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Abstract 

Considerable progress has been made in understand- 
ing how to use subtyping in a way that facilitates mod- 

ular reasoning. However, using subclassing in a way 
that facilitates modular reasoning is not well under- 

stood. Often methods must be overriden as a group 
because of dependencies on instance variables, and the 
programmers of subclasses cannot tell which meth- 
ods are grouped without looking at the code of su- 
perclasses. Also, the programmers of subclasses must 
look at the code of superclasses to tell what assump- 
tions inherited methods make about the behavior of 
overriden methods. 

We present a systematic way to use subclassing 
that facilitates formal and informal modular reason- 

ing. Separate specifications are given to programmers 
writing code that manipulates instances of a class and 
to programmers writing subclasses of the class. The 
specifications given to programmers of subclasses are 
divided, by division of labor specificaiions, into mul- 
tiple parts. Subclasses may inherit or override entire 

parts, but not sub-parts. Reasoning about the imple- 
mentation of each part is done independently of other 
parts. 

1 Introduction 

Subclassing fosters code reuse by allowing old 

classes to be specialized into new ones. However, 
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programming with subclasses is not without its 

difficulties. Two important problems are: 

Grouping dependencies. Two or more meth- 

ods often share responsibility for maintaining 

a set of instance variables. If a subclass over- 

rides one member of such a group, it must 

override all members. Programmers of sub- 

classes need to know the grouping dependen- 

cies of superclasses. 

Behavior dependencies. When subclasses 

override some methods and inherit others, 

dependencies exist among the behaviors of 

subclass and superclass methods. Inherited 

methods make assumptions about the behav- 

ior of overriden methods, assumptions pro- 

grammers of subclasses need to meet. 

Programmers of subclasses often solve these 

problems by guessing or by looking at the 

source code of superclasses. These solutions are 

prone to errors. Also, they tend to incorporate 

undocumented assumptions about superclasses 

into subclasses, making it difficult to know what 

changes to a superclass will affect subclasses. 

This paper presents an alternative solution 

based on a new kind of specification for special- 

ization interfaces. The specialization interface of 

a class is the interface used by programmers who 

write subclasses of the class. This can be quite 

different from the client interface, the interface 

used by programmers who write code that manip- 

ulates instances of the class. Our specifications 

partition the specialization interface into multi- 

ple parts. Subclasses override entire parts rather 

than individual methods. Reasoning about the 
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implementation of each part is done wit,hout con- 

sidering the implementations of other parts; this 

alloxvs programmers to build and change cla.sses 

without looking at the source code of superclasses 

or of subclasses. 

Sec. 2 defines our language assumptions and 

terminology. Sec. 3 illustrat.es grouping and 

behavior dependencies using an example; we refer 

to t.his example throughout the paper. Sec. 4 

presents our specifications for the specialization 

interface. Sec. 5 describes how to verify the 

specialization interface; Sec. 6 describes how 

verify t.he client interface. Sec. 7 discusses some 

related work, and Sec. 8 gives some concluding 

remarks, focusing on how our results can be 

applied informally to existing projects. 

2 Language model 

We assume a model of object-oriented program- 

ming based on objects, object types, and classes. 

Our model is a fairly standard, single-inheritance 

model, except we separate object types from 

classes. 

An object is state along with methods tha.t 

manipulate the state. As is usual: an object is 

implemented as a set of instance variables and 

code for its methods. 

An object type describes the behavior of ob- 

jects. Most languages support only signature 

specifications of object types that define the 

names and signatures of a type’s methods. We 

assume behavioral specifications of object types 

t.hat define the effects of a type’s methods on the 

program’s state. We use the behavioral specifica- 

tions describe in [LiskovSA]. Such specifications 

consist of an abstract description of the value 

space and method behavior of objects subsumed 

by the type: 

object-type - c I c M+ 

Y> I, and C together described the value space 

of the type. The sort C is the underlying set 

of values that objects subsumed by the type can 

take on: the invariant I is a static constraint on C 

that objects subsumed by the type must satisfy; 

the constraint c’ is a dynamic constraint that 

describes how the values of objects subsumed 

by the type evolve over t,ime. For example: 

the sort of a counter type might be the set of 

integers, t.he invariant might be that counters 

are never negative, and the constraint might be 

that counters always increase in value. The set of 

method specifications M” define the behavior of 

each method in terms of pre- and post-conditions. 

A class is a template that. defines a set of in- 

stance variables and methods. Instantiating a 

class creates a new object with the instance vari- 

ables and method code defined by the class. We 

assume a standard single inheritance model. A 

subclass inherits instance variables and methods 

definit,ions from a superclass. Instance variables 

are encapsulated: methods of a subclass cannot 

access instance variables of its superclass. A class 

overrides a method by defining locally a method 

with the same name as one of its superclasses’ 

methods. When a class overrides a method, the 

signature of the new method must conform to the 

signature of the old one. As in C++, a protected 

method of a class is a method that can be called 

and overriden by the classes’ subclasses but can- 

not be called by clients of its instances. 

The client interface of a class consists of 

the non-protected methods defined by the class. 

Client interfaces are specified using object types. 

