branch from Bi to itself and, for an empty Bi, rewrite it with a
jump to the branch’s other target. The problem lies in determining when Bi

is truly empty. If Bi contains no operations other than the branch, then the
code that computes the branch condition must lie outside the loop. Thus, the
transformation is only safe if the self-loop never executes. Reasoning about
the number of executions of the self-loop requires knowledge about the run-
time value of the comparison, a task that is, in general, beyond the compiler’s
ability. If the block contains operations, but only operations that control the
branch, then the transformation would need to recognize the situation with pat-
tern matching. In either case, this new transformation would be more complex
than the four included in Clean. Relying on the combination of Dead and Clean
achieves the appropriate result in a simpler, more modular fashion.

Eliminating Unreachable Code

Sometimes the cfg contains code that is unreachable. The compiler should
find unreachable blocks and remove them. A block can be unreachable for two
distinct reasons: there may be no path through the cfg that leads to the block,
or the paths that reach the block may not be executable—for example, guarded
by a condition that always evaluates to false.

The former case is easy to handle. The compiler can perform a simple
mark/sweep style reachability analysis on the cfg. Starting with the entry, it
marks every reachable node in the cfg. If all branches and jumps are unam-

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 415

biguous, then all unmarked blocks can be deleted. With ambiguous branches
or jumps, the compiler must preserve any block whose address can reach such a
jump.2 This analysis is simple and inexpensive. It can be done during traversals
of the cfg for other purposes, or during cfg construction itself.

Handling the second case is harder. It requires the compiler to reason about
the values of expressions that control branches. Section 10.4.1 presents an al-
gorithm that finds some blocks that are unreachable because the paths leading
to them are not executable.

10.3.2 Code Motion

Moving a computation to a point where it executes less frequently should reduce
the total operation count for the running program. The first transformation pre-
sented in this section, lazy code motion, uses code motion to speed up execution.
Because loops tend to execute many more times than the code that surrounds
them, much of the work in this area has focused on moving loop-invariant ex-
pressions out of loops. Lazy code motion performs loop-invariant code motion.
It extends the notions originally formulated in the available expressions problem
to include operations that are a are redundant along some, but not all, paths.
It inserts code to make them redundant on all paths; and removes the newly
redundant expression.

Some compilers, however, optimize for other criteria. If the compiler is
concerned about the size of the executable code, it may consider code motion to
reduce the number of copies of a specific operation. The second transformation
presented in this section, hoisting, uses code motion to reduce duplication of
instructions. It discovers cases where inserting an operation makes several copies
of the same operation redundant without changing the values computed by the
program.

Lazy Code Motion

Lazy code motion (lcm) uses data-flow analysis to discover both operations
that are candidates for code motion and locations where it can place those
operations. The algorithm operates on the ir form of the program and its cfg,
rather than ssa form. The algorithm consists of six sets of data-flow equations
and a simple strategy for interpreting the results as directions for modifying the
code.

Lcm combines code motion with elimination of redundant and partially-
redundant computations. Redundancy was introduced in Chapter 8. A compu-
tation is partially-redundant at point p if it occurs on some, but not all, paths
that reach p. Figure 10.7 shows two ways that an expression can be partially
redundant. In the first example, a ← b × c occurs on one path leading to the
merge point, but not on the other. To make the second computation redun-
dant, lcm inserts an evaluation of a ← b × c on the other path. In the second

2If the source language includes the ability to perform arithmetic on pointers or labels,
every block must be preserved. Otherwise, the compiler should be able to limit the preserved
set to those blocks whose labels are referenced.

SUBMITTED TO MORGAN-KAUFMANN

416 CHAPTER 10. SCALAR OPTIMIZATIONS

a ← b × c

b ← b + 1 a ← b × c

&
&&�

%
%%�

Partially redundant

⇒
a ← b × c

b ← b + 1
a ← b × c a ← b × c

&
&&�

%
%%�

Redundant

a ← b × c

b ← b + 1

�

�
� �
��

�

Partially redundant

⇒
a ← b × c

a ← b × c
b ← b + 1

�

�
� �
��

�

Redundant

Figure 10.7: Converting partial-redundancy into redundancy

example, a ← b × c is redundant along the loop’s back edge, but not along the
edge entering the loop. Inserting an evaluation of a ← b × c before the loop
makes the occurrence inside the loop redundant. By making the loop invariant
computation redundant and eliminating it, lcm moves it out of the loop.

To accomplish this, the optimizer solves a series of data-flow problems. It
computes information about availability, a forward data-flow problem familiar
from §8.6 and about anticipability, a related notion solved as a backward data-
flow problem. The next step uses the results of these analyses to compute an
earliest placement ; this annotates each edge with the a set describing the ex-
pressions for which this edge is a legal placement and no earlier placement in
the graph is possible. The algorithm then looks for possible later placements—
situations where moving an expression forward in the cfg or later in execution
from its earliest placement achieves the same effect as the earliest placement.
Finally, it computes an insertion set for each edge that specifies which expres-
sions to insert along that edge and a deletion set for each node that contains the
expressions to remove from the corresponding block. A simple follow-on pass
interprets the insertion and deletion sets and rewrites the ir.

Background The first step in solving the data-flow equations is to compute
local predicates for each block. Lcm uses three kinds of local information.

DEExpr(b) is the set of expressions e in b that are downward exposed. If
e ∈ DEExpr(b), evaluating e at the end of block b produces the same
value as evaluating it in its original position.

UEExpr(b) is the set of upward exposed expressions e in b. If e ∈ UEExpr(b),
evaluating e at the entry to block b produces the same value as evaluating
it in its original position.

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 417

B1: loadI 1 ⇒ r1

i2i r1 ⇒ r2

loadAI r0,@m ⇒ r3

i2i r3 ⇒ r4

cmp LT r2,r4 ⇒ r5

cbr r5 → B2,B3

B2: mult r17,r18 ⇒ r20

add r19,r20 ⇒ r21

i2i r21 ⇒ r8

addI r2,1 ⇒ r6

i2i r6 ⇒ r2

cmp GT r2,r4 ⇒ r7

cbr r7 → B3,B2

B3: ...

A Simple Loop

{
r1, r3, r5, r6,
r7, r20, r21

}
Set of Expressions

��B1

�

�

�B2

�
� �
� �
�

�B3

�

Its CFG

B1 B2 B3

DEExpr {r1,r3,r5} {r7,r20,r21} · · ·
UEExpr {r1,r3} {r6,r20,r21} · · ·
ExprKill {r5,r6,r7} {r5,r6,r7} · · ·

Figure 10.8: Example for lazy code motion

ExprKill(b) is the set of expressions e that are killed in b. If e ∈ ExprKill(b),
then b contains a redefinition of one or more operands of e. As a conse-
quence, evaluating e at the entry to b may produce a different value than
evaluating it at the end of b.

We have used all these sets in other data-flow problems.
The equations for lcm rely on several implicit assumptions about the shape

of the code. They assume that textually identical expressions always define the
same name, which suggests an unlimited set of names—one name for each unique
textual expression. (This is rule one from the register-naming rules described
in §5.6.) Since every definition of rk comes from the expression ri + rj and no
other expression defines rk, the optimizer does not need to find each definition
of ri + rj and copy the result into a temporary location for later reuse. Instead,
it can simply use rk.

Lcm moves expressions, not assignments. Requiring that textually identical
expressions define the same virtual register implies that program variables are
set by register-to-register copy operations. The code in Figure 10.8 has this
property. By dividing the name space into variables and expressions, we can
limit the domain of lcm to expressions. In that example, the variables are r2,
r4, and r8, each of which is defined by a copy operation. All the other names,
r1, r3, r5, r6, r7, r20, and r21, are expressions. The lower part of Figure 10.8
shows the local information for the blocks in the example.

SUBMITTED TO MORGAN-KAUFMANN

418 CHAPTER 10. SCALAR OPTIMIZATIONS

Available Expressions The first step in lcm computes available expressions.

AvailIn(n) =
⋂

m∈preds(n)

AvailOut(m), n �= n0

AvailOut(m) = DEExpr(m) ∪ (AvailIn(m) ∩ ExprKill(m))

The form of the equations differs slightly from the one shown in §8.6. In this
form, the equations compute a distinct set for each block’s entry, AvailIn, and
its exit, AvailOut. The Avail sets in the earlier equations are identical to the
AvailIn sets here. The AvailOut sets represent the contribution of a block to
its successors’ AvailIn sets. The solver must initialize AvailIn(n0) to ∅ and
the remaining AvailIn and AvailOut sets to contain the set of all expressions.

For the example in Figure 10.8, the equations for availability produce the
following results:

B1 B2 B3

AvailIn ∅ {r1,r3} {r1,r3}
AvailOut {r1,r3,r5} {r1,r3,r7,r20,r21} · · ·

In global redundancy elimination, we interpreted x ∈ AvailIn(b) to mean that,
along every path from n0 to b, x is computed and none of its operands is
redefined between the point where x is computed and b. An alternative view,
useful in understanding lcm, is that x ∈ AvailIn(b) if and only if the compiler
could place an evaluation of x at the entry to b and obtain the result produced
by the most recent evaluation on any control-flow path from n0 to b. In this
light, the AvailIn sets tell the compiler how far forward in the cfg it can move
the evaluation of x, ignoring any uses of x.

Anticipable Expressions Availability provides lcm with information about mov-
ing evaluations forward in the cfg. Lcm also needs information about moving
evaluations backward in the cfg. To obtain this, it computes information about
anticipable expressions, namely, expressions that can be evaluated earlier in the
cfg than their current block.

The UEExpr set captures this notion locally. If e ∈ UEExpr(b), then b
contains at least one evaluation of e and that evaluation uses operands that are
defined before entry to b. Thus, e ∈ UEExpr(b) implies that an evaluation of
e at the entry to b must produce the same value as the first evaluation of e in
b, so the compiler can safely move that first evaluation to the block’s entry.

