
Modular Reasoning in the Presence of Subclassing

Raymie Stata John V. Guttag

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

raymieQlarch.lcs.mit.edu

Abstract

Considerable progress has been made in understand-
ing how to use subtyping in a way that facilitates mod-

ular reasoning. However, using subclassing in a way
that facilitates modular reasoning is not well under-

stood. Often methods must be overriden as a group
because of dependencies on instance variables, and the
programmers of subclasses cannot tell which meth-
ods are grouped without looking at the code of su-
perclasses. Also, the programmers of subclasses must
look at the code of superclasses to tell what assump-
tions inherited methods make about the behavior of
overriden methods.

We present a systematic way to use subclassing
that facilitates formal and informal modular reason-

ing. Separate specifications are given to programmers
writing code that manipulates instances of a class and
to programmers writing subclasses of the class. The
specifications given to programmers of subclasses are
divided, by division of labor specificaiions, into mul-
tiple parts. Subclasses may inherit or override entire

parts, but not sub-parts. Reasoning about the imple-
mentation of each part is done independently of other
parts.

1 Introduction

Subclassing fosters code reuse by allowing old

classes to be specialized into new ones. However,

This research was supported in part by the Advanced
Research Projects Agency of the Department of Defense,
monitored by the Office of Naval Research under contract
N00014-92-J-1795, and in part by the National Science
Foundation under grant CCR-9115797.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is
or distributed for B

ranted without fee provided that copies are not made
pro rt or commercial advantage, the copyright notice, the

title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

OOPSlA ‘95 Austin, TX, USA
Q 1995 ACM O-89791-703-0/95/001 0...$3.50

programming with subclasses is not without its

difficulties. Two important problems are:

Grouping dependencies. Two or more meth-

ods often share responsibility for maintaining

a set of instance variables. If a subclass over-

rides one member of such a group, it must

override all members. Programmers of sub-

classes need to know the grouping dependen-

cies of superclasses.

Behavior dependencies. When subclasses

override some methods and inherit others,

dependencies exist among the behaviors of

subclass and superclass methods. Inherited

methods make assumptions about the behav-

ior of overriden methods, assumptions pro-

grammers of subclasses need to meet.

Programmers of subclasses often solve these

problems by guessing or by looking at the

source code of superclasses. These solutions are

prone to errors. Also, they tend to incorporate

undocumented assumptions about superclasses

into subclasses, making it difficult to know what

changes to a superclass will affect subclasses.

This paper presents an alternative solution

based on a new kind of specification for special-

ization interfaces. The specialization interface of

a class is the interface used by programmers who

write subclasses of the class. This can be quite

different from the client interface, the interface

used by programmers who write code that manip-

ulates instances of the class. Our specifications

partition the specialization interface into multi-

ple parts. Subclasses override entire parts rather

than individual methods. Reasoning about the

200

implementation of each part is done wit,hout con-

sidering the implementations of other parts; this

alloxvs programmers to build and change cla.sses

without looking at the source code of superclasses

or of subclasses.

Sec. 2 defines our language assumptions and

terminology. Sec. 3 illustrat.es grouping and

behavior dependencies using an example; we refer

to t.his example throughout the paper. Sec. 4

presents our specifications for the specialization

interface. Sec. 5 describes how to verify the

specialization interface; Sec. 6 describes how

verify t.he client interface. Sec. 7 discusses some

related work, and Sec. 8 gives some concluding

remarks, focusing on how our results can be

applied informally to existing projects.

2 Language model

We assume a model of object-oriented program-

ming based on objects, object types, and classes.

Our model is a fairly standard, single-inheritance

model, except we separate object types from

classes.

An object is state along with methods tha.t

manipulate the state. As is usual: an object is

implemented as a set of instance variables and

code for its methods.

An object type describes the behavior of ob-

jects. Most languages support only signature

specifications of object types that define the

names and signatures of a type’s methods. We

assume behavioral specifications of object types

t.hat define the effects of a type’s methods on the

program’s state. We use the behavioral specifica-

tions describe in [LiskovSA]. Such specifications

consist of an abstract description of the value

space and method behavior of objects subsumed

by the type:

object-type - c I c M+

Y> I, and C together described the value space

of the type. The sort C is the underlying set

of values that objects subsumed by the type can

take on: the invariant I is a static constraint on C

that objects subsumed by the type must satisfy;

the constraint c’ is a dynamic constraint that

describes how the values of objects subsumed

by the type evolve over t,ime. For example:

the sort of a counter type might be the set of

integers, t.he invariant might be that counters

are never negative, and the constraint might be

that counters always increase in value. The set of

method specifications M” define the behavior of

each method in terms of pre- and post-conditions.

A class is a template that. defines a set of in-

stance variables and methods. Instantiating a

class creates a new object with the instance vari-

ables and method code defined by the class. We

assume a standard single inheritance model. A

subclass inherits instance variables and methods

definit,ions from a superclass. Instance variables

are encapsulated: methods of a subclass cannot

access instance variables of its superclass. A class

overrides a method by defining locally a method

with the same name as one of its superclasses’

methods. When a class overrides a method, the

signature of the new method must conform to the

signature of the old one. As in C++, a protected

method of a class is a method that can be called

and overriden by the classes’ subclasses but can-

not be called by clients of its instances.

The client interface of a class consists of

the non-protected methods defined by the class.

Client interfaces are specified using object types.