The specialization interface of a class consists 

of all the methods defined by the class, includ- 

ing protected methods. We specify specializa- 

tion interfaces with a new kind of specification 

described in Sec. 3. 

3 An example 

Fig. 1 contains the class IntSetClass. This 

class is designed to both implement integer sets. 

and to be a superclass for other unordered 

collection classes. The code for member is 

contrived to illustrate a number of problems in 

a single page of code, but the overall pattern 

of calling methods on self that are overriden by 

subclasses is a fundamental aspect of subclassing. 

Subclasses of IntSetClass can inherit a work- 

ing member operation when they override add! 

remove, and size. IntMultiSetClass (Fig. a), 

a class implementin, u multisets, is one such class. 

Fig. 1 includes a specification for IntSetClass. 
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class IntSetClass 
% state [ s:IntSet, c:IntSet 1 
% s holds the contents of the set 
% c caches membership hits 
% invariant se1f.c & se1f.s 

els:ArrayCInt] % used by add, remove, and size 
valid:Bool % used by member and invalidate 
cache:Int % used by member and invalidate 

method add(el:Int) 
% Modifies se1f.s 
% Ensures selfpost. s = selfpre.s U {el} 
index:Int := self.els.find(el) 

except when not-found: self.els.addb(el) 
end 

end add 

method remove(el:Int) 
% Modifies self 
% Ensures selfpost.s = selfpre. s - {el} 
index:Int := self.els.find(el) 

except when not-found: return end 
self. invalidate0 % Empty cache 
self. els[index] := self.els.top() 
self. els. remhO 
end remove 

method size0 returns(Int) 
% Ensures result = Iselfpre.sl 
return(self.els.sizeO) 
end size 

method member(el:Int) returns(Boo1) 
% Modifies se1f.c 
% Ensures result = el E se1fpre.s 
if -self.valid or self.cache -= el then 

beforeSize:Int := self.size() 
self.remove(el) 
if self.sizeO = beforesize then 

returncfalse) 
end 

% Line 1: 
self.add(el) 
self.valid := true 
self.cache := el 
end 

return(true) 
end member 

protected method invalidate0 
% Modifies se1f.c 
% Ensures selfpo,t.c = {} 
self. valid := false 
end invalidate 

end IntSetClass 

Figure 1: IntSetClass class. 

Although more formal than usual, this specifica- 

tion is typical of current practice in attempting 

to specify both the client and specialization inter- 

faces in a single specification. For the client inter- 

face, the specification is expressed in terms of sets 

rather than in terms of something better suited 

to potential subclasses. For the specialization in- 

terface, the specification esposes the cache used 

by member to cache successful membership tests, 

even though the cache is irrelevant to clients. 

3.1 Grouping dependencies 

Multiple methods often share responsibility for 

maintaining a set of instance variables. Mem- 

bers of such groups must be overriden together 

([Lamping93, Taligent941). The methods add, 

remove and size together maintain the instance 

variable els used to represent the set. If a sub- 

class of IntSetClass were to use a tree represen- 

tation for sets, it would have to override all three 

methods. Similarly, member and invalidate to- 

gether maintain valid and cache and must also 

be overriden together. 

Method grouping is important to programmers 

of superclasses as well as of subclasses. For 

example, in the code for member, on the line 

marked (l), the choice to call the method add 

rather than directly manipulating the instance 

variable els is driven by the method grouping 

of the class. This choice ensures that subclasses 

will be able to inherit member when they override 

add, remove! and size. The same is true for the 

choice to call invalidate in remove rather than 

clearing the valid bit directly. 

3.2 Behavior dependencies 

Subclasses such as IntMultiSetClass override 

some methods and inherit others. Programmers 

of subclasses need to understand what assump- 

tions inherited methods make about overriden 

methods. Consider, for example, the method 

size, which is called by member. The version 

of size given in Fig. 2 happens to be what is 

required by member, while an equally plausible 

version that implements the specification: 

method size0 returns(Int) 
% Ensures result = 1 to.!?et(selfprc.m)~ 
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class IntMultiSetClass 
% state [ n?:IntMultiSet, c:IntSet 1 
% invariant se1f.c C toSet(se1f.m) 

superclass IntSetClass 
els:Table[Int,Int] 

method add(el:Int) 
% Modifies se1f.m 
% Ensures selfpost. m = add0nce(self$.m, el) 
self. els Cell : = self.els[ell + 1 

except when not-found: 
self.els[ell := 1 
end 

end add 

method remove (el : Int ) 
% Modifies self 
% Ensures selfpost. m = removeOnce(selfpre.m, el) 
count:Int := self.elsCell 

except when not-found: return end 
if count > 0 then 

self.els[ell := count - 1 
self.invalidate() 
end 

end remove 

method size0 returns(Int) 
% Ensures result = c, cozlnt(se1fpre.m. Z) 
result:Int := 0 
for key:Int in self.els.keys() do 

result := result + self.els[key] 
end 

return (result) 
end size 

% method member(el:Int) returns(Boo1) 
% Modifies se1f.c 
% Ensures result = el E toSeqse1fpre.m) 
% Code inherited from IntSetClass 

% protected method invalidate0 
% Modifies se1f.c 

% Ensures selfp,,bc = {} 
% Code inherited from IntSetClass 
end IntMultiSetClass 

Figure 2: IntMultiSetClass class. 

would cause member to function incorrectly. 