The second set of data-flow equations for lcm extends the notion of antici-
pability across multiple blocks. It is a backward data-flow problem.

AntOut(n) =
⋂

m∈succ(n)

AntIn(m), n �= nf

AntIn(m) = UEExpr(m) ∪ (AntOut(m) ∩ExprKill(m))

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 419

Lcm must initialize the AntOut set for nf to ∅ and the remaining AntIn and
AntOut sets to contain the set of all expressions.

AntIn and AntOut provide the compiler with information about the back-
ward motion of expressions in AntOut(b). If x ∈ AntOut(b), then the com-
piler can place an evaluation of x at the end of block b and produce the same
value as the next evaluation on any path leaving b.

For the ongoing example, the equations for anticipability produce the fol-
lowing results.

B1 B2 B3

AntIn {r1,r3} {r20,r21} ∅
AntOut ∅ ∅ ∅

Earliest Placement Given availability, which encodes information about forward
movement in the cfg, and anticipability, which encodes information about back-
ward movement in the cfg, the compiler can compute an earliest placement for
each expression. To keep the equations simple, it is easier to place computations
on edges in the cfg rather than in the nodes. This lets the equations compute a
placement without having to choose a block. The compiler can defer until later
the decision to place the operation at the end of the edge’s source, at the start
of its destination, or in a new block in mid-edge. (See the discussion of critical
edges in §9.3.4.)

For an edge 〈i, j〉 in the cfg, an expression e is in Earliest(i, j) if and only
if the computation can legally move to 〈i, j〉 and cannot move to any earlier
edge in the cfg. The equation for Earliest reflects this condition:

Earliest(i, j) = AntIn(j) ∩AvailOut(i) ∩ (ExprKill(i) ∪AntOut(i))

These conditions all have simple explanations. For e to be legal on edge 〈i, j〉
and not be movable further up in the cfg, the following three conditions must
hold:

1. e ∈ AntIn(j) proves that the compiler can move e to the head of j.

2. e /∈ AvailOut(i) proves that no previous computation of e is available on
exit from i. If e ∈ AvailOut(i), then a computation of e on 〈i, j〉 would
be redundant and unnecessary.

3. e ∈ (ExprKill(i) ∪ AntOut(i)) proves that e cannot move upward,
through i, to an earlier edge. If e ∈ ExprKill(i), then e would produce
a different result at the head of block i, so it cannot move through i.
If e ∈ AntOut(i), then e cannot move into block i. If either of these
conditions holds, then 〈i, j〉 is the earliest edge where e can be placed.

Since lcm cannot move an expression earlier than n0, lcm should ignore the
final term, (ExprKill(i)∪AntOut(i)). This simplification marginally reduces
the cost of computing Earliest.

Computing Earliest requires no iteration; it relies solely on previously
computed values. Earliest is used, in turn, in the computation of the Later

SUBMITTED TO MORGAN-KAUFMANN

420 CHAPTER 10. SCALAR OPTIMIZATIONS

sets. Because the Later computation iterates, it may be faster to precompute
the Earliest sets for each edge. Alternatively, the compiler writer can forward
substitute the right-hand side directly into the next set of equations.

For the continuing example, the Earliest computation produces the fol-
lowing sets

〈B1,B2〉 〈B1,B3〉 〈B2,B2〉 〈B2,B3〉
Earliest {r20,r21} ∅ ∅ ∅

Later Placement The final data-flow problem in lcm determines whether an
earliest placement can be moved forward or later in the cfg, while achieving
the same effect.

LaterIn(j) =
⋂

i∈pred(j)

Later(i, j), j �= n0

Later(i, j) = Earliest(i, j) ∪ LaterIn(i) ∩UEExpr(i)

The solver must initialize LaterIn(n0) to ∅.
An expression e ∈ LaterIn(k) if and only if every path that reaches k

has an edge 〈p, q〉 where e ∈ Earliest(〈p, q〉), and the path from q to k nei-
ther redefines e’s operand, nor contains an evaluation of e (that earlier place-
ment would anticipate). The Earliest term in the equation for Later ensures
that Later(i, j) includes Earliest(i, j). The rest of that equation puts e into
Later(i, j) if e can be moved forward from i (e ∈ LaterIn(i)) and a placement
at the entry to i does not anticipate a use in i (e /∈ UEExpr(i)).

Once the equations have been solved, e ∈ LaterIn(i) implies that the
compiler could move the evaluation of e forward through i without losing any
benefit—that is, there is no evaluation of e in i that an earlier evaluation would
anticipate; and e ∈ Later(i, j) implies that the compiler could move an evalu-
ation of e in i forward to j.

For the ongoing example, these equations produce the following sets.

B1 B2 B3

LaterIn ∅ ∅ ∅

〈B1,B2〉 〈B1,B3〉 〈B2,B2〉 〈B2,B3〉
Later {r20,r21} ∅ ∅ ∅

Rewriting the Code The final step in performing lazy code motion is to rewrite
the code so that it capitalizes on the knowledge derived by the earlier data-
flow computations. To simplify the process, lcm computes two additional sets,
Insert and Delete.

The Insert set specifies, for each edge, the computations that lcm should
insert on that edge.

Insert(i, j) = Later(i, j) ∩ LaterIn(j)

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 421

B1: loadI 1 ⇒ r1

loadAI r0,@m ⇒ r2

cmp LT r1,r2 ⇒ r3

cbr r3 → B2a,B3

B2a: mult r17,r18 ⇒ r20

add r19,r20 ⇒ r21

jump → B2

B2: i2i r21 ⇒r8

addI r1,1 ⇒r4

i2i r4 ⇒ r1

cmp GT r1,r2 ⇒ r5

cbr r5 → B3,B2

B3: ...

The Transformed Code

��
�

B1

�B2a

�

�

�B2

�
� �
� �
�

�B3

�

Its CFG

Figure 10.9: Example after lazy code motion

If i has only one successor, Lcm can insert the computations at the end of i.
If j has only one predecessor, it can insert the computations at the entry of j.
If neither condition applies, the edge 〈i, j〉 is a critical edge and the compiler
should split 〈i, j〉 by inserting a block in the middle of the edge to hold the
computations specified in Insert(i, j).

The Delete set specifies for a block which computations lcm should delete
from the block.

Delete(i) = UEExpr(i) ∩ LaterIn(i), i �= n0

Delete(n0) is empty, of course, since no block precedes it. If e ∈ Delete(i),
then the first computation of e in i is redundant, after all the insertions have been
made. Any subsequent evaluations of e in i that have upwards-exposed uses—
that is, its operands are not defined between the start of i and the evaluation
can also be deleted. Because all evaluations of e define the same name, the
compiler need not rewrite subsequent references to the deleted evaluation. Those
references will simply refer to earlier evaluations of e that lcm has proven to
produce the same result.

For our example, the Insert and Delete sets are simple.

〈B1,B2〉 〈B1,B3〉 〈B2,B2〉 〈B2,B3〉
Insert {r20,r21} ∅ ∅ ∅

B1 B2 B3

Delete ∅ {r20,r21} ∅
Interpreting the Insert and Delete sets rewrites the code as shown on the left
side of Figure 10.9. Lcm deletes the expressions that define r20 and r21 from
B2 and inserts them on the edge from B1 to B2.

SUBMITTED TO MORGAN-KAUFMANN

422 CHAPTER 10. SCALAR OPTIMIZATIONS

Since B1 has two successors and B2 has two predecessors, 〈B1,B2〉 is a critical
edge. Thus, lcm must split the edge, creating a new block B2a to hold the
inserted computation of r20. Splitting 〈B1,B2〉 adds an extra jump to the code.
Subsequent work in code generation will almost certainly implement the jump
in B2a as a fall-through, eliminating any cost associated with it.

Notice that Lcm leaves the copy defining r8 in B2. Lcm moves expressions,
not assignments. (Recall that r8 is a variable, not an expression.) If the copy is
unnecessary, the register allocator will discover that fact and coalesce it away.

Hoisting

The compiler can also use code motion to shrink the size of the compiled code.
Section 9.2.4 introduced the notion of a very busy expression. The compiler can
use the results of computing VeryBusy sets to perform code hoisting.

The idea is simple. An expression e ∈ VeryBusy(b), for some block b, if
and only if e is evaluated along every path leaving b and evaluating e at the
end of b would produce the same result as each of those evaluations. (That is,
none of e’s operands is redefined between the end of b and the next evaluation
of e along every path leaving b.) To shrink the code, the compiler can insert an
evaluation of e at the end of b and replace the first occurrence of e on each path
leaving b with a reference.

To replace those expressions directly, the compiler would need to locate
them. It could insert e, then solve another data-flow problem, proving that the
path from b to some evaluation of e is e-clear. Alternatively, it could traverse
each of the paths leaving b to find the first block where e is defined—by looking
in the block’s UEExpr set. Each of these approaches seems complicated.

A simpler approach has the compiler visit each block b and insert an eval-
uation of e at the end of b, for every expression e ∈ VeryBusy(b). If the
compiler uses a uniform discipline for naming, as suggested in the discussion of
lcm, then each evaluation will define the appropriate name. Subsequent appli-
cation of lcm or redundancy elimination will then remove the newly redundant
expressions.

10.3.3 Specialization

In most compilers, the shape of the ir program is determined by the front end,
before any detailed analysis of the code. Of necessity, this produces general code
that works in any context that the running program might encounter. With
analysis, however, the compiler can often learn enough to narrow the contexts
in which the code must operate. This creates the opportunity for the compiler
to specialize the sequence of operations in ways that capitalize on its knowledge
of the context in which the code will execute.