The specialization interface of a class consists

of all the methods defined by the class, includ-

ing protected methods. We specify specializa-

tion interfaces with a new kind of specification

described in Sec. 3.

3 An example

Fig. 1 contains the class IntSetClass. This

class is designed to both implement integer sets.

and to be a superclass for other unordered

collection classes. The code for member is

contrived to illustrate a number of problems in

a single page of code, but the overall pattern

of calling methods on self that are overriden by

subclasses is a fundamental aspect of subclassing.

Subclasses of IntSetClass can inherit a work-

ing member operation when they override add!

remove, and size. IntMultiSetClass (Fig. a),

a class implementin, u multisets, is one such class.

Fig. 1 includes a specification for IntSetClass.

201

class IntSetClass
% state [s:IntSet, c:IntSet 1
% s holds the contents of the set
% c caches membership hits
% invariant se1f.c & se1f.s

els:ArrayCInt] % used by add, remove, and size
valid:Bool % used by member and invalidate
cache:Int % used by member and invalidate

method add(el:Int)
% Modifies se1f.s
% Ensures selfpost. s = selfpre.s U {el}
index:Int := self.els.find(el)

except when not-found: self.els.addb(el)
end

end add

method remove(el:Int)
% Modifies self
% Ensures selfpost.s = selfpre. s - {el}
index:Int := self.els.find(el)

except when not-found: return end
self. invalidate0 % Empty cache
self. els[index] := self.els.top()
self. els. remhO
end remove

method size0 returns(Int)
% Ensures result = Iselfpre.sl
return(self.els.sizeO)
end size

method member(el:Int) returns(Boo1)
% Modifies se1f.c
% Ensures result = el E se1fpre.s
if -self.valid or self.cache -= el then

beforeSize:Int := self.size()
self.remove(el)
if self.sizeO = beforesize then

returncfalse)
end

% Line 1:
self.add(el)
self.valid := true
self.cache := el
end

return(true)
end member

protected method invalidate0
% Modifies se1f.c
% Ensures selfpo,t.c = {}
self. valid := false
end invalidate

end IntSetClass

Figure 1: IntSetClass class.

Although more formal than usual, this specifica-

tion is typical of current practice in attempting

to specify both the client and specialization inter-

faces in a single specification. For the client inter-

face, the specification is expressed in terms of sets

rather than in terms of something better suited

to potential subclasses. For the specialization in-

terface, the specification esposes the cache used

by member to cache successful membership tests,

even though the cache is irrelevant to clients.

3.1 Grouping dependencies

Multiple methods often share responsibility for

maintaining a set of instance variables. Mem-

bers of such groups must be overriden together

([Lamping93, Taligent941). The methods add,

remove and size together maintain the instance

variable els used to represent the set. If a sub-

class of IntSetClass were to use a tree represen-

tation for sets, it would have to override all three

methods. Similarly, member and invalidate to-

gether maintain valid and cache and must also

be overriden together.

Method grouping is important to programmers

of superclasses as well as of subclasses. For

example, in the code for member, on the line

marked (l), the choice to call the method add

rather than directly manipulating the instance

variable els is driven by the method grouping

of the class. This choice ensures that subclasses

will be able to inherit member when they override

add, remove! and size. The same is true for the

choice to call invalidate in remove rather than

clearing the valid bit directly.

3.2 Behavior dependencies

Subclasses such as IntMultiSetClass override

some methods and inherit others. Programmers

of subclasses need to understand what assump-

tions inherited methods make about overriden

methods. Consider, for example, the method

size, which is called by member. The version

of size given in Fig. 2 happens to be what is

required by member, while an equally plausible

version that implements the specification:

method size0 returns(Int)
% Ensures result = 1 to.!?et(selfprc.m)~

202

class IntMultiSetClass
% state [n?:IntMultiSet, c:IntSet 1
% invariant se1f.c C toSet(se1f.m)

superclass IntSetClass
els:Table[Int,Int]

method add(el:Int)
% Modifies se1f.m
% Ensures selfpost. m = add0nce(self$.m, el)
self. els Cell : = self.els[ell + 1

except when not-found:
self.els[ell := 1
end

end add

method remove (el : Int)
% Modifies self
% Ensures selfpost. m = removeOnce(selfpre.m, el)
count:Int := self.elsCell

except when not-found: return end
if count > 0 then

self.els[ell := count - 1
self.invalidate()
end

end remove

method size0 returns(Int)
% Ensures result = c, cozlnt(se1fpre.m. Z)
result:Int := 0
for key:Int in self.els.keys() do

result := result + self.els[key]
end

return (result)
end size

% method member(el:Int) returns(Boo1)
% Modifies se1f.c
% Ensures result = el E toSeqse1fpre.m)
% Code inherited from IntSetClass

% protected method invalidate0
% Modifies se1f.c

% Ensures selfp,,bc = {}
% Code inherited from IntSetClass
end IntMultiSetClass

Figure 2: IntMultiSetClass class.

would cause member to function incorrectly.

Inheriting superclass specifications into sub-

classes is not a solution. As illustrated by

IntMultiSet, the subclass is often specified in

terms of a different value space than the super-

class, so the super&sses’ specification does not

make sense in the subclasses’ context. Even when

the value spaces are the same, inheriting speci-

fications is too restrictive: subclasses must have

the freedom to behave differently from their su-

perclasses. Inst.ead, we use the specification of

the superclass as a constraint on the specifica-

tion of the subclass without’ requiring that the

two specifications be identical. This constraint is

described in Sec. 5.3.