Inheriting superclass specifications into sub- 

classes is not a solution. As illustrated by 

IntMultiSet, the subclass is often specified in 

terms of a different value space than the super- 

class, so the super&sses’ specification does not 

make sense in the subclasses’ context. Even when 

the value spaces are the same, inheriting speci- 

fications is too restrictive: subclasses must have 

the freedom to behave differently from their su- 

perclasses. Inst.ead, we use the specification of 

the superclass as a constraint on the specifica- 

tion of the subclass without’ requiring that the 

two specifications be identical. This constraint is 

described in Sec. 5.3. 

4 Specialization specifications 

In our model, object types give both a signature 

and a behavioral specification of objects. Object 

types are a good way to specify client interfaces? 

but they are not sufficient for specialization 

interfaces. We specify specialization interfaces 

with an object type together with a division of 

labor specification: 

special-spec + object-type labor-div 

labor-div + { [substate method-name*] * 3 

We call this combination a specialization specifi- 

cation. 

,4 division of labor partitions the state and 

methods of a class into groups. These groups 

form abstraction barriers within classes. The 

value spaces associated with each method group 

are called substates. The methods of a method 

group are responsible for maintaining the sub- 

state of the group. Only the methods of a 

group directly manipulate the representation of 

the group’s substate; other methods manipulate 

the substate indirectly by calling methods in the 

substate’s group. In a subclass, if any method 

of a method group is overriden, then all meth- 

ods in the group must be overriden, and the new 

code becomes responsible for implementing the 

group’s substate. 

A specialization specification for IntSetClass 

is given in Fig. 3 (the existential clause will 

be explained later). We describe the sorts of 

object types as tuples with named fields. Each 

field of the entire object type’s sort is assigned to 

the substate of exactly one method group. The 

state of IntSetClass is described as an integer- 

container field h associated with a method group 
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specialization specification IntSetClass 

state [ k:IntHolder, c:IntSet 1 
invariant e E se1f.c j mem(se1f.k. e) 

method group 
substate C h: IntHolder 1 
existential ins, del, measure 

method add(e1: Int) 
Modifies self. k 
Ensures selfp,,t.h = ins(selfm.o.k, el) 

method remove (el : Int 1 
Modifies self 
Ensures selfpost.k = del(selfpre.k, el) 

method size0 returns(Int) 
Ensures result = measure(selfpre.k) 

method group 
substate [ c:IntSet 1 

method member(el:Int) returns(Boo1) 
Modifies se1f.c 
Ensures result = mem(selfpre.k, el) 

method invalidate () 
Modifies se1f.c 
Ensures selfpost.c = {} 

end IntSetClass 

Figure 3: Specialization specification. 

that contains the methods add: remove, and 

size, and a cache field c associated with a 

method group that contains the methods member 

and invalidate. 

The values of h. are modeled using a space of 

unordered integer containers called IntHolder. 

While the integer sets used in Fig. 1 are an ap- 

propriate sort for clients of IntSetCIass, they 

are too specific for subclasses: a more general 

value space allows more subclasses. Fig. 4 de- 

scribes IntHolder values using an LSL trait 

([Guttag93]). A trait defines properties of func- 

tion symbols that can be used in specifica- 

tions; these functions define sorts. In this case, 

IntHolderTrait defines IntHolder in terms of 

the functions new, ins, del, mem, and measure. 

IntHolderTrait: trait 

introduces 
new: + IntHolder 
ins: IntHolder ,Int -+ IntHolder 
del: IntHolder, Int - IntHolder 
mem: IntHolder, Int -+ Boo1 
measure: IntHolder- Int 

asserts 
IntHolder generated by new, ins 
Vk:IntHolder, i,zl,12:Int 

ins(ins(k, il j, iz) = ins(ins(k, i2), il) 

-mem( new, i) 

mem(ins(k, il), &) = (il = iz v mem(h, iz)) 
mem(k, ;) + ins(del(k, i), i) = k 

lmem(k,i) j deZ(k,i) = k 

mem(k, i) + measure(del(k, i)) < measure(k) 

Figure 4: IntHolder trait. 

After giving signatures for these functions, the 

trait asserts their properties. The generated by 

property states that all IntHolder values can be 

generated using just the new and ins functions. 

The next assertion states that applications of ins 
commute (thus, IntHolder is unordered). The 

next two assertions define mem in terms of new 

and ins. The final assertions are properties of de1 

and measure assumed by the code for member. 

Informally, we define correctness for specializa- 

tion specifications as follows: 

Def: A class implements its specialization 

specification if, for each method group, 

the methods of that group will implement 

their specialization specifications for all 

implementations of other method groups 

that meet their own specifications. 

By this definition, the correctness of a method 

group is not allowed to depend on a particular im- 

plementation of another method group. Instead, 

every method group must be correct for any im- 

plementation of other method groups. This way, 

if a subclass overrides a method group, inherited 

method groups will still be correct. 