As an example, consider constant propagation. Constant propagation tries
to discover specific values taken on by the arguments to an operation. For an
operation such as x← y × z, If the compiler discovers that y always has the value
4 and z is nonnegative, it can replace the multiply with a shift operation, which
is often less expensive. If it discovers that z has the value 17, it can replace

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 423

Worklist ← ∅
for each ssa name n

initialize Value(n) by rule
if Value(n) �= � then

Worklist ← Worklist ∪ {n}

while (Worklist �= ∅)
remove n from Worklist
for each operation o that uses n

let m be the ssa name that o defines

if Value(m) �= ⊥ then
t ← result of modeling m

if t �= Value(m) then
Value(m) ← t
Worklist ← Worklist ∪ {m}

� ∧ x = x ∀x
ci ∧ cj = ci if ci = cj

ci ∧ cj = ⊥ if ci �= cj

⊥ ∧ x = ⊥ ∀x
Meet rule

�
· · · ci cj ck cl cm · · ·&&%%

���
			

%%&&		
	

��
�

⊥
The lattice

Figure 10.10: Sparse Simple Constant Propagation

the operation with an immediate load of 68. These operations form a hierarchy.
The multiply is general; it works for any values of y and z (although it may
raise an exception for some of them). The shift is less general: it produces the
correct result if and only if y has the value 4 and z is nonnegative. Of course if
either y or z is zero, x is also zero. The load immediate is least general: it works
only when the arguments have the property that the value of y × z is known.

Other examples of specialization include peephole optimization and tail-
recursion elimination. Peephole optimization slides a small “window” (the
peephole) over the code and looks for simplifications within the window. It
originated as an efficient way to perform some final local optimization, after
code generation (see §11.4).

Tail-recursion elimination recognizes when the final operation in a procedure
is a self-recursive call. It replaces the call with a jump back to the procedure’s
entry, allowing reuse of the activation record and avoiding the expense of the
full procedure linkage convention. This important case arises in programs that
use recursion to traverse data structures or to perform iterative calculations.
As detailed examples of specialization, the next two sections describe ssa-based
algorithms for constant propagation and for operator strength reduction with
linear-function test replacement.

Constant Propagation

Using ssa form, we can reformulate constant propagation in a much more in-
tuitive way than the equations in §9.2.4. The algorithm, called sparse simple
constant propagation (sscp), is shown in Figure 10.10.

Sscp consists of an initialization phase and a propagation phase. The ini-

SUBMITTED TO MORGAN-KAUFMANN

424 CHAPTER 10. SCALAR OPTIMIZATIONS

x0 ← 17

�
x1 ← φ(x0,x2)
x2 ← x1 + i12

�� �
��

�

Time Lattice Values
Step Pessimistic Optimistic

x0 x1 x2 x0 x1 x2

0 17 ⊥ ⊥ 17 � �
1 17 ⊥ ⊥ 17 17 17 ∧ i12

Figure 10.11: Optimistic constant example

tialization phase iterates over the ssa names. For each ssa name n, it examines
the operation that defines n and sets Value(n) according to a simple set of rules.
If n is defined by a φ-function, sscp sets Value(n) to �. If n’s value is a known
constant c, sscp sets Value(n) to c. If n’s value cannot be known—for example,
it is defined by reading a value from some external media—sscp sets Value(n)
to ⊥. Finally, if n’s value is not known, sscp sets Value(n) to �. If Value(n) is
not �, the algorithm adds n to the worklist.

The propagation phase is straightforward. It removes an ssa name n from
the worklist. The algorithm examines each operation o that uses n, where o
defines some ssa name m. If Value(m) has already reached ⊥, then no further
evaluation is needed. Otherwise, it models the evaluation of o by interpreting
the operation over the lattice values of its arguments. If the result is lower
than Value(m), it lowers Value(m) accordingly and adds m to the worklist. The
algorithm halts when the worklist is empty.

Interpreting an operation over its lattice values requires some care. For
a φ-function, the result is simply the meet of the lattice values of all the φ-
function’s arguments—even if one or more operand has the value �. For a
more general operation, the compiler must apply operator-specific knowledge.
If any operand has the lattice value �, the evaluation should return �. If none
of the operands have the values �, the model should produce an appropriate
value. For the operation x ← y × z, with Value(y) = 3 and Value(z) = 17, the
model should produce the value 51. If Value(y) = ⊥, the model should produce
zero for Value(z) = 0 and ⊥ for any other lattice value. Sscp needs similar
interpretations for each value-producing operation in the ir.

Complexity The propagation phase of sscp is a classic fixed-point scheme. The
arguments for termination and complexity follow from the length of descending
chains through the lattice that it uses to represent values, shown in the bottom
right part of the figure. The Value associated with any ssa name can have one
of three initial values—�, some constant ci, and ⊥. The propagation phase can
only lower its value. For a given ssa name, this can happen at most twice—
from � to ci to ⊥. Sscp adds an ssa name to the worklist only when its value
changes, so each ssa name appears on the worklist at most two times. Sscp

evaluates an operation when one of its operands is pulled from the worklist.
Thus, the total number of evaluations is two times the number of uses in the
program.

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 425

The SSA Graph

In some algorithms, viewing the ssa form of the code as a graph simplifies
either the discussion or the implementation. The algorithm for strength
reduction interprets the ssa-form of the code as a graph.

In ssa form, each name has a unique definition, so that name specifies
a particular operation in the code that computed its value. Each use of
a name occurs in a specific operation, so the use can be interpreted as a
chain from the use to its definition. Thus, a simple lookup table that maps
names to the operations that define them creates a chain from each use to
the corresponding definition. Mapping a def to the operations that use it is
slightly more complex. However, this map can easily be constructed during
the renaming phase of the ssa construction.

We draw ssa graphs with edges that run from a use to a definition. This
indicates the relationship implied by the ssa names. The compiler will need
to traverse the edges in both directions. Strength reduction moves, primarily,
from uses to definitions. The sparse conditional constant propagation algo-
rithm can be viewed as moving from definitions to uses on the ssa graph. The
compiler writer can easily add the data structures needed to allow traversal
in both directions.

Coverage Sscp discovers all of the constants found by the data-flow framework
in §9.2.4. Because it initializes unknown values to �, rather than ⊥, it can prop-
agate some values into cycles in the graph—loops in the cfg. Algorithms that
begin with the value �, rather than ⊥, are often called optimistic algorithms.
The intuition behind this term is that initialization to � allows the algorithm
to propagate information into a cyclic region, optimistically assuming that the
value along the back edge will confirm this initial propagation. An initialization
to ⊥, called pessimistic, cuts off that possibility.

To see this, consider the ssa fragment in Figure 10.11. If the algorithm
pessimistically initializes x1 and x2 to ⊥, it will not propagate the value 17 into
the loop. When it evaluates the φ-function for x1, it computes 17 ∧ ⊥ to yield
⊥. With x1 set to ⊥, x2 also gets ⊥, even if i17 has a known value, such as 0.

If, on the other hand, the algorithm optimistically initializes unknown values
to�, it can propagate the value of x0 into the loop. When it computes a value for
x1, it evaluates 17 ∧ � and assigns the result, 17, to x1. Since x1’s value changes,
the algorithm places x1 on the worklist. The algorithm then re-evaluates the
definition of x2 If, for example, i12 has the value 0, then this assigns x2 the value
17 and adds x2 to the worklist. When it re-evaluates the φ-function, it computes
17 ∧ 17 and proves that x1 is 17.

Consider what would happen if i12 has the value 2, instead. Then, when sscp

evaluates x1 + i12, it assigns x2 the value 19. Now, x1 gets the value 17 ∧ 19,
or ⊥. This, in turn, propagates back to x2, producing the same final result as
the pessimistic algorithm.

SUBMITTED TO MORGAN-KAUFMANN

426 CHAPTER 10. SCALAR OPTIMIZATIONS

Strength Reduction

Strength reduction is a transformation that replaces a repeated series of expen-
sive (strong) operations with a series of cheap (weak) operations that compute
the same values. The classic example replaces integer multiplications based on
a loop index with equivalent additions. This particular case arises routinely
from the expansion of array and structure addresses in loops. The left side of
Figure 10.12 shows the iloc code that might be generated for the following
simple loop:

sum ← 0
for i ← 1 to 100

sum ← sum + a(i)

The code is in semi-pruned ssa form; the purely local values (r1, r2, r3, and r4)
have neither subscripts nor φ-functions. Notice how the reference to a(i) expands
into four operations—the subI, multI, and addI that compute (i-1) × 4 + @a
and the load that defines r4.

For each iteration, this sequence of operations computes the address of a(i)
from scratch as a function of the loop index variable i. Consider the sequence
of values taken on by ri1, r1, r2, and r3.

ri1: { 1, 2, 3, . . . , 100 }
r1: { 0, 1, 2, . . . , 99 }
r2: { 0, 4, 8, . . . , 396 }
r3: { @a, @a+4, @a+8, . . . , @a+396 }

The values in r1, r2, and r3 exist solely to compute the address for the load
operation. If the program computed each value of r3 from the preceding one, it
could eliminate the operations that define r1 and r2. Of course, r3 would then
need an initialization and an update. This would make it a nonlocal name, so
it would also need a φ-function at both l1 and l2.

The right side of Figure 10.12 shows the code after strength reduction, linear-
function test replacement, and dead-code elimination. It computes those values
formerly in r3 directly into rt7 and uses rt7 in the load operation. The end-
of-loop test, which used r1 in the original code, has been modified to use rt8 .
This makes the computation of r1, r2, r3, ri0 , ri1 , and ri2 all dead. They
have been removed to produce the final code. Now, the loop contains just five
operations, ignoring φ-functions, where the original code contained eight. (In
translating from ssa-form back to executable code, the φ-functions will become
copy operations that the register allocator can usually remove.)

