
Journal of Functional Programming
http://journals.cambridge.org/JFP

Additional services for Journal of Functional Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

When Maybe is not good enough

MICHAEL SPIVEY

Journal of Functional Programming / Volume 22 / Issue 06 / November 2012, pp 747 756
DOI: 10.1017/S0956796812000329, Published online: 10 September 2012

Link to this article: http://journals.cambridge.org/abstract_S0956796812000329

How to cite this article:
MICHAEL SPIVEY (2012). When Maybe is not good enough. Journal of Functional Programming,
22, pp 747756 doi:10.1017/S0956796812000329

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JFP, by Username: nrnr, IP address: 108.20.67.9 on 29 May 2013

JFP 22 (6): 747–756, 2012. c© Cambridge University Press 2012

doi:10.1017/S0956796812000329 First published online 10 September 2012

747

FUNCTIONAL PEARL

When Maybe is not good enough

MICHAEL SP IVEY

Department of Computer Science, University of Oxford, Oxford, UK

(e-mail:)mike@cs.ox.ac.uk)

1 Introduction

Many variations upon the theme of parser combinators have been proposed, too

many to list here, but the main idea is simple: A parser for phrases of type α is

a function that takes an input string and produces results (x, rest), where x is a

value of type α, and rest is the remainder of the input after the phrase with value x

has been consumed. The results are often arranged into a list, because this allows a

parser to signal failure with the empty list of results, an unambiguous success with

one result, or multiple possibilities with a longer ‘list of successes’.

type Parser1 α = String → [(α, String)].

This type admits operations � for sequencing and ⊕ for alternation that make

it natural to translate any non-left-recursive context-free grammar directly into a

parser.

Producing a list of results naturally leads to backtracking parsers that can be

exponentially slow, so it is preferable where possible to substitute a different parser

type,

type Parser2 α = String → Maybe (α, String).

As we shall see, parsers with this type do not allow the kind of deep backtracking in

which a parser that has produced one result can be asked to produce another one.

They do, however, provide something weaker that we might call shallow backtracking,

where a parser xp ⊕ yp produces a single positive result if either xp or yp would

succeed on its own given the original input. Provided the grammar allows it, using

this parser type reduces the amount of fruitless searching, and permits the record of

choices made in recognising a phrase to be discarded as soon as one of the choices

succeeds.

If parsers based on Maybe are preferable to those based on lists, it is natural to

ask what grammars they can parse properly. With an unambiguous grammar, an

input string will either fail to be in the language, or will have exactly one derivation

tree. We shall say that a parser works correctly if it has type Parser1 α and in these

two cases returns [] and [(x, “ ”)] respectively (for some value x :: α), or if it has

type Parser2 α and it returns Nothing and Just (x, “ ”) in the two cases.

748 M. Spivey

It is not hard to show that the list-based parser works correctly for any grammar

that has no left recursion. At the other extreme, grammars that are LL(1) can be

parsed with no backtracking at all, and for them both list-based and Maybe-based

parsers work correctly. As we shall shortly see, it is useful to allow grammars that

are ‘not quite LL(1)’, so that the question arises whether a Maybe-based parser

will continue to work correctly for them. The result reported in this paper is that

this question is not decidable by any general algorithm. The essence of this result

has been known for a surprisingly long time, and the contribution of the present

paper is to present it afresh in the context of parser combinators. Although, like all

undecidability results, this result has a negative character, we shall be able to rescue

positive aspects of it by animating the construction in its proof as a functional

program.

Although the discussion in this paper is phrased in terms of monadic parser

combinators because of their popularity, in fact we nowhere exploit the possibility

that, in a compound parser xp �= (λx → yp), the syntactic behaviour of yp may

depend on the value x returned by xp. Because of this, the results apply equally well

to more restrictive frameworks such as applicative functors (McBride & Paterson,

2008).

2 Parser combinators

We shall want to experiment with both parsers that return a list of results and

parsers that use Maybe instead. Luckily, the type class system of Haskell allows us

to describe parser combinators in a way that is independent of the monad m that is

used to deliver the results. As usual, we need to wrap the parser type in a newtype

construction, so we can make it belong to various type classes.

newtype Parser m α = Parser {runParser :: String → m (α, String)}.

The type Parser m α contains parsers that accept a string and deliver results of type

α using the monad m. If m is indeed a monad, then so is Parser m.

instance Monad m ⇒ Monad (Parser m) where

return x = Parser (λs → return (x, s))

xp �= f =

Parser (λs → runParser xp s�= (λ(x, s′) → runParser (f x) s′)).