To maximize the freedom designers of sub- 

classes have in defining the behavior of sub- 
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classes, the semantics of specialization specifica- 

tions must be different from those of client spec- 

ifications. In client specifications, function sym- 

bols are treated as if t,hey were universally quan- 

tified over the entire program. In specialization 

specifications, we trea.t function symbols using a 

combination of universal and existential quantifi- 

cation. 

Consider the trait: 

FnTrait : trait 
introduces 

fn:Int -> Int 

that introduces a function symbol fn used in the 

following class: 

class Fixpoint 

% state [ 1 

% method group 
% existential fn 

deferred method do-fn(x: Int) returns(Int) 
% Ensures result = fn(z) 

% method group 
method is-f ixpoint (x: Int) returns(Boo1) 

% Ensures result = (r = fn(~)) 
return(x = self.do-fn(x)) 
end is-f ixpoint 

end Fixpoint 

The constraints on fn are weak: all we know is 

that it is a function from integers to integers. 

In client specifications, function symbols like fn 
are quantified over the entire program, i.e., they 

must denote the same function throughout the 

program, even if that function is not completely 

defined. This approach supports modularity by 

making it impossible for independent authors of 

t,wo different modules to make local assumptions 

about function symbols that contradict each 

other. The only properties one can assume about 

a symbol are those properties listed in traits, 

which are shared globally. 

In specialization specifications, function sym- 

bols are quantified over classes, i.e., they must 

denote the same function within a class, but they 

can denote different functions in different classes. 

To see the difference, consider the following code 

fragment: 

if ol.do-fn(0) = o2.do-fn(O) 
then x := true 
else x := false 

where 01 and 02 are instances of different 

subclasses of Fixpoint. With client semantics, 

x must be true after the if statement because 

fn would denote the same function over the 

entire program and thus dofn of 01 and 02 

would have to compute the same function. With 

specialization semantics, x could be true or false 

after the if statement because fn could denote 

different functions in different subclasses so dofn 

of 01 and 02 could be different. 

Further, in specialization specifications, func- 

tion symbols are interpreted using a combination 

of existential and universal quantification. Or- 

dinarily, a method group interprets a specifica- 

tion symbol using universal quantification: the 

code of the group must be correct for all funct.ions 

that satisfy the constraints put on the symbol by 

traits. However, a specification symbol can be 

assigned to (at most) one method group for exis- 

tential interpretation using optional existential 
clauses. Inside that group, the symbol is inter- 

preted using esistential quantification: the code 

of the group is correct as long as it is correct for 

some but not necessarily all functions that satisfy 

the constraints put on the symbol by traits. 

Existential interpretation facilitates specializa- 

t.ion. For example, the dofn group of Fixpoint 

uses existential quantification for fn and thus can 

be specialized for different values of fn. For ex- 

ample? the class: 

class Zerof ixpoint 
superclass Fixpoint 
method do-fn(x:Int) returns(Int) 

return(O) 
end do-fn 

end Zerof ixpoint 

assumes that fn is the constant function zero; 

other subclasses of Fixpoint can assume differ- 

ent functions. The code for isfixpoint, in 

contrast, uses universal quantification for fn and 

thus must be correct for any fn. As a result, 

isfixpoint can be inherited into all subclasses 

of Fixpoint even though they can make different: 

possibly contradictory, assumptions about fn. 
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We can now offer a more detailed but still in- 

formal definition of correctness for specialization 

specifications: 

Def: A class implements its specialization 

specification if, for each method group G, 

the code of methods in G is correct for 

some values of the specification symbols 

assigned (via existential clauses) to G 

and for all values of other specification 

symbols. 

5 Specialization verification 

Our approach to verifying that a cla.ss meets its 

specialization specification is based on standard 

simulation techniques ([Hoare72]). However, 

verifying specialization interfaces raises issues 

not found in the traditional context. This section 

discusses three central ones: 

l 

l 

0 

A 

Specializing method groups. When verify- 

ing the correctness of methods whose speci- 

fications existentially quantify some function 

symbols, one can choose any interpretation of 

those symbols. Choosing appropriate inter- 

pretations of existentially quantified function 

symbols is the first step in verifying a group. 

Verifying method groups independently. After 

the existential function symbols of a group 

have been specialized, the code of the group is 

verified. The group is verified in terms of the 

specifications of the other groups to ensure 

that it will work with all implementations 

of those groups. This includes treating 

the substate of other groups abstractly in 

addition to treating their methods abstractly. 

Constraining specifications of subclasses. As 
mentioned in Sec. 3.2, specialization specifi- 

cations of subclasses must be constrained by 

the specialization specifications of their su- 

perclasses. These constraints ensure that in- 

herited code meets its specification and that 

overriden code will satisfy assumptions made 

about it by inherited code. 

wide range of techniques are available for 

dealing with each of these issues. The rest of this 

section discusses each point in turn, presenting 

basic techniques to handle the common cases. 

5.1 Specializing method groups 

A method group can be specialized as long as 

(a) the code implements at least the properties 

in its specification and (b) the code for other 

groups does not depend on the specialization. 

Code for a specialized method group is verified 

by specializing its specification and then verifying 

the code as discussed in Sec. 5.2. 

The specification of a method group can be 

specialized in two ways. First, the group can 

be specialized by strengthening the specifications 

of its methods following the rules of behavioral 

subtyping ([Liskov94]). 