If the multI operation is more expensive than an addI, the savings will be
larger. Historically, the high cost of multiplication justified strength reduction.
However, even if multiplication and addition have equal costs, the strength-
reduced form of the loop may be preferred because it creates a better code
shape for later transformations and for code generation. In particular, if the
target machine has an auto-increment addressing mode, then the addI operation
in the loop can be folded into the memory operation. This option simply does

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 427

loadI 0 ⇒ rs0

loadI 1 ⇒ ri0

loadI 100 ⇒ r100

l1: phi ri0,ri2 ⇒ ri1

phi rs0,rs2 ⇒ rs1

subI ri1,1 ⇒ r1

multI r1,4 ⇒ r2

addI r2,@a ⇒ r3

load r3 ⇒ r4

add rs1,r4 ⇒ rs2

addI ri1,1 ⇒ ri2

cmp LE ri2,r100 ⇒ r5

cbr r5 → l1,l2

l2: ...

Original code

loadI 0 ⇒ rs0

loadI @a ⇒ rt6

addI rt6,396 ⇒ rlim

l1: phi rt6,rt8 ⇒ rt7

phi rs0,rs2 ⇒ rs1

load rt7 ⇒ r4

add rs1,r4 ⇒ rs2

addI rt7,4 ⇒ rt8

cmp LE rt8,rlim ⇒ r5

cbr r5 → l1,l2

l2: ...

Strength-reduced code

Figure 10.12: Strength reduction example

not exist for the original multiply.
The rest of this section presents a simple algorithm for strength reduction,

called OSR , followed by a scheme for linear function test replacement that works
with OSR to move the end-of-loop test from ri2 to rt8 . OSR operates on the
ssa graph for the code; Figure 10.13 shows the relationship between the iloc

ssa form for the example and its ssa graph.

Background Strength reduction looks for contexts in which an operation, such
as multiply, executes inside a loop and its arguments are (1) a value that does
not vary in that loop, called a region constant, and (2) a value that varies sys-
tematically from iteration to iteration, called an induction variable. When it
finds this situation, it creates a new induction variable that computes the same
sequence of values as the original multiplication in a more efficient way. The
restrictions on the form of the multiply operation’s arguments ensures that this
new induction variable can be computed using additions, rather than multipli-
cations.

We call an operation that can be reduced in this way a candidate operation.
To simplify the presentation of OSR , we only consider candidate operations that
have one of the following forms:

x ← c× i x ← i× c x ← i± c x ← c + i

where c is a region constant and i is an induction variable. The key to finding
and reducing candidate operations is efficient identification of region constants
and induction variables. An operation is a candidate if and only if it has one of
these forms, including the restrictions on arguments.

A region constant can either be a literal constant, such as 10, or a loop-
invariant value—one not modified inside the loop. With the code in ssa form,

SUBMITTED TO MORGAN-KAUFMANN

428 CHAPTER 10. SCALAR OPTIMIZATIONS

loadI 0 ⇒ rs0

loadI 1 ⇒ ri0

loadI 100 ⇒ r100

l1: phi ri0,ri2 ⇒ ri1

phi rs0,rs2 ⇒ rs1

subI ri1,1 ⇒ r1

multI r1,4 ⇒ r2

addI r2,@a ⇒ r3

load r3 ⇒ r4

add r4,rs1 ⇒ rs2

addI ri1,1 ⇒ ri2

cmp LE ri2,r100 ⇒ r5

cbr r5 → l1,l2

l2: ...

Example in ILOC SSA form

�+
ri2

�

�φ
ri1

�

�1
ri0

3

�1
%%�

�-
r1

&&(%%�
�1
�×

r2

&&(%%�
�4
�+

r3

&&(%%�
�@a
	
 ��load
r4

&(

�+
rs2

�

�φ
rs1

�

�0
rs0

:

&&(

�≤
r5

&&(%%�

�� ��100
r100

�� ��cbr
&(�%�

l1 l2

pc

Corresponding SSA graph

Figure 10.13: Relating SSA in ILOC to the SSA graph

the compiler can determine if an argument is loop invariant by checking the
location of its sole definition—its definition must dominate the entry of the loop
that defines the induction variable. OSR can check both of these conditions in
constant time. Performing lazy code motion and constant propagation before
strength reduction may expose more values as region constants.

Intuitively, an induction variable is a variable whose values in the loop form
an arithmetic progression. For the purposes of this algorithm, we can use a
much more specific and restricted definition: an induction variable is a strongly-
connected component (scc) of the ssa graph where each operation that updates
its value is one of (1) an induction variable plus a region constant, (2) an in-
duction variable minus a region constant, (3) a φ-function, or (4) a register-to-
register copy from another induction variable. While this definition is much less
general than conventional definitions, it is sufficient to let the OSR algorithm
find and reduce candidate operations. To identify induction variables, OSR finds
sccs in the ssa graph and iterates over them to determine if each operation in
the scc is one of these four.

Because OSR defines induction variables in the ssa graph and region con-
stants relative to a loop in the cfg, the test to determine if a value is constant
relative to the loop containing a specific induction variable is complicated. Con-
sider an operation o of the form x ← i × c where i is an induction variable. For
o to be a candidate for strength reduction, c must be a region constant with
respect to the outermost loop where i varies. To test c, OSR must relate the
scc for i in the ssa graph back to a loop in the cfg.

OSR finds the ssa-graph node with the lowest reverse postorder number
in the scc defining i. It considers this node to be the header of the scc and

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 429

records that fact in the header field of each node of the scc. (Any node in the
ssa graph that is not part of an induction variable has its header field set to
null.) In ssa form, the induction variable’s header is the φ-function at the
start of the outermost loop in which i varies. In an operation x ← i × c where
i is an induction variable, c is a region constant if the cfg block that contains
its definition dominates the cfg block that contains i’s header. This condition
ensures that c is invariant in the outermost loop where i varies. To perform this
test, the ssa construction must produce a map from each ssa node to the cfg

block where it originated.
The header field plays a critical role in determining whether or not an oper-

ation can be strength reduced. When OSR encounters an operation x ← y × z,
it can determine if y is an induction variable by following the ssa graph edge
to y’s definition and inspecting its header field. A null header field indicates
that y is not an induction variable. If both y and z have a null header field,
the operation cannot be strength reduced.

If one of y or z has a non-null header field, then OSR uses that header field
to determine if the other operand is a region constant. Assume y’s header is
not null. To find the cfg block for the entry of the outermost loop where y
varies, OSR consults the ssa to cfg map, indexed by y’s header. If the cfg

block containing z’s definition dominates the cfg block of y’s header, then z is
a region constant relative to the induction variable y.

The Algorithm To perform strength reduction, OSR must find each candidate
operation and determine if one of its arguments is an induction variable and
the other is a region constant. If the candidate meets these criteria, OSR can
reduce it by creating a new induction variable that computes the needed values
and replacing the candidate operation with a register-to-register copy from this
new induction variable. (It should avoid creating duplicate induction variables.)

Based on the discussion above, we know that OSR can identify induction
variables by finding sccs in the ssa graph. It can discover region constants
by examining the value’s definition. If the definition results from an immediate
operation, or its cfg block dominates the cfg block of the induction variable’s
header, then the value is a region constant. The key is putting these ideas
together into an efficient algorithm.

OSR uses Tarjan’s strongly connected region finder to drive the entire pro-
cess. As shown in Figure 10.14, OSR takes an ssa graph as its argument and
repeatedly applies the strongly connected region finder, DFS to it. (This process
stops when DFS has visited every node in G.)

DFS performs a depth-first search of the ssa graph. It assigns each node a
number, corresponding to the order in which DFS visits the node. It pushes
each node onto an explicit stack, and labels the node with the lowest depth-first
number that can be reached from its children. When it returns from processing
the children, if the lowest node reachable from n has n’s number, then n is the
header of an scc. DFS pops nodes off the stack until it reaches its own node;
all of those nodes are members of the scc.

DFS removes sccs from the stack in an order that simplifies the rest of

SUBMITTED TO MORGAN-KAUFMANN

430 CHAPTER 10. SCALAR OPTIMIZATIONS

OSR(G)
nextNum ← 0

while there is an unvisited n ∈ G
DFS(n)

DFS(n)
n.Num ← nextNum++
n.Visited ← true
n.Low ← n.Num
push(n)

for each operand o of n
if o.Visited = false then

DFS(o)
n.Low ← min(n.Low,o.Low)

if o.Num < n.Num and
o is on the stack

then n.Low ← min(n.Low,o.Num)

if n.Low = n.Num then
SCC ← ∅
until x = n do

x ← pop()
SCC ← SCC ∪ { x }

Process(SCC)

Process(N)
if N has only one member n

then if n is a candidate operation
then Replace(n,iv,rc)
else n.Header ← null

else ClassifyIV(N)

ClassifyIV(N)
IsIV ← true
for each node n ∈ N

if n is not a valid update for
an induction variable

then IsIV ← false

if IsIV then
header ← n ∈ N with the

lowest RPO number
for each node n ∈ N

n.Header ← header

else
for each node n ∈ N

if n is a candidate operation
then Replace(n,iv,rc)
else n.Header ← null

Figure 10.14: Operator Strength Reduction Algorithm

OSR . When an scc is popped from the stack and passed to Process, DFS has
already visited all of its children in the ssa graph. If we interpret the ssa

graph so that its edges run from uses to definitions, as shown in Figure 10.13,
then candidate operations are encountered only after their arguments have been
passed to Process. When Process encounters an operation that is a candidate for
strength reduction, its arguments have already been classified. Thus, Process
can examine operations, identify candidates, and invoke Replace to rewrite them
in strength-reduced form during the depth-first search.

DFS passes each scc to Process. If the scc consists of a single node n that
has one of the candidate forms (x ← c× i, x ← i× c, x ← i± c, or x ← c + i),
Process passes n to Replace, which rewrites the code, as described below.3 If the
scc contains multiple nodes, Process passes the scc to ClassifyIV to determine
whether or not it is an induction variable.