As always with monads, we may use the notation xp � yp as an abbreviation for

xp �= (λx → yp) when the value x returned by parser xp is not used by yp.

Haskell’s type class MonadPlus describes monads that additionally provide a

constant mzero and a binary operation mplus , which we here write as ⊕.

class Monad m ⇒ MonadPlus m where

mzero :: m α

(⊕) :: m α → m α → m α.

Both the list type constructor [] and the Maybe constructor are declared in the

standard library as instances of MonadPlus .

Functional pearl 749

instance MonadPlus [] where

mzero = []

(⊕) = (++)

instance MonadPlus Maybe where

mzero = Nothing

(Just x) ⊕ ym = Just x

Nothing ⊕ ym = ym .

There are several equational laws that are satisfied by both of these instances of

MonadPlus: for example, ⊕ is associative and has mzero as a unit element. But there

is one significant law that is satisfied by the list monad and not by Maybe.

(xm ⊕ ym)�= f = (xm �= f) ⊕ (ym �= f). (∗)

A simple example shows this: if we define

guard :: MonadPlus m ⇒ (α → Bool) → α → m α

guard p x = if p x then return x else mzero,

and let even :: Int → Bool be the obvious predicate, then the expression

(return 1�= guard even) ⊕ (return 2�= guard even)

evaluates to Nothing ⊕ Just 2 = Just 2, but the expression

(return 1 ⊕ return 2)�= guard even

evaluates to Just 1�= guard even = Nothing . The alternative value 2 is discarded

as soon as the expression in parentheses succeeds with the value 1; this is beneficial

in terms of efficient use of time and space, but in this example it leads to failure,

because the result 1 does not satisfy the subsequent test even .

If m is an instance of MonadPlus , then so is Parser m. The additional operations

are obtained by lifting the operations on m.

instance MonadPlus m ⇒ MonadPlus (Parser m) where

mzero = Parser (λs → mzero)

xp ⊕ yp = Parser (λs → runParser xp s ⊕ runParser yp s).

The law (∗) also fails for the parser monad Parser Maybe based upon Maybe,

something that will turn out to be crucial later.

We shall use the operations�= and ⊕ to build parsers that handle concatenation

and alternation in context-free grammars. All that is missing now are the basic

parsers that deal with individual characters. The parser pChar c compares the next

character of the input with c and succeeds if they match, consuming the character c.

pChar :: MonadPlus m ⇒ Char → Parser m ()

pChar c =

Parser (λs → case s of c′ : s′ | c ≡ c′ → return ((), s′); → mzero).

750 M. Spivey

For convenience, we also define pString s so that it recognises the characters in

the string s one after another, so that pString “abc” is equivalent to pChar ‘a’ �
pChar ‘b’� pChar ‘c’.

pString :: MonadPlus m ⇒ String → Parser m ()

pString = foldr (�) (return ()) · map pChar .

3 LL(1) and beyond

Broadly speaking, a grammar belongs to the class LL(1) if, whenever alternatives

such as A → B | C occur, the set of tokens that can start an instance of B is

disjoint from the set that can start an instance of C; this must hold whether B and

C are single non-terminals or other strings that appear as the right-hand sides of

productions. (The story is complicated a bit if either B or C can produce the empty

string, but we can ignore that complication here.) If we build a parser for A from

parsers for B and C by writing pA = pB ⊕ pC , then we can be sure that no input

string would cause both pB and pC to succeed. So if pB succeeds, it is safe to rule

out a subsequent attempt to apply pC , and that is what happens in a parser based

on Maybe.

For the Maybe-based parser to work, it is certainly sufficient that the grammar is

LL(1). On the other hand, the LL(1) condition is not necessary in all cases, as is easily

shown by the grammar S → 0 0 | 0 1, where 0 and 1 are tokens. Let us consider what

happens when the parser pString “00” ⊕ pString “01” is applied to input “01” using

the Maybe monad. First, the left alternative, pString “00” = pChar ‘0’� pChar ‘0’,

is tried; the first ‘0’ succeeds, but the second one fails, and this causes the whole

alternative to fail. At this point, the alternation operator ⊕, seeing that its left

operand has failed, is able to try its right operand, the parser pString “01”, on the

original input. This parser succeeds, and so the overall outcome is success, as it

should be.

In more complicated settings, Maybe-based parsers often continue to work

correctly even where the grammar fails the LL(1) condition. For example, in a

programming language grammar we could write

stmt → variable := expr | expr ,

perhaps permitting a solitary expression as a statement in order to allow for

procedures called for their side effect. A Maybe-based parser could work correctly

with this grammar, recognising a variable at the beginning of a statement, then

finding that it is not followed by :=, switching to the other alternative, and parsing

an expression as a statement in itself. In this case, it is not easy to make the grammar

LL(1) without relaxing the condition that the left-hand side of an assignment should

be a variable rather than a general expression.