Second, additional properties can be asserted 

about specification symbols that have been as- 

signed to the group for existential interpretation. 

The additional properties must conservatively ex- 

tend the old properties, i.e., they must not con- 

tradict the old ones. These properties provide 

auxiliary information used in reasoning about the 

implementation of a group, and are similar to ab- 

straction functions and representation invariants 

in this regard. Like abstraction functions and 

representation invariants, they can serve to doc- 

ument implementations. 

In IntSetClass, the method group containing 

add, remove and size uses three properties to 

specialize IntHolder into integer sets: 

ins(h,i) = ins(ins(h,i),i) 
mem(del(h, i), i’) = (i # ,i’ A mem(h, i’)) 

,measure(h) = C;( mem(h, i) ? 1 : O)l 

The first property asserts that ins is idempotent; 

this is a central property distinguishing sets from 

other unordered integer containers. The second 

and third properties define de1 and measure in 

terms of mem. 

5.2 Verifying a group 

Once the specification of a method group has 

been specialized, the code of the group can be 

‘The value of the conditional term “t? c : a” is c when 
t is true and a otherwise. 
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verified. A method group is verified indepen 

dently of the implementation of other method 

groups; t,his ensures a method group will work 

regardless of whether other method groups it de- 

pends on are inherited from superclasses, im- 

plement.ed locally, or overriden by subclasses. 

Achieving this independence requires overcoming 

two difficulties: 

The verifier of a group does not have access to 

the code of other groups. The verifier knows 

t,he code of methods internal to the method 

group, but these methods call methods ex- 

ternal to the group and the verifier does not 

know that code. 

The verifier does not have access to the full 

representation of self. The verifier only 

knows the locally-defined instance variables 

and not any instance variables defined by 

superclasses or subclasses. 

Both of these difficulties are overcome using spec- 

ifications. Although the verifier does not know 

the code of external methods, the verifier does 

know the specifications of external methods and 

reason about them in terms of these specifica- 

tions. And alt.hough the verifier does not know 

the external instance variables, the verifier does 

know the abstract substate associated with those 

instance variables and can reason about them in 

terms of this substat,e. 

Verification of specialization interfaces is done 

via simulation, i.e., establishing an abstraction 

function from the concrete state of self to the 

abstract state and showing that methods sim- 

ulate their specifications under this abstraction 

function ([Hoare72]). In traditional simulation 

proofs, a single abstraction function defines the 

entire state of self. When verifying specializa- 

tion interfaces, the state of self is defined by 

multiple subabstrnction functions. There is one 

subabstraction function for each method group, 

and these functions define only the substate as- 

signed to that group. Each method group is veri- 

fied with it.s own subabstraction function without 

knowledge of other groups’ subabstraction func- 

tions. Overall correctness of the class is ensured 

by guaranteeing that a single abstraction func- 

tion for the entire state of self can be constructed 

by taking the product of the subabstraction func- 

tions of each method group. 

The concrete state of self is a set of instance 

variables. We assume that ea,ch instance variable 

is assigned to exactly one method group and 

that only the methods of that group read or 

write it. This a.ssumption can be relaxed by 

adding an extra verification step, but we omit 

this extension for simplicity. Although languages 

do not enforce such assignments, they can be 

enforced by convention. Let R; denote the 

instance variables assigned to the ith method 

group. We assume R; is a tuple with named 

fields: one field per instance variable. Table 1 

summarizes symbols defined in this section and 

gives particular values needed for verifying the 

add method group of IntSetClass. 

In specialization specifications, the abstract 

state of self is partitioned into substates assigned 

to method groups. Let S denote the entire 

abstract state of self and S; denote the substate 

assigned to the ith method group. As with Ri, 
we assume S and S; are tuples with named fields, 

and we assume that S = ni Si, where tuple 

products take tuples with dist.inct field-names 

and return a new tuple with the fields of both. 

For each method group, the verifier defines a 

subabstraction function Ai: 

Ai I Ri + S; 

This function defines how the group’s instance 

variables are used to represent the group’s sub- 

state. 

We cannot verify the methods of group i 

directly in terms of Ai because A; does not 

fully define self. In IntSetClass, for example, 

remove needs to manipulate the c part of self as 

well as the h part. Our solution is for group i to 

treat self as if it already includes the substates 

defined by other groups. That is, inside group i 

we assume that self is described by: 

self : R; x n Sj 

i#i 
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Under this assumption, we verify group i using 

an abstraction function Vi t,hat has the signat.ure: 

K(s) : (R; x ES’;, - S 

Because self a.lready contains nj,i 5’j and 5’; is 

defined by A;, J$ is not freely chosen but rather 

is defined by the equation: 

T/;(s) = (s 1 R;) x A;(s T Ri) 

where s /, R; is s without the Ri fields and s ‘/ Ri 

is s with only the R; fields. 

We verify the methods of group i using Vi 

according to standard simulation techniques (see, 

e.g., [Liskov86, Dah192]). Where these methods 

make calls to methods in other method groups, 

the specifications of the external methods are 

used to reason about the calls. 

We illustrate our approach on the add method 

of IntSetClass. We do not perform a full 

verification here, but rather show pieces that 

illustrate the use of Vi to verify method groups. 