4 Specialization specifications

In our model, object types give both a signature

and a behavioral specification of objects. Object

types are a good way to specify client interfaces?

but they are not sufficient for specialization

interfaces. We specify specialization interfaces

with an object type together with a division of

labor specification:

special-spec + object-type labor-div

labor-div + { [substate method-name*] * 3

We call this combination a specialization specifi-

cation.

,4 division of labor partitions the state and

methods of a class into groups. These groups

form abstraction barriers within classes. The

value spaces associated with each method group

are called substates. The methods of a method

group are responsible for maintaining the sub-

state of the group. Only the methods of a

group directly manipulate the representation of

the group’s substate; other methods manipulate

the substate indirectly by calling methods in the

substate’s group. In a subclass, if any method

of a method group is overriden, then all meth-

ods in the group must be overriden, and the new

code becomes responsible for implementing the

group’s substate.

A specialization specification for IntSetClass

is given in Fig. 3 (the existential clause will

be explained later). We describe the sorts of

object types as tuples with named fields. Each

field of the entire object type’s sort is assigned to

the substate of exactly one method group. The

state of IntSetClass is described as an integer-

container field h associated with a method group

203

specialization specification IntSetClass

state [k:IntHolder, c:IntSet 1
invariant e E se1f.c j mem(se1f.k. e)

method group
substate C h: IntHolder 1
existential ins, del, measure

method add(e1: Int)
Modifies self. k
Ensures selfp,,t.h = ins(selfm.o.k, el)

method remove (el : Int 1
Modifies self
Ensures selfpost.k = del(selfpre.k, el)

method size0 returns(Int)
Ensures result = measure(selfpre.k)

method group
substate [c:IntSet 1

method member(el:Int) returns(Boo1)
Modifies se1f.c
Ensures result = mem(selfpre.k, el)

method invalidate ()
Modifies se1f.c
Ensures selfpost.c = {}

end IntSetClass

Figure 3: Specialization specification.

that contains the methods add: remove, and

size, and a cache field c associated with a

method group that contains the methods member

and invalidate.

The values of h. are modeled using a space of

unordered integer containers called IntHolder.

While the integer sets used in Fig. 1 are an ap-

propriate sort for clients of IntSetCIass, they

are too specific for subclasses: a more general

value space allows more subclasses. Fig. 4 de-

scribes IntHolder values using an LSL trait

([Guttag93]). A trait defines properties of func-

tion symbols that can be used in specifica-

tions; these functions define sorts. In this case,

IntHolderTrait defines IntHolder in terms of

the functions new, ins, del, mem, and measure.

IntHolderTrait: trait

introduces
new: + IntHolder
ins: IntHolder ,Int -+ IntHolder
del: IntHolder, Int - IntHolder
mem: IntHolder, Int -+ Boo1
measure: IntHolder- Int

asserts
IntHolder generated by new, ins
Vk:IntHolder, i,zl,12:Int

ins(ins(k, il j, iz) = ins(ins(k, i2), il)

-mem(new, i)

mem(ins(k, il), &) = (il = iz v mem(h, iz))
mem(k, ;) + ins(del(k, i), i) = k

lmem(k,i) j deZ(k,i) = k

mem(k, i) + measure(del(k, i)) < measure(k)

Figure 4: IntHolder trait.

After giving signatures for these functions, the

trait asserts their properties. The generated by

property states that all IntHolder values can be

generated using just the new and ins functions.

The next assertion states that applications of ins
commute (thus, IntHolder is unordered). The

next two assertions define mem in terms of new

and ins. The final assertions are properties of de1

and measure assumed by the code for member.

Informally, we define correctness for specializa-

tion specifications as follows:

Def: A class implements its specialization

specification if, for each method group,

the methods of that group will implement

their specialization specifications for all

implementations of other method groups

that meet their own specifications.

By this definition, the correctness of a method

group is not allowed to depend on a particular im-

plementation of another method group. Instead,

every method group must be correct for any im-

plementation of other method groups. This way,

if a subclass overrides a method group, inherited

method groups will still be correct.

To maximize the freedom designers of sub-

classes have in defining the behavior of sub-

204

classes, the semantics of specialization specifica-

tions must be different from those of client spec-

ifications. In client specifications, function sym-

bols are treated as if t,hey were universally quan-

tified over the entire program. In specialization

specifications, we trea.t function symbols using a

combination of universal and existential quantifi-

cation.

Consider the trait:

FnTrait : trait
introduces

fn:Int -> Int

that introduces a function symbol fn used in the

following class:

class Fixpoint

% state [1

% method group
% existential fn

deferred method do-fn(x: Int) returns(Int)
% Ensures result = fn(z)

% method group
method is-f ixpoint (x: Int) returns(Boo1)

% Ensures result = (r = fn(~))
return(x = self.do-fn(x))
end is-f ixpoint

end Fixpoint

The constraints on fn are weak: all we know is

that it is a function from integers to integers.

In client specifications, function symbols like fn
are quantified over the entire program, i.e., they

must denote the same function throughout the

program, even if that function is not completely

defined. This approach supports modularity by

making it impossible for independent authors of

t,wo different modules to make local assumptions

about function symbols that contradict each

other. The only properties one can assume about

a symbol are those properties listed in traits,

which are shared globally.

In specialization specifications, function sym-

bols are quantified over classes, i.e., they must

denote the same function within a class, but they

can denote different functions in different classes.