ClassifyIV examines each node in the scc to check it against the set of
valid updates for an induction variable. If all the updates are valid, the scc

is an induction variable and Process sets each node’s header field to contain
3The process of identifying n as a candidate necessarily identifies one operand as an induc-

tion variable, iv, and the other as a region candidate, rc.

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 431

Replace(n,iv,rc)
result ← Reduce(n.op,iv,rc)
replace n with a copy from result
n.header ← iv.header

Reduce(op,iv,rc)
result ← lookup(op,iv,rc)
if result is “not found” then

result ← NewName()
insert(op,iv,rc,result)

newDef ← Clone(iv,result)
newDef.header ← iv.header

for each operand o of newDef
if o.header = iv.header

then rewrite o with
Reduce(op,o,rc)

else if op is × or
newDef.op is φ

then replace o with
Apply(op,o,rc)

return result

Apply(op,o1,o2)
result ← lookup(op,o1,o2)
if result is “not found” then

if o1 is an induction variable
and o2 is a region constant

then result ← Reduce(op,o1,o2)

else if o2 is an induction variable
and o1 is a region constant

then result ← Reduce(op,o2,o1)

else
result ← NewName()
insert(op,o1,o2,result)

Find block b dominated by the
definitions of o1 and o2

Create “op o1,o2 ⇒ result”
at the end of b and set its
header to null

return result

Figure 10.15: Algorithm for the Rewriting Step

the node in the scc with lowest reverse postorder number. If the scc is not
an induction variable, ClassifyIV revisits each node in the scc to test it as a
candidate operation, either passing it to Replace or setting its header to show
that it is not an induction variable.

Rewriting the Code The remaining piece of OSR implements the rewriting step.
Both Process and ClassifyIV call Replace to perform the rewrite. Figure 10.15
shows the code for Replace and its support functions Reduce and Apply .

Replace takes three arguments, an ssa-graph node n, an induction variable,
and a region constant. The latter two are operands to n. Replace calls Reduce to
rewrite the operation represented by n. Next, it replaces n with a copy operation
from the result produced by Replace. It sets n’s header field, and returns.

Reduce and Apply do most of the work. They use a hash table to avoid
inserting duplicate operations. Since OSR works on ssa names, a single global
hash table suffices. It can be initialized in OSR before the first call to DFS.

The plan for Reduce is simple. It takes an opcode and its two operands and
either creates a new induction variable to replace the computation or returns
the name of an induction variable previously created for the same combination
of opcode and arguments. It consults the hash table to avoid duplicate work. If
the desired induction variable is not in the hash table, it creates the induction
variable in a two-step process. First, it calls Clone to copy the definition for iv,

SUBMITTED TO MORGAN-KAUFMANN

432 CHAPTER 10. SCALAR OPTIMIZATIONS

the induction variable in the operation being reduced. Next, it recurs on the
operands of this new definition.

These operands fall into two categories. If the operand is defined inside the
scc, it is part of iv so Reduce recurs on that operand. This forms the new
induction variable by cloning its way around the scc of the original induction
variable iv. An operand defined outside the scc must be either the initial
value of iv or a value by which iv is incremented. The initial value must be
a φ-function argument from outside the scc; Reduce calls Apply on each such
argument. Reduce can leave an induction-variable increment alone, unless the
candidate operation is a multiply. For a multiply, Reduce must compute a new
increment as the product of the old increment and the original region constant
rc. It invokes Apply to generate this computation.

Apply takes an opcode and two operands, locates an appropriate point in
the code, and inserts that operation. It returns the new ssa name for the
result of that operation. A few details need further explanation. If this new
operation is, itself, a candidate, Apply invokes Reduce to handle it. Otherwise,
Apply gets a new name, inserts the operation and returns the result. (If both o1
and o2 are constant, Apply can evaluate the operation and insert an immediate
load.) It locates an appropriate block for the new operation using dominance
information. Intuitively, the new operation must go into a block dominated by
the blocks that define its operands. If one operand is a constant, Apply can
duplicate the constant in the block that defines the other operand. Otherwise,
both operands must have definitions that dominate the header block, and one
must dominate the other. Apply can insert the operation immediately after this
later definition.

Back to the Example Consider what happens when Osr encounters the example
from Figure 10.13. Assume that it begins with the node labelled rs2 and that it
visits left children before right children. It recurs down the chain of operations
that define r4, r3, r2, r1, and ri1 . At ri1 , it recurs on ri2 and then ri0 . It
finds the two single-node sccs that contain the literal constant one. Neither is
a candidate, so Process marks them as non-induction variables by setting their
headers to null.

The first non-trivial scc that DFS discovers contains ri1 and ri2 . All the
operations are valid updates for an induction variable, so ClassifyIV marks each
node as an induction variable by setting its header field to point to the node
with the lowest depth-first number in the scc—the node for ri1 .

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 433

i

�+
ri2

�

�φ
ri1

�

�1
ri0

3

�1
%%�

for r1

�+
rt2

�

�φ
rt1

�

�0
rt0

3

�1
%%�

	
 ��copy
r1

&(

for r2

�+
rt5

�

�φ
rt4

�

�0
rt3

3

�4
%%�

	
 ��copy
r2

&(

for r3

�+
rt8

�

�φ
rt7

�

�@a
rt6

3

�4
%%�

	
 ��copy
r3

&(

	
 ��load
r4

�
�
�
�
��

sum

�+
rs2

�

�φ
rs1

�

�0
rs0

:

&&(

�≤
r5

&&(��

�� ��100
r100

�� ��cbr
&(�%�

l1 l2

pc

Figure 10.16: Transformed SSA Graph for the Example

Now, DFS returns to the node for r1. Its left child is an induction variable
and its right child is a region constant, so it invokes Reduce to create an induction
variable. In this case, r1 is ri1 − 1, so the induction variable has an initial value
equal one less than the initial value of the old induction variable, or zero. The
increment is the same. Figure 10.16 shows the scc that Reduce and Apply
create, under the label “for r1.” Finally, the definition of r1 is replaced with a
copy operation, r1←rt1 . The copy operation is marked as an induction variable.

Next, DFS discovers the scc that consists of the node labelled r2. Process
discovers that it is a candidate because its left operand (the copy that now
defines r1) is an induction variable and its right operand is a region constant.
Process invokes Replace to create an induction variable that is r1 × 4. Reduce
and Apply clone the induction variable for r1, adjust the increment, since the
operation is a multiply, and add a copy to r2.

DFS next passes the node for r3 to Process. This creates another induction
variable with @a as its initial value, and copies its value to r3.

Process handles the load, followed by the scc that computes the sum. It
finds that none of these operations are candidates.

Finally, OSR invokes DFS on the unvisited node for the cbr. DFS visits the
comparison, the previously-marked induction variable, and the constant 100.
No further reductions occur.

The ssa graph in Figure 10.16 shows all of the induction variables created by
this process. The induction variables labelled “for r1” and “for r2” are dead. The
induction variable for i would be dead, except that the end-of-loop test still uses
it. To eliminate this induction variable, the compiler can apply linear-function
test replacement to transfer the test onto the induction variable for r3.

SUBMITTED TO MORGAN-KAUFMANN

434 CHAPTER 10. SCALAR OPTIMIZATIONS

�+
ri2

�

�φ
ri1

�

�1
ri0

3

�1
%%� �+

rt2

�

�φ
rt1

�

�0
rt0

3

�1
%%�

	
 ��copy
r1

&(

�+
rt5

�

�φ
rt4

�

�0
rt3

3

�4
%%�

	
 ��copy
r2

&(

�+
rt8

�

�φ
rt7

�

�@a
rt6

3

�4
%%�

	
 ��copy
r3

&(

	
 ��load
r4

�
�
�
�
��

�+
rs2

�

�φ
rs1

�

�0
rs0

:

&&(

�≤
r5

&&(%�

�� ��396+@a

�� ��cbr
&(�

l1

%�
l2

pc

�−1 �×4 �+@a

�−1 �×4 �+@a

Figure 10.17: Example after LFTR

Linear-Function Test Replacement

Strength reduction often eliminates all uses of an induction variable, except for
an end-of-loop test. In that case, the compiler may be able to rewrite the end-
of-loop test to use another induction variable in the loop. If the compiler can
remove this last use, it can eliminate the original induction variable as dead
code. This transformation is called linear-function test replacement (Lftr).

To perform Lftr, the compiler must (1) locate comparisons that rely on
otherwise unneeded induction variables, (2) locate an appropriate new induction
variable that the comparison should use, (3) compute the correct region constant
for the rewritten test, and (4) rewrite the code. Having Lftr cooperate with
OSR can simplify all of these tasks to produce a fast, effective transformation.

The operations that Lftr targets compare the value of an induction vari-
able against a region constant. OSR examines each operation in the program
to determine if it is a candidate for strength reduction. It can easily and in-
expensively build a list of all the comparison operations that involve induction
variables. After OSR finishes its work, Lftr should revisit each of these com-
parisons. If the induction-variable argument of a comparison was reduced by
OSR , Lftr should retarget the comparison to use the new induction variable.

To facilitate this process, Reduce can record the mathematical relationship
used to derive each new induction variable that it creates. It can insert a special
Lftr edge from each node in the original induction variable to the corresponding
node in its reduced counterpart and label it with the opcode and region constant
of the candidate operation responsible for creating the new induction variable.
Figure 10.17 shows these edges added to the ssa graph for the example. The
example involved a series of reductions; these create a chain of edges with the
appropriate labels. Starting from the original induction variable, we find the

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 435

labels -1, x4, and +@a.
When Lftr finds a comparison that should be replaced, it can follow the

edges from its induction-variable argument to the final induction variable that
resulted from a chain of one or more reductions. The comparison should use
this induction variable with an appropriate new region constant.

The labels on the edges that Lftr traverses describe the transformation that
must be applied to the original region constant to derive the new region constant.
In the example, the trail of edges leads from ri2 leads to rt8 , and produces the
value (100 - 1) × 4 + @a for the transformed test. Figure 10.17 shows the
edges and the rewritten test.