Recall that we have specialized this group by 

assuming integer set properties for IntHolder. 

To verify add, we need Aars, the subabstraction 

function for its group. This function maps els 

(the instance variable assigned to the group) to 

h (the substate maintained by the group): 

Aars(s) = [h := toH(s.els)12 

where: 

toH(empty) = new 

toH( addh( rest, i)) = ins( toH( rest), i) 

and empty and addh are functions for building 

Array[Int] values. In other words, Aars con- 

structs an IntHolder by inserting each element 

of self.els into an initially empty set. 

From Aars follows the abstraction function 

V ars with which we verify the code in the add 

method group: 

Vars(s) = [h 11 Aar-(s).h,c := S.C] 

= [h := toH(s.els),c := s.c] 

*The tuple constructor “[fi := ~1, . . ..f., := ~~1” 
denotes a tuple value where field fz has value v,. 

Table 1: Symbols for verifying method groups. 

Symbols are parameterized by method group %. 

Also given are particular values for Z = ars, t.he 

method group of IntSetClass containing add, 

remove, and size. 

II 

= 

Instance variables assigned to group i 
[els : Array [Int]] 

Sort of substate of group i 

[h : IntHolder] 
Sort of entire state of self 

l-Ii si 
[h : IntHolder, c : IntSet] 

Subabstraction function for group i 

Ri - Si 

As [h := ioH(s.els)] 

Function for verifying group i 

(Ri x njzi Sj) --+ 5’ 

As (s I Ri) x Ai(s r Ri) 

As . [h := lo~(s.els), c := s.c] 

To verify a method in the add group, we compose 

Va,s with the specification of the method to 

transform the specification into the domain of the 

implementation. For example, composing Va,, 

with the ensures clause of add yields: 

Vars(selfpost).h = ins(Vars(selfpre).h, el) 

which expands to: 

toH(selfpost.els) = ins( toH(selfp~~.els), el) 

We then use the proof rules of the language 

to show that the code of the method meets its 

transformed specification. 

In the code for add, the addh method of 

self.eIs is called only when el is not already 

in Vars(selfpre).h. Thus, the verification of add 

proceeds in two cases: 

1. When el is in selfpe.els, we can conclude 

that 

mem(Va,s(selfpre).h) 

Also, because addh is not called to change self 

in this case? we can conclude: 

Vars(selfpost).h = Vars(selfpre)-h 
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Putting these t,wo conclusions together with 

the lemma 

nzem(ht i) a h = ias(h, i) 

which follows from idempotence of ins, we ca.n 

show that: 

li~rs(selfp,,~).h = ins(r/g=s(self~~~).h, el) 

So the ensures clause is met in this case. 

2. When el is not in selfpre.els, we need 

to reason about the effects of the addh 

invocation. It follows from the definition of 

toH that: 

toH(addh(nrruy, e)) = ins(toH(nrmy)~ e) 

From this we can show that after the addh 

method: 

toH(selfpo,t.els) = ins( toH(selfpre.els), el) 

So the ensures clause is met in this case too. 

A complete verification of add also involves 

verifying the modifies clause and verifying that 

the code preserves the invariant. The modifies 

clause requires that only the h field of self is 

modified. The invariant requires that c is a subset 

of h after the call if it is a subset before the call. 

We do not present these verifications here. 

Verification of member is interesting because 

it depends on the invariant of the specialization 

specification of IntSetClass. Ami: the subab- 

straction function for the method group contain- 

ing member and invalidate, maps the instance 

variables valid and cache to the substate field 

c: 

Ami = [C := ( s.valid? {s.cache} : {})] 

From this we can define an abstraction function 

Vmi for member: 

Phi(S) = [h := s.h:c I= Ami(s).c] 

Composing this abstraction function with the 

invariant of IntSetClass yields: 

e E (self.valid? {self.cache} : {}) 

+ mem(self.h, e) 

which simplifies to: 

self.valid + nzen(self.h, self.cache) 

Given this, one can conclude that it is correct for 

member to return true if valid is true and the 

argument to member equals cache. 

5.3 Constraining subclasses 

A class with no superclasses (e.g., IntSetClass) 

can be verified by explicitly verifying each of its 

method groups as described above. However? we 

cannot explicitly verify method groups inherited 

from superclasses because we do not have access 

to their code. Instead, we verify inherited 

methods by requiring that the specialization 

specification of a class is properly related to that 

of its superclass. 

Assume that the sub- and superclass specifi- 

cations have the same value sort, invariant, and 

constraints, and the same division of labor spec- 

ification (we will relax this assumption in a mo- 

ment). In this case, the two specifications are 

properly related if: 

1. 

2. 

BY 

The subclass specifications of all methods 

imply their superclass specifications. 

The subclass specifications of inherited meth- 

ods are implied their superclass specifications. 

our definition of correctness for specialization 

specifications, inherited methods will continue to 

behave a.s specified in the superclass if overriden 

methods meet the assumptions stated about 

them in their superclass specifications. ‘The 

first rule ensures that methods overriden by 

the subclass do meet the assumptions stated 

about them in their superclass specifications. 