To see the difference, consider the following code

fragment:

if ol.do-fn(0) = o2.do-fn(O)
then x := true
else x := false

where 01 and 02 are instances of different

subclasses of Fixpoint. With client semantics,

x must be true after the if statement because

fn would denote the same function over the

entire program and thus dofn of 01 and 02

would have to compute the same function. With

specialization semantics, x could be true or false

after the if statement because fn could denote

different functions in different subclasses so dofn

of 01 and 02 could be different.

Further, in specialization specifications, func-

tion symbols are interpreted using a combination

of existential and universal quantification. Or-

dinarily, a method group interprets a specifica-

tion symbol using universal quantification: the

code of the group must be correct for all funct.ions

that satisfy the constraints put on the symbol by

traits. However, a specification symbol can be

assigned to (at most) one method group for exis-

tential interpretation using optional existential
clauses. Inside that group, the symbol is inter-

preted using esistential quantification: the code

of the group is correct as long as it is correct for

some but not necessarily all functions that satisfy

the constraints put on the symbol by traits.

Existential interpretation facilitates specializa-

t.ion. For example, the dofn group of Fixpoint

uses existential quantification for fn and thus can

be specialized for different values of fn. For ex-

ample? the class:

class Zerof ixpoint
superclass Fixpoint
method do-fn(x:Int) returns(Int)

return(O)
end do-fn

end Zerof ixpoint

assumes that fn is the constant function zero;

other subclasses of Fixpoint can assume differ-

ent functions. The code for isfixpoint, in

contrast, uses universal quantification for fn and

thus must be correct for any fn. As a result,

isfixpoint can be inherited into all subclasses

of Fixpoint even though they can make different:

possibly contradictory, assumptions about fn.

205

We can now offer a more detailed but still in-

formal definition of correctness for specialization

specifications:

Def: A class implements its specialization

specification if, for each method group G,

the code of methods in G is correct for

some values of the specification symbols

assigned (via existential clauses) to G

and for all values of other specification

symbols.

5 Specialization verification

Our approach to verifying that a cla.ss meets its

specialization specification is based on standard

simulation techniques ([Hoare72]). However,

verifying specialization interfaces raises issues

not found in the traditional context. This section

discusses three central ones:

l

l

0

A

Specializing method groups. When verify-

ing the correctness of methods whose speci-

fications existentially quantify some function

symbols, one can choose any interpretation of

those symbols. Choosing appropriate inter-

pretations of existentially quantified function

symbols is the first step in verifying a group.

Verifying method groups independently. After

the existential function symbols of a group

have been specialized, the code of the group is

verified. The group is verified in terms of the

specifications of the other groups to ensure

that it will work with all implementations

of those groups. This includes treating

the substate of other groups abstractly in

addition to treating their methods abstractly.

Constraining specifications of subclasses. As
mentioned in Sec. 3.2, specialization specifi-

cations of subclasses must be constrained by

the specialization specifications of their su-

perclasses. These constraints ensure that in-

herited code meets its specification and that

overriden code will satisfy assumptions made

about it by inherited code.

wide range of techniques are available for

dealing with each of these issues. The rest of this

section discusses each point in turn, presenting

basic techniques to handle the common cases.

5.1 Specializing method groups

A method group can be specialized as long as

(a) the code implements at least the properties

in its specification and (b) the code for other

groups does not depend on the specialization.

Code for a specialized method group is verified

by specializing its specification and then verifying

the code as discussed in Sec. 5.2.

The specification of a method group can be

specialized in two ways. First, the group can

be specialized by strengthening the specifications

of its methods following the rules of behavioral

subtyping ([Liskov94]).

Second, additional properties can be asserted

about specification symbols that have been as-

signed to the group for existential interpretation.

The additional properties must conservatively ex-

tend the old properties, i.e., they must not con-

tradict the old ones. These properties provide

auxiliary information used in reasoning about the

implementation of a group, and are similar to ab-

straction functions and representation invariants

in this regard. Like abstraction functions and

representation invariants, they can serve to doc-

ument implementations.

In IntSetClass, the method group containing

add, remove and size uses three properties to

specialize IntHolder into integer sets:

ins(h,i) = ins(ins(h,i),i)
mem(del(h, i), i’) = (i # ,i’ A mem(h, i’))

,measure(h) = C;(mem(h, i) ? 1 : O)l

The first property asserts that ins is idempotent;

this is a central property distinguishing sets from

other unordered integer containers. The second

and third properties define de1 and measure in

terms of mem.

5.2 Verifying a group

Once the specification of a method group has

been specialized, the code of the group can be

‘The value of the conditional term “t? c : a” is c when
t is true and a otherwise.

206

verified. A method group is verified indepen

dently of the implementation of other method

groups; t,his ensures a method group will work

regardless of whether other method groups it de-

pends on are inherited from superclasses, im-

plement.ed locally, or overriden by subclasses.

Achieving this independence requires overcoming

two difficulties:

The verifier of a group does not have access to

the code of other groups. The verifier knows

t,he code of methods internal to the method

group, but these methods call methods ex-

ternal to the group and the verifier does not

know that code.

The verifier does not have access to the full

representation of self. The verifier only

knows the locally-defined instance variables

and not any instance variables defined by

superclasses or subclasses.