So far we have seen that all grammars that are LL(1) can be parsed correctly

with Maybe-based combinators, but so can some grammars that are not LL(1).

The next step is to introduce an undecidable problem, which we shall use first to

show that there is no algorithm that decides whether a given context-free grammar

Functional pearl 751

a

ab

1

b

ca

0

ca

a

2

a

ab

1

abc

c

3

Fig. 1. A solution.

is ambiguous, then by a modification of the argument, to show that no algorithm

can decide, given a context-free grammar, whether the corresponding Maybe-based

parser works correctly.

4 Post’s correspondence problem

In Post’s correspondence problem, we are given an endless supply of several different

kinds of tiles, each labelled with strings of letters at the top and the bottom, and

we are asked whether it is possible to lay out a row of tiles in such a way that the

same string is obtained by reading across the top labels or the bottom labels as in

Figure 1, where both the top and the bottom rows of labels spell out “abcaaabc”.

Each given tile may be used once, several times or not at all in the layout.

We can represent a tile by a pair of strings, and we say that a layout is a solution

if the upper and lower labels concatenate to give the same string:

type Tile = (String , String)

solution :: [Tile] → Bool

solution layout = (concat (map fst layout) ≡ concat (map snd layout)).

To find solutions for a given set of n tiles, we can generate non-empty layouts in

increasing order of length, representing each layout by a list of indices into the list

of tiles,

choices :: Int → [[Int]]

choices n = tail (concat (iterate step [[]]))

where step css = [c : cs | c ← [0 . . n − 1], cs ← css].

For example:

> choices 4

[[0], [1], [2], [3], [0, 0], [0, 1], [0, 2], [0, 3], [1, 0], . . .

The solutions are those layouts where the upper and lower labels match,

solve :: [Tile] → [[Int]]

solve tiles =

[cs | cs ← choices (length tiles), solution (map (tiles!!) cs)].

This function quickly solves the set of tiles shown in Figure 1:

> let sipser = [(“b”, “ca”), (“a”, “ab”), (“ca”, “a”), (“abc”, “c”)]

> solve sipser

[[1, 0, 2, 1, 3], [1, 0, 2, 1, 3, 1, 0, 2, 1, 3], . . .

752 M. Spivey

We could just as well represent a solution by a list of tiles instead of a list of integer

indices; but the lists of indices will play a vital role later in the story, so it is best to

introduce them from the start.

If a set of tiles has a solution, then solve will find it eventually; but some sets

have no solution, and for them solve does not return the empty list, but instead

runs forever without producing any information. Sometimes it is obvious that there

are no solutions, perhaps because there is no tile where the top and the bottom

labels begin with the same character. In general, however, it is undecidable whether

a given set of tiles has a solution. We will assume this result here without proving

it; Sipser (2005) gives a proof by reduction from the halting problem for turing

machines. (The tiles shown in Figure 1 are taken from an example in the same

work.) Before returning to the problem of Maybe-based parser combinators, we will

first mention a classic undecidable problem connected with parsing: the problem of

determining whether a grammar is ambiguous.

5 Ambiguity

Given a set of tiles, we can construct a context-free grammar that is ambiguous

exactly if the set of tiles has a solution. The layout described in Section 4 is

[1, 0, 2, 1, 3], leading to the labels “abcaaabc”, and we will encode this as the string

“3+1+2+0+1=abcaaabc”.

To the left of the equals sign appears, in reverse order, the list of tiles chosen. To

the right appears the concatenated sequence of labels from the tiles, in this case the

same string whether we take the upper labels or the lower ones.

Given a list of labels, either the upper ones from a list of tiles or the lower ones,

we can write productions to describe the set of strings that can be assembled. We

can express these productions as a function that takes the list of labels and returns

a parser:

assembly :: MonadPlus m ⇒ [String] → Parser m ()

assembly labels = pA

where

pA = msum [(pString (show i)� pA′ � pString t | (i, t) ← zip [0 . .] labels]

pA′ = (pChar ‘+’� pA) ⊕ pChar ‘=’.

The standard function msum = foldr (⊕) mzero combines a list of alternatives into

a single parser.

For the list labels = [“b”, “a”, “ca”, “abc”], the parser assembly labels corresponds

to the productions,

A → 0 A′ b | 1 A′ a | 2 A′ c a | 3 A′ a b c

A′ → + A | =.