Because of the first rule, we can assume that 

inherited methods behave as specified in the 

superclass. Rule two ensures that we assume only 

the behavior specified in the superclass and not 

something stronger. 

It might seem that rule one need not. a.pply 

to inherited methods because inherited methods 

already meet assumptions made about them by 

the superclass. However, a subclass of the sub- 

class might override a method group that is in- 

herited by the subclass. By requiring that the 
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subclass specifications of inherit,ed methods im- 

ply their superclass specifications, assumptions 

made about inherited methods are passed along 

to subsubclasses that may override them. 

The above two rules are the basic require- 

ments for soundness. Additional rules allow the 

sub- and superclass specifica,tions t.o vary more 

broadly. For example: 

The invariant and constraint in the subclass 

can be stronger than in the superclass. 

The sort defining the value space of the 

subclass can be different from the sort of 

the superclass if the two specifica.tions can be 

related by an abstraction function. 

The subclass can merge two or more method 

groups of the superclass into a single group. 

The subclass can add new methods to meth- 

ods groups it is overriding and can add en- 

tirely new method groups. 

Even more differences are possible. 

6 Client verification 

At run-time, a program manipulates objects, 

not classes. Objects are described by client 

specifications, not specialization specifications. 

Thus, the ultimate goal of our methodology 

must be to ensure that classes meet their client 

specifications. 

A client specification for IntSetClass is given 

in Fig. 5. As an aside, comparing this speci- 

fication to the one in Fig. 3 illustrates an im- 

portant difference in the content of client and 

specialization specifications. The client specifi- 

cation of IntSetClass is specified in terms of 

the more specific IntSet rather than the more 

general IntHolder, yet the client specification 

hides the internal cache exposed by the special- 

ization specification. In general, client specifica- 

tions tend to be more specific yet less detailed 

than specialization specifications. 

To validate the client interface of IntSetClass, 

we could directly verify the code in Fig. 1 against 

the client specification in Fig. 5. However, this 

client specification IntSetClass 

state IntSet 

method add(el:Int) 

Modifies self 
Ensures selfpost = selfpre U {el} 

end add 

method remove(el:Int) 
Modifies self 
Ensures selfpost = selfpre - {el} 
end remove 

method size 0 returns (Int 1 
Ensures result = 1 toSet(selfpre) 1 
end size 

method member(el:Int) returns(Boo1) 
Ensures result = el E selfpre 
end member 

end IntSetClass 

Figure 5: Client specification of IntSetClass. 

would not work for classes with superclasses be- 

cause the code for inherited methods is not avail- 

able for verification. 

An alternative approach is to structure the 

verification of the specialization interface such 

that the correctness of the client interface follows 

as well. In fact, the verification process described 

in the previous section is already so structured. 

In that process, the specification of a method 

group is specialized before the code of that group 

is verified. When verifying the code of one 

method group, the unspecialized specifications of 

the other groups are used. To verify the client 

specification, the specializations of each method 

group are combined to form a single, specialized 

specification; if the specializations for each group 

are chosen correctly, this specialized specification 

will imply the client specification. 

After all groups are specialized, the specializa- 

tion specification must imply the client. specifi- 

cation, but it need not be equal to the client 

specification. The implication can be checked in 

many ways, e.g., by using the simulation rules 

in [Liskov94]. For example? the specialized spe- 

cialization specification for IntSetClass is the 
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specification in Fig. 3 specialized with new prop- 

erties for ins, del, and measure; clearly this does 

not equal the specification in Fig. 5. However, 

using the abstraction function: 

d:IntHolder-+ IntSet 

where: 

d(new) = {} 

d(ins(h, i)) = d(h) u {i} 

the specialized specification can be shown to 

imply the desired client specification. 

Client invariants can be used to help show 

that a specialization specification implies a client 

specification. Client invariants arise because 

public methods often preserve properties that are 

not preserved by protected methods. Because 

clients cannot break these properties, they are 

invariant to clients and can be hidden from them. 

For example, consider the class: 

class C 
x:Int 

protected method add(d: Int) 

self. x := se1f.x + d 
end add 

method inc2 () returns (Int ) 
self. add ( 2 ) 
return(se1f.x) 
end inc2 

end C 

The client interface can incorporate the invariant 

that x is always even (assuming the initial 

value of x is even). However, the specialization 

interface cannot because of subclasses like the 

following: 

class D 

superclass C 

method inc 0 returns (Int) 
self. add ( 1) 
return(x) 
end inc 

end D 

Client invariants can be incorporated as explicit 

invariants in the client specification or they can 

be incorporated into the abstraction function 

that maps the specialization specification to the 

client specification. 

7 Related work 

[Lamping93] and [Lamping are related to our 

work in their emphasis on subclassing and the 

specialization interface. Both [Lamping and 

[Lamping are type-system oriented, where our 

work is specification oriented; thus, e.g., they do 

not help one reason about the behavior of inher- 

ited methods. [Lamping suggests partitioning 

the specialization interface into method groups 

as we do; however, it does not suggest associat- 

ing substate with method groups, which we feel 

is important to using subclassing in a modular 

manner. 

[Kiczales92] presents design and documenta- 

tion guidelines for class libraries. The documen- 

tation guidelines are analogous to our special- 

ization specifications. [Kiczales92] uses informal 

specifications where we use formal specifications. 