Both of these difficulties are overcome using spec-

ifications. Although the verifier does not know

the code of external methods, the verifier does

know the specifications of external methods and

reason about them in terms of these specifica-

tions. And alt.hough the verifier does not know

the external instance variables, the verifier does

know the abstract substate associated with those

instance variables and can reason about them in

terms of this substat,e.

Verification of specialization interfaces is done

via simulation, i.e., establishing an abstraction

function from the concrete state of self to the

abstract state and showing that methods sim-

ulate their specifications under this abstraction

function ([Hoare72]). In traditional simulation

proofs, a single abstraction function defines the

entire state of self. When verifying specializa-

tion interfaces, the state of self is defined by

multiple subabstrnction functions. There is one

subabstraction function for each method group,

and these functions define only the substate as-

signed to that group. Each method group is veri-

fied with it.s own subabstraction function without

knowledge of other groups’ subabstraction func-

tions. Overall correctness of the class is ensured

by guaranteeing that a single abstraction func-

tion for the entire state of self can be constructed

by taking the product of the subabstraction func-

tions of each method group.

The concrete state of self is a set of instance

variables. We assume that ea,ch instance variable

is assigned to exactly one method group and

that only the methods of that group read or

write it. This a.ssumption can be relaxed by

adding an extra verification step, but we omit

this extension for simplicity. Although languages

do not enforce such assignments, they can be

enforced by convention. Let R; denote the

instance variables assigned to the ith method

group. We assume R; is a tuple with named

fields: one field per instance variable. Table 1

summarizes symbols defined in this section and

gives particular values needed for verifying the

add method group of IntSetClass.

In specialization specifications, the abstract

state of self is partitioned into substates assigned

to method groups. Let S denote the entire

abstract state of self and S; denote the substate

assigned to the ith method group. As with Ri,
we assume S and S; are tuples with named fields,

and we assume that S = ni Si, where tuple

products take tuples with dist.inct field-names

and return a new tuple with the fields of both.

For each method group, the verifier defines a

subabstraction function Ai:

Ai I Ri + S;

This function defines how the group’s instance

variables are used to represent the group’s sub-

state.

We cannot verify the methods of group i

directly in terms of Ai because A; does not

fully define self. In IntSetClass, for example,

remove needs to manipulate the c part of self as

well as the h part. Our solution is for group i to

treat self as if it already includes the substates

defined by other groups. That is, inside group i

we assume that self is described by:

self : R; x n Sj

i#i

207

Under this assumption, we verify group i using

an abstraction function Vi t,hat has the signat.ure:

K(s) : (R; x ES’;, - S

Because self a.lready contains nj,i 5’j and 5’; is

defined by A;, J$ is not freely chosen but rather

is defined by the equation:

T/;(s) = (s 1 R;) x A;(s T Ri)

where s /, R; is s without the Ri fields and s ‘/ Ri

is s with only the R; fields.

We verify the methods of group i using Vi

according to standard simulation techniques (see,

e.g., [Liskov86, Dah192]). Where these methods

make calls to methods in other method groups,

the specifications of the external methods are

used to reason about the calls.

We illustrate our approach on the add method

of IntSetClass. We do not perform a full

verification here, but rather show pieces that

illustrate the use of Vi to verify method groups.

Recall that we have specialized this group by

assuming integer set properties for IntHolder.

To verify add, we need Aars, the subabstraction

function for its group. This function maps els

(the instance variable assigned to the group) to

h (the substate maintained by the group):

Aars(s) = [h := toH(s.els)12

where:

toH(empty) = new

toH(addh(rest, i)) = ins(toH(rest), i)

and empty and addh are functions for building

Array[Int] values. In other words, Aars con-

structs an IntHolder by inserting each element

of self.els into an initially empty set.

From Aars follows the abstraction function

V ars with which we verify the code in the add

method group:

Vars(s) = [h 11 Aar-(s).h,c := S.C]

= [h := toH(s.els),c := s.c]

*The tuple constructor “[fi := ~1,f., := ~~1”
denotes a tuple value where field fz has value v,.

Table 1: Symbols for verifying method groups.

Symbols are parameterized by method group %.

Also given are particular values for Z = ars, t.he

method group of IntSetClass containing add,

remove, and size.

II

=

Instance variables assigned to group i
[els : Array [Int]]

Sort of substate of group i

[h : IntHolder]
Sort of entire state of self

l-Ii si
[h : IntHolder, c : IntSet]

Subabstraction function for group i

Ri - Si

As [h := ioH(s.els)]

Function for verifying group i

(Ri x njzi Sj) --+ 5’

As (s I Ri) x Ai(s r Ri)

As . [h := lo~(s.els), c := s.c]

To verify a method in the add group, we compose

Va,s with the specification of the method to

transform the specification into the domain of the

implementation. For example, composing Va,,

with the ensures clause of add yields:

Vars(selfpost).h = ins(Vars(selfpre).h, el)

which expands to:

toH(selfpost.els) = ins(toH(selfp~~.els), el)

We then use the proof rules of the language

to show that the code of the method meets its

transformed specification.

In the code for add, the addh method of

self.eIs is called only when el is not already

in Vars(selfpre).h. Thus, the verification of add

proceeds in two cases:

1. When el is in selfpe.els, we can conclude

that

mem(Va,s(selfpre).h)

Also, because addh is not called to change self

in this case? we can conclude:

Vars(selfpost).h = Vars(selfpre)-h

208

Putting these t,wo conclusions together with

the lemma

nzem(ht i) a h = ias(h, i)

which follows from idempotence of ins, we ca.n

show that:

li~rs(selfp,,~).h = ins(r/g=s(self~~~).h, el)

So the ensures clause is met in this case.