The reason for the reversed list of tile indices emerges here, because the grammar

generates the list of indices and the string of labels simultaneously by growing them

outwards from the middle, one in each direction. The explicit list of indices is helpful

Functional pearl 753

b

ca

0

a

ab

1

ca

a

2

Fig. 2. Another layout.

in ensuring that the parser assembly labels work correctly in either monad, because

the indices guide the sequence of choices without the need for deep backtracking.

Each parser pString (show i) � pA′ � pString t begins by looking for the string

show i, so that only one of them can succeed on any input string.

Now, given a tile set tiles , we can form the following two parsers:

top = assembly (map fst tiles)

bottom = assembly (map snd tiles).

One of these parsers accepts strings that describe a layout and the labels on its

top row, and the other accepts similar strings for the bottom row. The layout in

Figure 2 shows that the string “2+1+0=baca” is accepted by top and the string

“2+1+0=caaaba” is accepted by bottom for our usual set of tiles. The lists of

indices in these two strings match, because they come from the same layout, but the

labels do not match, because the layout is not a solution. If the Post correspondence

problem for a set of tiles does have a solution, then there will be a string, like

“3+1+2+0+1=abcaaabc” in our example, that is accepted by both top and bottom .

Conversely, if any string is accepted by both, then the string contains the list of tiles

in a solution, together with the labels that can be read off on both the top and the

bottom rows.

It is vital to include the indices in the strings because otherwise we would be

testing only whether there is a string that can form the top row of one layout and

the bottom row of another one. In our example, the string “aca” can be obtained

as the top row of the layout [1, 2] and the bottom row of the layout [2, 0], but that

is not enough for a solution because a solution requires a string that is both the top

and the bottom row of the same layout.

We can put the two parsers together with ⊕ to get a parser that accepts at least

one string in two different ways exactly if the set of tiles has one or more solutions.

For the purpose of experiment, we will use the list monad, written [] in the type of

the parser so that it can return multiple results,

ambiguous :: [Tile] → Parser [] Int

ambiguous tiles =

(assembly (map fst tiles)� pChar ‘!’� return 1)

⊕ (assembly (map snd tiles)� pChar ‘!’� return 2).

The character ‘!’ is used as an end-of-file marker to make sure the whole string is

matched, and the return values 1 and 2 make it easier to see what is happening.

Expressing the same construction as a grammar, we would have one set of

productions for the top labels in the tiles, similar to those for A and A′ shown

754 M. Spivey

earlier, a second set for the bottom labels using non-terminals B and B′, and two

productions S → A ! | B ! to join them together.

Let us try the parser on some examples.

> runParser (ambiguous sipser) “2+1+0=baca!”

[(1, “ ”)]

> runParser (ambiguous sipser) “2+1+0=caaba!”

[(2, “ ”)]

> runParser (ambiguous sipser) “2+1+0=babc!”

[]

> runParser (ambiguous sipser) “3+1+2+0+1=abcaaabc!”

[(1, “ ”), (2, “ ”)].

The top labels in Figure 2 read “baca”, and the string that encodes this fact is

accepted with the result 1; similarly, “caaba” appears as the bottom labels in the

same layout, and a corresponding string is accepted with the result 2. On the other

hand, the string “babc” does not represent either the top or the bottom labels on

these tiles, so the next test string is not accepted at all. Finally, the string “abcaaabc”

can be obtained from either the top or the bottom labels of the tiles 1, 0, 2, 1, 3,

so the string “3+1+2+0+1=abcaaabc!” is accepted in two ways by the parser,

showing that the grammar is ambiguous.

For any set of tiles, we can form the parser ambiguous tiles , and that parser

will return multiple results on exactly those strings that encode a solution to the

correspondence problem. So the problem of deciding whether the set of tiles has a

solution is reduced to the problem of determining whether the grammar behind this

parser is ambiguous, and we may deduce that the ambiguity problem is undecidable.

Next, we will use a similar construction to show that it is not decidable whether a

grammar is correctly parsed by a Maybe-based parser.

6 Shallow and deep backtracking

In place of the parser constructed by the function ambiguous , let us consider now

another parser, also put together from two instances of assembly . This time, we leave

the monad m unspecified:

backtrack :: MonadPlus m ⇒ [Tile] → Parser m Int

backtrack tiles = inner �= (λx → pChar ‘!’� return x)

where

inner = ((assembly (map fst tiles)� return 1)

⊕ (assembly (map snd tiles)� pChar ‘?’� return 2)).