Also, the specifications proposed by [Kiczales92] 

are operational, i.e., they explain the behavior of 

a method in terms of invocations of other meth- 

ods. For example, their specification of member 

would explain that member calls remove, add, and 

size to test membership, and their specification 

of remove would explain that it calls invalidate. 

We use declarative specifications instead. By 

allowing only the methods of a method group ac- 

cess to the representation of the group’s substate, 

our declarative specifications can force methods 

like member and remove to invoke other methods. 

At the same time, declarative specifications are 

likely to be more abstract than operational ones, 

leading to specifications that are easier to un- 

derstand and are less likely to capture accidental 

implementation details such as invocation order. 

Behavioral subtyping is another area of re- 

lated work ([LeavensSO, America91, Liskov941). 

Work on behavioral subtyping consists of spec- 

ification and reasoning techniques to facilitate 

modular use of subtyping, while our work con- 

sists of specification and reasoning techniques to 

facilitate modular use of subclassing. However, 

the work is different in many details. The speci- 
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fications needed for subclassing are different from 

those needed for subtyping. Subclassing requires 

division of labor specifications and mixed uni- 

versal and existential quantification of specifica- 

tion symbols over a single class, while subtyp- 

ing requires universal quantification over the en- 

tire program. ,41so, subclassing allows a subclass 

to specialize the interpretation of function sym- 

bols, while subtyping only allows a subtype to 

strengthen the specifications of methods. 

Our work also relates to the separation of 

subtyping from subclassing. If D is a subclass 

of C, does D always implement a subtype of 

C? Although many languages implicitly assume 

that the answer is “yes,” researchers working on 

object-calculi and type systems argue that the 

answer is “no” (see: e.g., [CookSO, Bruce931). 

However, according to these arguments, subtyp- 

ing and subclassing differ only when the type sys- 

tem has the type expression MyType (the type 

of self). Many object-oriented languages do not 

support MyType, and for these languages the 

object-calculi argument for answering “no” is not 

by itself compelling. 

Our work provides reasons to separate subtyp- 

ing and subclassing even when MyType is not 

part of the type system. Sec. 6 shows that the 

client specifica.tion of a class can differ signifi- 

cantly from the specialization specificat,ion be- 

cause of either specialization or client invariants. 

As a result, the client specification of a class need 

not be a subtype of the client specification of its 

superclass. 

8 Summary and conclusions 

We have identified two obstacles to using sub- 

classing in a modular manner: grouping depen- 

dencies and behavior dependencies. To handle 

these difficulties, we define a new kind of speci- 

fication and associated reasoning techniques for 

the specialization interface of classes. Group- 

ing dependencies are handled by partitioning the 

method and abstract state of a class into method 

groups. Behavior dependencies are handled by 

requiring a particular relation between the spec- 

ifications of a subclass and its superclass. 

Our methodology has some limitations. Al- 

though we are extendeding it to ha.ndle multi- 

ple inheritance, it is not clear tha.t it can be es- 

tended to handle multiple dispatch. Also, our 

verification methodology verifies partial correct- 

ness only. Separate termina.tion a.rguments a.re 

needed for total correctness, and we currently 

have no systematic approach to such arguments. 

Our results should be useful for designers, pro- 

grammers? and users of class libraries. Division 

of labor specifications give designers a syst,em- 

atic framework for thinking about design. De- 

signers should design classes intended to be sub- 

classed such that part-way between the represen- 

tation and the client interface there is a semi- 

abstract interface that reveals the implementa- 

tion st,rategy without revealing implementation 

details. The methods and abstract state of the 

class should be partitioned into method groups 

t.hat can be understood independently and over- 

riden as a whole. Although existing languages do 

not support method groupings, method group- 

ings can be supported using simple programming 

conventions. 

While programmers usually do not formally 

verify their code, they do reason about it in- 

formally. Our methodology gives some rules 

for doing so. First, programmers should assign 

instance variables to method groups and avoid 

reading or writing an instance variable assigned 

to one group in a method assigned to another. 

The instance variables of a group should be used 

to implement only the abstract substate assigned 

to the group and not the substates of other 

groups. A group can implement behavior that is 

more specific than what the specialization speci- 

fication calls for? but the implementation of one 

group should not depend on the specialized be- 

havior of another. 

Perhaps the most useful application of our 

work is in improving the documentation of cla.ss 

libraries. It has been suggested tha.t vendors 

of object-oriented libraries such as Microsoft’s 

Foundation Classes and Borland’s Object Win- 

dows Library distribute the source code for those 

libraries because the documentation of specia.liza- 

tion interfaces is inadequate ([Atkinson92]). This 

cla.im is consistent with our own claim that pro- 
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gra,mmers currently have bo either guess or look 

at source code to deal with grouping and behav- 

ior dependencies. 

Our results provide an a,pproach to informal 

documentation of classes that, should eliminate 

the need to use source code as documentation. 

The first step in improving documentation is 

to separate the specifica.tions of the client and 

specialization interfaces: the specifications of 

client interfaces should be more specific yet 

less detailed than specialization specifications. 

The second step is to use division of labor 

specifications for specialization interfaces. 
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