2. When el is not in selfpre.els, we need

to reason about the effects of the addh

invocation. It follows from the definition of

toH that:

toH(addh(nrruy, e)) = ins(toH(nrmy)~ e)

From this we can show that after the addh

method:

toH(selfpo,t.els) = ins(toH(selfpre.els), el)

So the ensures clause is met in this case too.

A complete verification of add also involves

verifying the modifies clause and verifying that

the code preserves the invariant. The modifies

clause requires that only the h field of self is

modified. The invariant requires that c is a subset

of h after the call if it is a subset before the call.

We do not present these verifications here.

Verification of member is interesting because

it depends on the invariant of the specialization

specification of IntSetClass. Ami: the subab-

straction function for the method group contain-

ing member and invalidate, maps the instance

variables valid and cache to the substate field

c:

Ami = [C := (s.valid? {s.cache} : {})]

From this we can define an abstraction function

Vmi for member:

Phi(S) = [h := s.h:c I= Ami(s).c]

Composing this abstraction function with the

invariant of IntSetClass yields:

e E (self.valid? {self.cache} : {})

+ mem(self.h, e)

which simplifies to:

self.valid + nzen(self.h, self.cache)

Given this, one can conclude that it is correct for

member to return true if valid is true and the

argument to member equals cache.

5.3 Constraining subclasses

A class with no superclasses (e.g., IntSetClass)

can be verified by explicitly verifying each of its

method groups as described above. However? we

cannot explicitly verify method groups inherited

from superclasses because we do not have access

to their code. Instead, we verify inherited

methods by requiring that the specialization

specification of a class is properly related to that

of its superclass.

Assume that the sub- and superclass specifi-

cations have the same value sort, invariant, and

constraints, and the same division of labor spec-

ification (we will relax this assumption in a mo-

ment). In this case, the two specifications are

properly related if:

1.

2.

BY

The subclass specifications of all methods

imply their superclass specifications.

The subclass specifications of inherited meth-

ods are implied their superclass specifications.

our definition of correctness for specialization

specifications, inherited methods will continue to

behave a.s specified in the superclass if overriden

methods meet the assumptions stated about

them in their superclass specifications. ‘The

first rule ensures that methods overriden by

the subclass do meet the assumptions stated

about them in their superclass specifications.

Because of the first rule, we can assume that

inherited methods behave as specified in the

superclass. Rule two ensures that we assume only

the behavior specified in the superclass and not

something stronger.

It might seem that rule one need not. a.pply

to inherited methods because inherited methods

already meet assumptions made about them by

the superclass. However, a subclass of the sub-

class might override a method group that is in-

herited by the subclass. By requiring that the

209

subclass specifications of inherit,ed methods im-

ply their superclass specifications, assumptions

made about inherited methods are passed along

to subsubclasses that may override them.

The above two rules are the basic require-

ments for soundness. Additional rules allow the

sub- and superclass specifica,tions t.o vary more

broadly. For example:

The invariant and constraint in the subclass

can be stronger than in the superclass.

The sort defining the value space of the

subclass can be different from the sort of

the superclass if the two specifica.tions can be

related by an abstraction function.

The subclass can merge two or more method

groups of the superclass into a single group.

The subclass can add new methods to meth-

ods groups it is overriding and can add en-

tirely new method groups.

Even more differences are possible.

6 Client verification

At run-time, a program manipulates objects,

not classes. Objects are described by client

specifications, not specialization specifications.

Thus, the ultimate goal of our methodology

must be to ensure that classes meet their client

specifications.

A client specification for IntSetClass is given

in Fig. 5. As an aside, comparing this speci-

fication to the one in Fig. 3 illustrates an im-

portant difference in the content of client and

specialization specifications. The client specifi-

cation of IntSetClass is specified in terms of

the more specific IntSet rather than the more

general IntHolder, yet the client specification

hides the internal cache exposed by the special-

ization specification. In general, client specifica-

tions tend to be more specific yet less detailed

than specialization specifications.

To validate the client interface of IntSetClass,

we could directly verify the code in Fig. 1 against

the client specification in Fig. 5. However, this

client specification IntSetClass

state IntSet

method add(el:Int)

Modifies self
Ensures selfpost = selfpre U {el}

end add

method remove(el:Int)
Modifies self
Ensures selfpost = selfpre - {el}
end remove

method size 0 returns (Int 1
Ensures result = 1 toSet(selfpre) 1
end size

method member(el:Int) returns(Boo1)
Ensures result = el E selfpre
end member

end IntSetClass

Figure 5: Client specification of IntSetClass.

would not work for classes with superclasses be-

cause the code for inherited methods is not avail-

able for verification.

An alternative approach is to structure the

verification of the specialization interface such

that the correctness of the client interface follows

as well. In fact, the verification process described

in the previous section is already so structured.

In that process, the specification of a method

group is specialized before the code of that group

is verified. When verifying the code of one

method group, the unspecialized specifications of

the other groups are used. To verify the client

specification, the specializations of each method

group are combined to form a single, specialized

specification; if the specializations for each group

are chosen correctly, this specialized specification

will imply the client specification.