Again, ‘!’ is used as an end-of-file marker, but the grammar is carefully factored,

bearing in mind that the distributive law (∗) is not satisfied by Maybe. Note too the

presence of the character ‘?’ in one alternative of the inner parser. For convenience,

we give names to specialised versions of the parser:

backtrackL = backtrack :: [Tile] → Parser [] Int

backtrackM = backtrack :: [Tile] → Parser Maybe Int .

Functional pearl 755

Let us examine what happens when the list-based parser reads a typical input string:

> runParser (backtrackL sipser) “3+1+2+0+1=abcaaabc?!”

[(2, “ ”)].

Because the input string consists of a solution followed by “?!”, the parsing goes as

follows:

• The parser assembly (map fst tiles) succeeds, causing inner to produce the result

1 and the remainder “?!”.

• On this remainder, the parser pChar ‘!’ fails, causing backtracking.

• Now the parser assembly (map snd tiles) succeeds, producing again the remain-

der “?!”. After this, the parser pChar ‘?’ consumes the ‘?’, causing inner to

produce the result 2 and the remainder “!”.

• This time the parser pChar ‘!’ succeeds, and the overall outcome is success.

But what happens if we use a parser based on Maybe instead?

> runParser (backtrackM sipser) “3+1+2+0+1=abcaaabc?!”

Nothing .

This time the story is different. The parser assembly (map fst tiles) succeeds as before

without the need for backtracking, guided by the indices embedded in the input,

and the parser pChar ‘!’ subsequently fails. But this time there is no possibility of

backtracking to try the other branch, and the whole parse fails, yielding Nothing .

We should also check the behaviour of the parser for strings that can be generated

only from the top or the bottom of a layout. A string that can only be generated

from the top labels gives no result with either parser because there is no way to

consume the ‘?’ character after matching with the top:

> runParser (backtrackL sipser) “2+1+0=baca?!”

[]

> runParser (backtrackM sipser) “2+1+0=baca?!”

Nothing .

In this case, the Maybe-based parser gives a result consistent with the list-based one.

Again, if a string can only be generated from the bottom labels, it gives a positive

result from both parsers:

> runParser (backtrackL sipser) “2+1+0=caaba?!”

[(2, “ ”)]

> runParser (backtrackM sipser) “2+1+0=caaba?!”

Just (2, “ ”).

So it is exactly when a string represents a solution to the correspondence problem

that the list-based and Maybe-based parsers disagree; in that case, it is the Maybe-

based parser that gives the wrong answer, failing to recognise a string that is

generated by the underlying grammar. Whether such a string exists is, as before,

undecidable, given the set of tiles, so we conclude that it is undecidable, given a

grammar, whether the grammar is correctly parsed by the Maybe-based parser that

is derived from it.

756 M. Spivey

The parser backtrack tiles is made from parts that all work correctly with either

monad, and it is only the one occurrence of ⊕ in the definition of backtrack itself

where the distinction between shallow and deep backtracking matters. It is possible

to design a system of parser combinators where there are two alternation operators,

one providing shallow and the other deep backtracking. With such a system, the same

argument can be used to show that it is undecidable whether a specific occurrence

of deep alternation can safely be replaced with the shallow version.

7 Historical note

The result presented in this paper has been known for many years, and in fact for

many years before parser combinators were invented. In a set of notes written for a

course given in 1967, Knuth (1971, 2003) describes an abstract parsing machine. This

machine runs programs in which the instructions either recognise and consume a

token from the input or call a subroutine to recognise an instance of a non-terminal.

Each instruction has two continuations for success and failure (though Knuth did not

use the word), and part of the subroutine mechanism is that if a subroutine returns

with failure, then the input pointer is reset to where it was when the subroutine was

called. A subroutine that returns successfully, however, deletes the record of the old

position of the input pointer. There is a natural translation of context-free grammars

into programs for this machine, which behave exactly like combinator parsers based

on Maybe. Knuth proves that the correct functioning of a program for the parsing

machine is undecidable, using the same reduction presented in this paper, although

the details have been changed in order to work within a fixed alphabet.

References

Knuth, D. E. (1971) Top-down syntax analysis. Acta Inform. 1, 79–110. Reprinted as

Chapter 14 of Knuth (2003).

Knuth, D. E. (2003) Selected Papers on Computer Languages. Palo Alto, CA: CSLI.

McBride, C. & Paterson, R. (2008) Applicative programming with effects. J. Funct. Program.

18(1), 1–13.

Sipser, M. F. (2005) Introduction to the Theory of Computation. 2nd ed. Boston, MA: Course

Technology.