This version of Lftr is simple, efficient, and effective. It relies on close
collaboration with OSR to identify comparisons that might be retargeted, and to
leave behind a record of the reductions that it performed. Using these two data
structures, Lftr can find comparisons to retarget, find the appropriate place
to retarget them, and find the necessary transformation for the comparison’s
constant argument.

10.3.4 Enabling Other Techniques

Often, an optimizer includes passes whose primary purpose is to create or ex-
pose opportunities for other transformations. In some cases, the transformation
changes the shape of the code to make it more amenable to optimization. In
other cases, the transformation creates a point in the code where specific con-
ditions hold that make another transformation safe. By directly creating the
necessary code shape, these enabling transformations reduce the sensitivity of
the optimizer to the shape of the input code.

Several enabling transformations are described in other parts of the book.
Inline substitution (§8.7.2) merges two procedures to eliminate the overhead
of a procedure call and to create a larger context for specialization. Block
cloning (§8.7.1) replicates individual blocks to eliminate branches and to create
situations where the compiler can derive more precise knowledge of the context
that a block inherits from its cfg predecessors. For example, §12.4.2 describes
how block cloning can improve the results of instruction scheduling. This section
presents three simple enabling transformations: loop unrolling, loop unswitching,
and renaming.

Loop Unrolling

Loop unrolling is one of the oldest enabling transformations. To unroll a loop,
the compiler replicates the loop’s body and adjusts the logic that controls the
number of iterations performed. Consider the simple loop shown in the upper
left portion of Figure 10.18.

If the compiler replaces the loop’s body with four copies of itself, unrolling
the loop by a factor of four, it can execute the same useful work with one quarter
the number of comparisons and branches. If the compiler knows the value of n,
say 100, and the unrolling factor evenly divides n, then the unrolled loop has
the simple form shown in the upper right part of the figure.

SUBMITTED TO MORGAN-KAUFMANN

436 CHAPTER 10. SCALAR OPTIMIZATIONS

do i = 1 to n by 1
a(i) = a(i) + b(i)
end

do i = 1 to 100 by 4
a(i) = a(i) + b(i)
a(i+1) = a(i+1) + b(i+1)
a(i+2) = a(i+2) + b(i+2)
a(i+3) = a(i+3) + b(i+3)
end

Original loop Unrolled by 4, n = 100

i = 1

do while (i+3 ≤ n)
a(i) = a(i) + b(i)
a(i+1) = a(i+1) + b(i+1)
a(i+2) = a(i+2) + b(i+2)
a(i+3) = a(i+3) + b(i+3)
i = i + 4
end

do while (i ≤ n)
a(i) = a(i) + b(i)
i = i + 1
end

i = 1

if (mod(n,2) > 0) then
a(i) = a(i) + b(i)
i = i + 1

if (mod(n,4) > 1) then
a(i) = a(i) + b(i)
a(i+1) = a(i+1) + b(i+1)
i = i + 2

do j = i to n by 4
a(j) = a(j) + b(j)
a(j+1) = a(j+1) + b(j+1)
a(j+2) = a(j+2) + b(j+2)
a(j+3) = a(j+3) + b(j+3)
end

Unrolled by 4, arbitrary n Unrolled by 4, arbitrary n

Figure 10.18: Unrolling a simple loop

When the loop bounds are unknown, unrolling requires some additional logic
to support values of n for which mod(n,4) �= 0. The version of the loop in the
figure’s lower left part shows a simple way to handle these cases. The version in
the lower right portion achieves the same result with a little more code. For a
more complex loop body, the lower right version may allow some improvements
for the two iterations handled by the middle case.

The excerpt from dmxpy in the Linpack library, shown in §8.2.1, uses the
scheme from the lower right corner. The full code includes the cases for one,
two, four, eight, and sixteen iterations. In each case, the unrolled loop contains
another loop, so the amount of work in the inner loop justifies the extensive
unrolling of the outer loop.

Loop unrolling reduces the total number of operations executed by the pro-
gram. It also increases the program’s size. (If the loop body grows too large for
the instruction cache, the resulting cache misses can overcome any benefit from
lower loop overhead.) However, the primary justification for unrolling loops is
to create a better code shape for other optimizations.

Unrolling has two key effects that can create opportunities for other trans-

JANUARY, 2003

10.3. EXAMPLE OPTIMIZATIONS 437

do i = 1 to n
if (x > y)

then a(i) = b(i) * x
else a(i) = b(i) * y

Original Loop

if (x > y) then
do i = 1 to n

a(i) = b(i) * x
else

do i = 1 to n
a(i) = b(i) * y

Unswitched Version

Figure 10.19: Unswitching a short loop

formations. It increases the number of operations in the loop body. For short
loops and long branch latencies, this can produce a better schedule. In particu-
lar, it may give the scheduler more independent operations that it can execute
in the same schedule. It may give the scheduler enough operations to fill branch
delay slots. It can allow the scheduler to move consecutive memory accesses
together. This improves locality and opens up the possibility of using memory
operations that process more data at once.

As a final note, if the loop computes a value in one iteration that is used in
a later iteration—a loop-carried data-dependence—and if copy operations are
needed to preserve the value for later use, unrolling can eliminate the copy op-
erations. With multiple cycles of copies, unrolling by the least common multiple
of the various cycle lengths will eliminate all the copies.

Loop Unswitching

Loop unswitching hoists loop-invariant control-flow operations out of a loop. If
the predicate in an if-then-else construct is loop invariant, then the compiler
can rewrite the loop by pulling the if-then-else out of the loop and generating a
tailored copy of the loop inside each half of this new if-then-else. Figure 10.19
shows this transformation for a short loop.

Unswitching is an enabling transformation; it allows the compiler to tailor
loop bodies in ways that are otherwise hard to achieve. After unswitching, the
remaining loops contain less control flow. They execute fewer branches and other
operations to support those branches. This can lead to better scheduling, better
register allocation, and faster execution. If the original loop contained loop-
invariant code that was inside the if-then-else, then lcm could not move it out
of the loop. After unswitching, lcm easily finds and removes such redundancies.

Unswitching also has a simple, direct effect that can improve a program—it
moves the branching logic that governs the loop-invariant conditional out of
the loop. Moving control flow out of loops is difficult. Techniques based on
data-flow analysis, like lcm, have problems moving such constructs because the
transformation modifies the cfg on which the analysis relies. Techniques based
on value numbering can recognize some cases where the predicates controlling
if-then-else constructs are identical, but they will not try to remove the construct
from a loop.

SUBMITTED TO MORGAN-KAUFMANN

438 CHAPTER 10. SCALAR OPTIMIZATIONS

Renaming

Most of the transformations presented in this chapter involve rewriting or re-
ordering the operations in the program. Having the right code shape can expose
opportunities for optimization. Similarly, having the right set of names can ex-
pose opportunities for optimization.

In local value numbering, for example, we saw the following example:

a ← x + y a0 ← x0 + y0

b ← x + y b0 ← x0 + y0

a ← 17 a1 ← 17
c ← x + y c0 ← x0 + y0

Original code SSA form

In the original code, local value numbering can recognize that all three compu-
tations of x + y produce the same result. However, it cannot replace the final
occurrence of x + y because the intervening assignment to a has destroyed the
copy of x + y that it recognizes.

Converting the code to ssa form produces a name space like the one shown
on the right. With an ssa name space, x0 + y0 remains available at the final
operation, so local value numbering can replace the evaluation with a reference
to a0. (The alternative is to alter the local value-numbering algorithm so that
it recognizes b as another copy of x + y. Renaming is the simpler and more
general solution.)

In general, careful use of names can expose additional opportunities for op-
timization by making more facts visible to analysis and by avoiding some of the
side effects that come with reuse of storage. For data-flow-based optimizations,
like lcm, the analysis relies on lexical identity—redundant operations must have
the same operation and their operands must have the same names.4 A scheme
that encodes some value identity, perhaps derived from value numbering, into
the name space can expose more redundancies to lcm and let it eliminate them.

In instruction scheduling, names create the dependences that limit the sched-
uler’s ability to rearrange operations. If the reuse of a name reflects the actual
flow of values, these dependences are a critical part of correctness. If the reuse
of a name occurs because the register allocator has placed two distinct values
in the same register for efficiency, these dependences can unnecessarily restrict
the schedule—leading, in some cases, to less efficient code.

Renaming is a subtle issue. The ssa construction renames all the values in
the program according to a particular discipline. This name space helps in many
optimizations. The naming conventions described in the discussion of lazy code
motion, and in the digression on page 191, simplify the implementation of many
transformations by creating a one-to-one mapping between the name used for a
value and the textual form of the operation that computed the value. Compiler
writers have long recognized that moving operations around in the control-flow

4
Lcm does not use ssa names because those names obscure lexical identity. Recreating

that lexical identity incurs extra cost; as a result, an ssa-based lcm will run more slowly than
the version described in §10.3.2.

JANUARY, 2003

10.4. ADVANCED TOPICS 439

graph (and, in fact, changing the cfg itself) can be beneficial. In the same way,
they should recognize that the compiler need not be bound by the name space
introduced by the programmer or by the translation from a source language to
a specific ir. Renaming values into a name space appropriate to the task at
hand can improve the effectiveness of many optimizations.

10.3.5 Redundancy Elimination

Chapter 8 uses redundancy elimination as its primary example to explore the
different scopes of optimization. It describes local value numbering, super-
local value numbering, and dominator-based value numbering—all based on a
bottom-up, detail-oriented approach that uses hashing to recognize values that
must be equivalent. It shows the use of available expressions to perform global
common-subexpression elimination as a way of introducing global analysis and
transformation, and makes the point that global optimization typically requires
a separation between analysis and transformation.