After all groups are specialized, the specializa-

tion specification must imply the client. specifi-

cation, but it need not be equal to the client

specification. The implication can be checked in

many ways, e.g., by using the simulation rules

in [Liskov94]. For example? the specialized spe-

cialization specification for IntSetClass is the

210

specification in Fig. 3 specialized with new prop-

erties for ins, del, and measure; clearly this does

not equal the specification in Fig. 5. However,

using the abstraction function:

d:IntHolder-+ IntSet

where:

d(new) = {}

d(ins(h, i)) = d(h) u {i}

the specialized specification can be shown to

imply the desired client specification.

Client invariants can be used to help show

that a specialization specification implies a client

specification. Client invariants arise because

public methods often preserve properties that are

not preserved by protected methods. Because

clients cannot break these properties, they are

invariant to clients and can be hidden from them.

For example, consider the class:

class C
x:Int

protected method add(d: Int)

self. x := se1f.x + d
end add

method inc2 () returns (Int)
self. add (2)
return(se1f.x)
end inc2

end C

The client interface can incorporate the invariant

that x is always even (assuming the initial

value of x is even). However, the specialization

interface cannot because of subclasses like the

following:

class D

superclass C

method inc 0 returns (Int)
self. add (1)
return(x)
end inc

end D

Client invariants can be incorporated as explicit

invariants in the client specification or they can

be incorporated into the abstraction function

that maps the specialization specification to the

client specification.

7 Related work

[Lamping93] and [Lamping are related to our

work in their emphasis on subclassing and the

specialization interface. Both [Lamping and

[Lamping are type-system oriented, where our

work is specification oriented; thus, e.g., they do

not help one reason about the behavior of inher-

ited methods. [Lamping suggests partitioning

the specialization interface into method groups

as we do; however, it does not suggest associat-

ing substate with method groups, which we feel

is important to using subclassing in a modular

manner.

[Kiczales92] presents design and documenta-

tion guidelines for class libraries. The documen-

tation guidelines are analogous to our special-

ization specifications. [Kiczales92] uses informal

specifications where we use formal specifications.

Also, the specifications proposed by [Kiczales92]

are operational, i.e., they explain the behavior of

a method in terms of invocations of other meth-

ods. For example, their specification of member

would explain that member calls remove, add, and

size to test membership, and their specification

of remove would explain that it calls invalidate.

We use declarative specifications instead. By

allowing only the methods of a method group ac-

cess to the representation of the group’s substate,

our declarative specifications can force methods

like member and remove to invoke other methods.

At the same time, declarative specifications are

likely to be more abstract than operational ones,

leading to specifications that are easier to un-

derstand and are less likely to capture accidental

implementation details such as invocation order.

Behavioral subtyping is another area of re-

lated work ([LeavensSO, America91, Liskov941).

Work on behavioral subtyping consists of spec-

ification and reasoning techniques to facilitate

modular use of subtyping, while our work con-

sists of specification and reasoning techniques to

facilitate modular use of subclassing. However,

the work is different in many details. The speci-

211

fications needed for subclassing are different from

those needed for subtyping. Subclassing requires

division of labor specifications and mixed uni-

versal and existential quantification of specifica-

tion symbols over a single class, while subtyp-

ing requires universal quantification over the en-

tire program. ,41so, subclassing allows a subclass

to specialize the interpretation of function sym-

bols, while subtyping only allows a subtype to

strengthen the specifications of methods.

Our work also relates to the separation of

subtyping from subclassing. If D is a subclass

of C, does D always implement a subtype of

C? Although many languages implicitly assume

that the answer is “yes,” researchers working on

object-calculi and type systems argue that the

answer is “no” (see: e.g., [CookSO, Bruce931).

However, according to these arguments, subtyp-

ing and subclassing differ only when the type sys-

tem has the type expression MyType (the type

of self). Many object-oriented languages do not

support MyType, and for these languages the

object-calculi argument for answering “no” is not

by itself compelling.

Our work provides reasons to separate subtyp-

ing and subclassing even when MyType is not

part of the type system. Sec. 6 shows that the

client specifica.tion of a class can differ signifi-

cantly from the specialization specificat,ion be-

cause of either specialization or client invariants.

As a result, the client specification of a class need

not be a subtype of the client specification of its

superclass.

8 Summary and conclusions

We have identified two obstacles to using sub-

classing in a modular manner: grouping depen-

dencies and behavior dependencies. To handle

these difficulties, we define a new kind of speci-

fication and associated reasoning techniques for

the specialization interface of classes. Group-

ing dependencies are handled by partitioning the

method and abstract state of a class into method

groups. Behavior dependencies are handled by

requiring a particular relation between the spec-

ifications of a subclass and its superclass.

Our methodology has some limitations. Al-

though we are extendeding it to ha.ndle multi-

ple inheritance, it is not clear tha.t it can be es-

tended to handle multiple dispatch. Also, our

verification methodology verifies partial correct-

ness only. Separate termina.tion a.rguments a.re

needed for total correctness, and we currently

have no systematic approach to such arguments.

Our results should be useful for designers, pro-

grammers? and users of class libraries. Division

of labor specifications give designers a syst,em-

atic framework for thinking about design. De-

signers should design classes intended to be sub-

classed such that part-way between the represen-

tation and the client interface there is a semi-

abstract interface that reveals the implementa-

tion st,rategy without revealing implementation

details. The methods and abstract state of the

class should be partitioned into method groups

t.hat can be understood independently and over-

riden as a whole. Although existing languages do

not support method groupings, method group-

ings can be supported using simple programming

conventions.

While programmers usually do not formally

verify their code, they do reason about it in-

formally. Our methodology gives some rules

for doing so. First, programmers should assign

instance variables to method groups and avoid

reading or writing an instance variable assigned

to one group in a method assigned to another.

The instance variables of a group should be used

to implement only the abstract substate assigned

to the group and not the substates of other

groups. A group can implement behavior that is

more specific than what the specialization speci-

fication calls for? but the implementation of one

group should not depend on the specialized be-

havior of another.

Perhaps the most useful application of our

work is in improving the documentation of cla.ss

libraries. It has been suggested tha.t vendors

of object-oriented libraries such as Microsoft’s

Foundation Classes and Borland’s Object Win-

dows Library distribute the source code for those

libraries because the documentation of specia.liza-

tion interfaces is inadequate ([Atkinson92]). This

cla.im is consistent with our own claim that pro-

212

gra,mmers currently have bo either guess or look

at source code to deal with grouping and behav-

ior dependencies.

Our results provide an a,pproach to informal

documentation of classes that, should eliminate

the need to use source code as documentation.

The first step in improving documentation is

to separate the specifica.tions of the client and

specialization interfaces: the specifications of

client interfaces should be more specific yet

less detailed than specialization specifications.

The second step is to use division of labor

specifications for specialization interfaces.

Acknowledgements

This work arose from combining the ideas in

[Liskov93] with those in [Lamping93]; we thank

John Lamping, Barbara Liskov, and Jeannette

Wing for patiently answering our e-mail regard-

ing their papers. Our thinking benefited from

discussions with Luca Cardelli, Steve Garland,

Nate Osgood, Mark Reinhold: and Mark Vande-

voorde. We thank David Evans and Deepak Ka-

pur for lengthy and helpful discussions and com-

ments on earlier drafts of this paper, and Sheryl

Risacher and Jeff Schachter for proof reading.

References

[America911 P. America. Designing an object-

oriented programming language with be-

ha.vioural subtyping. Foundations of

Obj.-Or&. Lung. (Noordwijkerhout, The

Netherlands, May/June 1990). Published as

LA&‘CS 489, pages 60-90. Springer-Verlag,

1991.

[Atkinson921 B. Atkinson. Panel: reuse-truth

or fiction. OOPSLA ‘92 Conf. Proceedings
(Vancouver, Oct. 1992). Published as SIG-

PLAN Notices, 27(10):41-2. ACM, Ott,.

1992.

[Bruce931 K. B. Bruce. Safe type-checking in

a statically-typed, object-oriented program-

ming language. Proc. 20th Annual Symp. on

Print. of Prog. Lang. (Charleston, SC, Jan.

1993), pages 285-98. ACM, Jan. 1993.

[CookSO] W. R. Cook, W. L. Hill, and P. S.

Canning. Inheritance is not subtyping. Proc.

17th Annual Symp. on Print. of Prog. Lang.

(San Francisco, CA, Jan. 1990), pages 125-

35. ACM, Jan. 1990.

[Dah192] O.-J. Dahl. Verifiable Programming.

Prentice-Hall, Englewood Cliffs, NJ, 1992.

[Guttag93] J. V. Guttag and J. J. Horning.

Larch: Languages and Tools for Formal

Specification. Springer-Verlag, 1993.

[Hoare72] C. A. R. Hoare. Proof of correctness

of data representations. Acta Informatica,

1(4):273-81. Springer-Verlag, 1972.

[Kiczales92] G. K iczales and J. Lamping. Is-

sues in the design and specification of class

libraries. OOPSLA ‘92 Conf. Proceedings
(Vancouver, Oct. 1992). Published as SIG-

PLAN Notices, 27(10):435-51. ACM, Oct.

1992.

[Lamping93] J. Lamping. Typing the specializa-

tion interface. OOPSL.4 ‘93 Conf. Proceed-
ings (Washington, DC. Oct. 1993). Pub-

lished as SIGPLAN Notices, 28(10):201-14.

ACM. Oct. 1993.

[Lamping94] J. Lamping and M. Abadi. Meth-

ods as assertions. ECOOP ‘94 Proceedings

(Bologna, Italy, July 1994). Published as

LNCS 821, pages GO-80. Springer-Verlag,

1994.

[Leavens901 G. T. Leavens and W. E. Weihl.

Reasoning about object-oriented programs

that use subtypes. ECOOP/OOPSLA ‘90
Conf. Proceedings (Ottawa, Canada, Oct.

1990). Published as SIGPLA:V Notices,

25(10):212-23. ACM, Oct. 1990.

[Liskov86] B. Liskov a,nd J. Guttag. Abstraction

and specification in program development.
MIT Press/McGraw-Hill Book Co., 1977.

[Liskov93] B. Liskov and J. M. Wing. Specifi-

cations and their use in defining subtypes.

OOPSLA ‘9.5’ Conf. Proceedings (Washing-

ton, DC, Oct. 1993). Published as ACM

213

SIGPLAN Notices, 28(10):16-28. ACM,

Oct. 1993.

[Liskov94] B. Liskov and J. M. Wing. A behav-

ioral notion of subtyping. ACI!~ Trans. on

Prog. Lung. and Sys., 16(6):1811-41. ACM,

Nov. 1994.

[Taligent94] Taligent. Taligent’s Guide to De-

signing Programs: Well-Mannered Object-

Oriented Design in G-t. Addison- Wesley,

Reading, MA a,nd London, UK, 1994.

214