Earlier in this chapter, lcm appears as an example of code motion. It extends
the data-flow approach pioneered with available expressions to a framework that
unifies code motion and redundancy elimination. Hoisting eliminates identical
operations to reduce the code size; this reduction does not, typically, decrease
the number of operations that the program executes.

10.4 Advanced Topics

Most of the examples in this chapter have been chosen to illustrate a specific
effect that the compiler can use to speed up the executable code. Sometimes,
performing two optimizations together can produce results that cannot be ob-
tained with any combination of applying them separately, The next subsection
shows one such example—combining constant propagation with unreachable
code elimination. Section 10.4.2 briefly describes some of the other objective
functions that compilers consider. Finally, §10.4.3 discusses some of the is-
sues that arise in choosing a specific application order for the optimizer’s set of
transformations.

10.4.1 Combining Optimizations

Sometimes, formulating two distinct optimizations together and solving them
jointly can produce results that cannot be obtained by any combination of the
optimizations run separately. As an example, consider the sparse simple con-
stant propagation algorithm described in §10.3.3. It assigns a lattice value to
the result of each operation in the ssa form of the program. When it halts, it
has tagged every definition with a lattice value that is either �, ⊥ or a constant.
A definition can only have the value � if it relies on an uninitialized variable,
indicating a logical problem in the code being analyzed.

Sparse simple constant propagation assigns a lattice value to the argument
used by a conditional branch. If the value is ⊥, then either branch target is
reachable. If the value is neither ⊥ nor �, then the operand must have a known

SUBMITTED TO MORGAN-KAUFMANN

440 CHAPTER 10. SCALAR OPTIMIZATIONS

SSAWorkList ← ∅
CFGWorkList ← {n0}
for each block b

mark b as unreachable
for each operation o in b

Value(o) ← �
while (CFGWorkList �= ∅ or

SSAWorkList �= ∅)
if CFGWorkList �= ∅ then

remove b from CFGWorkList
mark b as reachable
simultaneously model all the

φ-functions in b
model, in order, each

operation o in b

if SSAWorkList �= ∅ then
remove s = 〈u,v〉 from SSAWorkList
let o be the operation that uses v

if Value(o) �= ⊥ then
t ← result of modeling o
if t �= Value(o) then

Value(o) ← t
for each SSA edge e = 〈o,x〉

if block(x) is reachable
then add e to SSAWorkList

The Algorithm

x ← c: (for constant c)
Value(x) ← c

x ← φ(y,z):

Value(x) ← Value(y) ∧ Value(z)

x ← y op z:
if Value(y) �= ⊥ & Value(z) �= ⊥

then Value(x) ← interpretation
of Value(y) op Value(z)

cbr ri → l1,l2:
if ri = ⊥ or ri = TRUE

and block l1 is unreachable
then add block l1 to CFGWorkList

if ri = ⊥ or ri = FALSE
and block l2 is unreachable
then add block l2 to CFGWorkList

jump → l1:
if block l1 is unreachable

then add block l1 to CFGWorkList

Modeling Rules

Figure 10.20: Sparse Conditional Constant Propagation

value and the compiler can rewrite the branch with a jump to one of its two
targets, simplifying the cfg. Since this removes an edge from the cfg, it may
remove the last edge entering the block labelled with the removed branch target,
making that block unreachable. In principle, constant propagation can ignore
any effects of an unreachable block. Sparse simple constant propagation has no
mechanism to take advantage of this knowledge.

We can extend the sparse simple constant algorithm to capitalize on these
observations. The result, called sparse conditional constant propagation (sccp),
appears in Figure 10.20. The left side shows the algorithm. The right side
sketches the modeling rules for the kinds of operations that sccp must process.

To avoid including the effects of unreachable operations, sccp handles both
initialization and propagation differently than the sparse simple constant algo-
rithm. First, sccp marks each block with a reachability tag. Initially, each
block’s tag is set to indicate that the block is unreachable. Second, sccp must

JANUARY, 2003

10.4. ADVANCED TOPICS 441

initialize the lattice value for each ssa name to �. The earlier algorithm can han-
dle assignments of known-constant values during initialization (e.g., for xi ← 17,
it can initialize Value(xi) to 17). Sccp cannot change the lattice value until it
proves that the assignment is reachable. Third, the algorithm needs two work-
lists for propagation: one for blocks in the cfg and the other for edges in the
ssa graph. Initially, the cfg worklist contains only the entry node n0 while the
ssa worklist is empty. The iterative propagation runs until it exhausts both
worklists (a classic, albeit complex, fixed-point calculation).

To process a block b from the cfg worklist, sccp first marks b as reachable.
Next, it models the effect of all the φ-functions in b, taking care to read the
lattice values of all the relevant arguments before redefining the lattice values of
their outputs. (Recall that all the φ-functions in a block execute simultaneously.)
Next, sccp models the execution of each operation in b in a linear pass over
the block. The right side of Figure 10.20 shows a set of typical modeling rules.
These evaluations may change the lattice values of the ssa names defined by
the operations.

Any time that sccp changes the lattice value for a name, it must examine
the ssa graph edges that connect the operation defining the changed value to
subsequent uses. For each such edge, s = 〈u,v〉, if the block containing v is
reachable, sccp adds the edge s to the ssa worklist. Uses in an unreachable
block are evaluated once sccp discovers that the block is reachable.

The last operation in b must be either a jump or a branch. If it is a jump
to a block marked as unreachable, sccp adds that block to the cfg worklist.
If it is a branch, sccp examines the lattice value of the controlling conditional
expression. This indicates that one or both branch targets are reachable. If this
selects a target that is not yet marked as reachable, sccp adds it to the cfg

worklist.
After the propagation step, a final pass is required to replace operations that

have operands with Value tags other than ⊥. It can specialize many of these
operations. It should also rewrite branches that have known outcomes with
the appropriate jump operations. (This lets later passes remove the code and
simplify the control flow, as in §10.3.1). Sccp cannot rewrite the code until it
knows the final lattice value for each definition, since a Value tag that indicates
a constant value can later become ⊥.

Subtleties in Evaluating and Rewriting Operations Some subtle issues arise in
modeling individual operations. For example, if the algorithm encounters a
multiply operation with operands � and ⊥, it might conclude that the operation
produces ⊥. Doing so, however, is premature. Subsequent analysis might lower
the � to zero, so that the multiply produces a value of zero. If sccp uses
the rule �× ⊥ → ⊥, it introduces the potential for non-monotonic behavior—
the multiply’s value might follow a sequence {�,⊥, 0}. This can increase the
running time of the algorithm, since the time bound depends on monotonic
progress through a shallow lattice. Equally important, it can incorrectly cause
other values to reach ⊥.

To address this, sccp should use three rules for multiplies that involve ⊥,

SUBMITTED TO MORGAN-KAUFMANN

442 CHAPTER 10. SCALAR OPTIMIZATIONS

as follows: �×⊥ → �, α×⊥ → ⊥, α �= 0, and 0×⊥ → 0. This same effect
occurs with any operation for which the value of one argument can completely
determine the result. Other examples include a shift by more than the word
length, a logical and with zero, and a logical or with all ones.

Some rewrites have unforeseen consequences. For example, replacing 4 ×
x, for nonnegative x, with a shift replaces a commutative operation with a
noncommutative one. If the compiler subsequently tries to rearrange expressions
using commutativity, this early rewrite forecloses an opportunity. This kind of
interaction can have noticeable effects on code quality. To choose when the
compiler should convert 4×x into a shift, the compiler writer must consider the
order in which optimizations will be applied.

Effectiveness Sccp finds constants that the sparse simple constant algorithm
cannot find. Similarly, it discovers unreachable code that cannot be found by
any combination of the algorithms described in §10.3.1. It derives its power from
combining reachability analysis with the propagation of lattice values. It can
eliminate some cfg edges because the lattice values are sufficient to determine
which path a branch takes. It can ignore ssa edges that arise from unreachable
operations (by initializing those definitions to �) because those operations will
be evaluated if the block becomes reachable. The power of sccp arises from the
interplay between these ideas—constant propagation and reachability.

If reachability played no role in determining the lattice values, then the same
effects could be achieved by performing constant propagation (and rewriting
constant-valued branches as jumps) followed by unreachable-code elimination.
If constant propagation played no role in reachability, then the same effects
could be achieved by the other order—unreachable-code elimination followed
by constant propagation. The power of sccp to find simplifications beyond
those combinations comes precisely from the fact that the two optimizations
are interdependent.

10.4.2 Other Objectives for Optimization

Generating Smaller Code In some applications, the size of the compiled code is
important. If the application is transmitted across a relatively slow communi-
cations link before it executes, then the perceived running time is the sum of
the download time plus the running time. This places a premium on code size,
since the user waits while the code is transmitted. Similarly, in many embedded
applications, the code is stored in a permanent, read-only memory (rom). Since
larger roms cost more money, code size becomes an economic issue.

The compiler writer can attack this problem in several ways. It can apply
transformations that directly shrink the code.

• Hoisting (described above in §9.2.4), shrinks the code by replacing mul-
tiple identical operations with a single, equivalent operation. As long as
the expression is very busy at the point of insertion, hoisting should not
lengthen any of the execution paths.

• Sinking moves common code sequences forward in the cfg to a point

JANUARY, 2003

10.4. ADVANCED TOPICS 443

where one copy of the sequence suffices. In cross jumping, a specialized
form of sinking, the compiler examines all the branches that target the
same label. If the same operation precedes each branch to the label, the
compiler can move the operation to the label and keep just one copy of it.
This eliminates duplication without lengthening the execution paths.

• Procedure abstraction uses pattern matching techniques to find repeated
code sequences and replace them with calls to a single common imple-
mentation. If the common code sequence is longer than the sequence
required for the call, this saves space. It makes the code slower, since ev-
ery abstracted code sequence is replaced with a jump into the abstracted
procedure and a jump back. Procedure abstraction can be applied across
the whole program to find common sequences from different procedures.

As another approach, the compiler can avoid using transformations that enlarge
the code. For example, loop unrolling typically expands the code. Similarly,
Lcm may enlarge the code by inserting new operations. By choosing algorithms
carefully and avoiding those that cause significant code growth, the compiler
writer build a compiler that always produces compact code.

Avoiding Page Faults and Instruction-Cache Misses In some environments, the
overhead from page faults and instruction-cache misses make it worthwhile to
transform the code in ways that improve the code’s memory locality. The com-
piler can use several distinct but related effects to improve the paging and cache
behavior of the instruction stream.

• Procedure Placement: If A calls B often, the compiler would like to ensure
that A and B occupy adjacent locations in memory. If they fit on the same
page, this can reduce the program’s working set. Placing them in adjacent
locations also reduces the likelihood of a conflict in the instruction cache.

• Block Placement: If block bi ends in a branch and the compiler knows
that the branch usually transfers control to bj , then it can place bi and bj

in contiguous memory. This makes bj the fall-through case of the branch
(and most processors both support and favor the fall-through case). It
also increases the effectiveness of any hardware prefetching mechanism in
the instruction cache.

• Fluff removal: If the compiler can determine that some code fragments ex-
ecute rarely—that is, they are the (mostly) untaken targets of branches—
then it can move them to distant locations. Such rarely executed code
needlessly fills the cache and decreases the density of useful operations
brought into the processor and executed. (For exception handlers, it may
pay to keep the code on the same page, but move it out of line.)

To implement these transformations effectively, the compiler needs accurate
information about how often each path through the code is taken. Typically,
gathering this information requires a more complex compilation system that

SUBMITTED TO MORGAN-KAUFMANN

444 CHAPTER 10. SCALAR OPTIMIZATIONS

collects execution-profile data and relates that data back to the code. The user
compiles an application and runs it on “representative” inputs. The profile data
from these runs is then used to optimize the code in a second compilation. An
alternative, as old as compilation, is to build a model of the cfg and estimate
execution frequencies using reasonable transition probabilities.

10.4.3 Choosing an Optimization Sequence

Choosing a specific set of transformations and an order for applying them is a
critical task in the design of an optimizing compiler. For any particular problem,
many distinct techniques exist. Each of them catches a different set of cases.
Many of them address parts of several problems.

To make this concrete, recall the methods that we have presented for elim-
inating redundancies. These include three value numbering techniques (lo-
cal value numbering, superlocal value numbering, and dominator-based value
numbering) and two techniques based on data-flow analysis (global common-
subexpression elimination based on available expressions and lazy code mo-
tion). The value-numbering techniques find and eliminate redundancies using
a value-based notion of redundancy. They differ in the scope of optimization—
covering single blocks (local value numbering), extended basic blocks (ebb value
numbering), and the entire cfg minus back edges (dominator-based value num-
bering). They also perform constant propagation and use algebraic identities
to remove some useless operations. The data-flow-based techniques use a lexi-
cal notion of redundancy—two operations are equivalent only if they have the
same name. Global common-subexpression elimination only removes redundan-
cies, while lazy code motion removes redundancies and partial redundancies and
performs code motion.

In designing an optimizing compiler, the compiler writer must decide how
to remove redundancies. Choosing among these five methods involves decisions
about which cases are important, the relative difficulty of implementing the
techniques, and how the compile-time costs compare to the run-time benefits.
To complicate matters further, more techniques exist.

Equally difficult, optimizations that address different effects interact with
each other. Optimizations can create opportunities for other optimizations, as
constant propagation and lazy code motion improve strength reduction by re-
vealing more values as region constants. Symmetrically, optimizations can make
other optimizations less effective, as redundancy elimination can complicate reg-
ister allocation by making values live over longer regions in the program. The
effects of two optimizations can overlap. In a compiler that implements sparse
conditional constant propagation, the constant-folding capabilities of the value-
numbering techniques are less important.

After selecting a set of optimizations, the compiler writer must choose an
order in which to apply them. Some constraints on the order are obvious;
for example, it is worth running constant propagation and code motion before
strength reduction. Others are less obvious; for example, should loop unswitch-
ing precede strength reduction or not? Should the constant-propagation pass

JANUARY, 2003

10.5. SUMMARY AND PERSPECTIVE 445

convert x ← y × 4, for y ≥ 0, to a shift operation? The decision may depend on
which passes precede constant propagation and which passes follow it. Finally,
some optimizations might be run multiple times. Dead-code elimination cleans
up after strength reduction. After strength reduction, the compiler might run
constant propagation again in an attempt to convert any remaining multiplies
into shifts. Alternatively, it might use local value numbering to achieve the
same effect, reasoning that any global effects have already been caught.

If the compiler writer intends to provide different levels of optimization,
this entails designing several compilation sequences, each with its own set of
rationales and its own set of passes. Higher levels of optimization typically add
more transformations. They may also repeat some optimizations to capitalize
on opportunities created by earlier transformations. See Muchnick [262] for
suggested orders in which to perform optimizations.

10.5 Summary and Perspective

The design and implementation of an optimizing compiler is a complex un-
dertaking. This chapter has introduced a conceptual framework for thinking
about transformations—the taxonomy of effects. Each category in the taxon-
omy is represented by several examples—either in this chapter or elsewhere in
the book.

The challenge for the compiler writer is to select a set of transformations that
work well together to produce good code—code that meets the user’s needs. The
specific transformations implemented in a compiler determine, to a large extent,
the kinds of programs for which it will produce good code.

Chapter Notes

While the algorithms presented in this chapter are modern, many of the basic
ideas were well known in the 1960s and 1970s. Dead code elimination, code
motion, strength reduction, and redundancy elimination are all described by
Allen in 1969 [12] and in Cocke [86]. A number of survey papers from the
1970’s provide overvies of the state of the field [15, 28, 308]. Modern books
by Morgan [260] and Muchnick [262] both discuss the design, structure, and
implementation of optimizing compilers. Wolfe [335] and Allen [19] focus on
dependence-based analysis and transformations.

Dead algorithm implements a mark-sweep style of dead code elimination
that was introduced by Kennedy [203, 206]. It is reminiscent of the Schorr-
Waite marking algorithm [299]. Dead is specifically adapted from the work of
Cytron et al. [104, Section 7.1]. Clean was developed and implemented in 1992
by Rob Shillner [245].

lcm improves on Morel and Renvoise’s classic algorithm for partial redun-
dancy elimination [259]. That original paper inspired many improvements, in-
cluding [76, 121, 312, 124]. Knoop’s lazy code motion [215] improved code place-
ment; the formulation in §10.3.2 uses equations from Drechsler [125]. Bodik
combined this approach with replication to find and remove all redundant

SUBMITTED TO MORGAN-KAUFMANN

446 CHAPTER 10. SCALAR OPTIMIZATIONS

code [41].
Hoisting appears in the Allen-Cocke catalog as a technique for reducing

code space [15]. The formulation using very busy expressions appears in several
places, including Fischer [140]. Sinking or cross-jumping is described by Wulf
et al. [339].

Both peephole optimization and tail-recursion elimination date to the early
1960s. Peephole optimization was first described by McKeeman [253]. Tail-
recursion elimination is older; folklore tells McCarthy described it at the chalk-
board during a talk in 1963. Steele’s thesis [314] is a classic reference for tail-
recursion elimination.

The sparse simple constant algorithm, Sscp, is due to Reif [285]. Wegman
and Zadeck reformulate Sscp to use ssa form and present the Sccp algorithm
from §10.4.1 [328, 329]. Their work clarified the distinction between optimistic
and pessimistic algorithms; Click discusses the same issue from a set-building
perspective [79].

Operator strength reduction has a rich history. One family of strength-
reduction algorithms developed out of work by Allen, Cocke, and Kennedy [204,
83, 85, 18, 250]. The OSR algorithm fits in this family [101]. Another family of
algorithms grew out of the data-flow approach to optimization exemplified by
the lcm algorithm; techniques in this family include [118, 192, 198, 120, 216,
209, 169]. The version of OSR in §10.3.3 only reduces multiplications. Allen
shows the reduction sequences for many other operators [18]; extending OSR to
handle these cases is straightforward.

Loop optimizations have been studied extensively [27, 19]; Kennedy used
unrolling to avoid copy operations at the end of a loop [202]. Cytron presents
an interesting alternative to unswitching [105]. Wolf and Lam unified the treat-
ment of a set of loop optimizations called the unimodular transformations [334].
McKinley gives practical insight into the impact of memory optimizations on
performance [89, 254].

Combining optimizations, as in sccp, often leads to improvements that can-
not be obtained by independent application of the original optimizations. Value
numbering combines redundancy elimination, constant propagation, and simpli-
fication of algebraic identities [50]. Lcm combines elimination of redundancies &
partial redundancies with code motion [215]. Click [81] combines Alpern’s par-
titioning algorithm [20] with sccp [329]. Many authors have combined register
allocation and instruction scheduling [158, 267, 268, 261, 45, 274, 298].

Shrinking existing code or generating smaller programs has been a persistent
theme in theliterature. Fabri [134] showed algorithms to reduce data-memory
requirements by automatic generation of storage overlays. Marks [249] had the
compiler synthesize both a compact, program-specific instruction set and an
interpreter for that instruction set. Fraser [148] used procedure abstraction
based on suffix-trees. Recent work has focused on compressing code for trans-
mission [130, 145], and on directly generating small code—either with hardware
assistance for decoding [233, 234] or without it [99].

Modern algorithms for code placement begin with Pettis and Hansen [273].
Later work includes work on branch alignment [59, 340] and code layout [88,

JANUARY, 2003

10.5. SUMMARY AND PERSPECTIVE 447

73, 156]. These optimizations improve performance by improving the behavior
of code memory in a hierarchical memory system. They also eliminate branches
and jumps.

SUBMITTED TO MORGAN-KAUFMANN

