
The Runtime Environment for Screme,
a Scheme Implementation on the 88000

Steven R. Vegdahl
Tektronix Laboratories

P.O. Box 500, M/S 50-662
Beaverton, OR 97077

stevev@tekchips.crl.tek.com

Abstract

We are implementing a Scheme development system
for the Motorola 88000. The core of the implementa-
tion is an optimizing native code compiler, together
with a carefully designed runtime system. This paper
describes our experiences with the 88000 as a target
architecture. We focus on the design decisions con-
cerning the runtime system, particularly with respect
to data type representations, tag checking, procedure
calling protocol, generic arithmetic, and the handling
of continuations. We also discuss rejected design al-
ternatives, and evaluate the strengths and weaknesses
of the instruction set with respect to our constraints.

1 Introduction

1.1 An overview of Scheme

The Lisp dialect Scheme [Rees86] is based on the X-
calculus with assignment. It differs from algorithmic
languages like Pascal or C in several important as-
pects. First, Scheme has latent as opposed to mani-
fest types, which means that types are associated with
values (also called objects) rather than with variables.
Non-numeric data types, such as lists, symbols, and
strings, are supported directly. In addition, genen’c
a&hmeGc works on (usually arbitrary precision) in-
tegers, ratios, floating point and complex numbers.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specitic permission.

0 1989 ACM 0-89791-300-O/89/0004/0172 $1.50

Uwe F. Pleban
Applied Dynamics International

3800 Stone School Rd.
Ann Arbor, MI 48108

uwe%amara.uucp@umix.cc.umich.edu

Second, all objects created in the course of a compu-
tation have unlimited eztent. In particular, Scheme
procedures are first class objects: they can be created
dynamically, stored in data structures, and returned
as results of procedures. Continuations [Clin88] also
have first class status, which makes them useful for
implementing a wide variety of advanced control con-
structs, including non-local exits, backtracking, and
coroutines. Third, variables usually obtain values by
binding rather than assignment. Finally, all imple-
mentations of Scheme are required to be properly tail
recursive. This allows iteration to be expressed using
the ordinary procedure-call mechanics, so that spe-
cial iteration constructs are essentially only syntactic
sweetener.

Unlike almost all other dialects of Lisp (with the ex-
ception of Common Lisp), Scheme is /erically scoped,
which makes it more amenable to efficient compi-
lation. In contrast with Common Lisp, the lan-
guage was designed to have an exceptionally clear
and simple semantics and few ways to form expres-
sions. Indeed, the core of the language is defined in
terms of only seven fundamental constructs: procedu-
ral (lambda) abstraction, procedure (function) appli-
cation, sequencing, conditional, assignment, variable
reference, and literal. These fundamental constructs
are augmented with a rich set of predefined functions
and macros.

On a pragmatic level, Scheme implementations are
usually incremental, and always supply automatic
storage reclamation.

1.2 Approaches to Scheme
implementation

It is straightforward to construct an interpretive im-
plementation for Scheme. The simplest approach
trivially maps a source program on its syntax tree

172

representation and interprets the resulting internal
structure. A more complex approach first compiles
programs into a low level intermediate code (usually
called byte code), and then executes the resulting pro-
gram with the help of a byte code interpreter. The
most difficult type of implementation is a compiler
which generates efficient native code.

Previous research has demonstrated that certain
compilation techniques (e.g., closure and assignment
analysis) can significantly increase the performance of
a Scheme implementation [Stee78, Broo82, Kran86,
Kran88]. In addition to compiler optimizations, how-
ever, the design of the runtime environment is equally
important for good system performance [Sheb87].

It should be apparent from the preceding descrip-
tion of Scheme that the efficient implementation of
the following features is crucial to the overall success
of a Scheme system:

l Procedure call and return.

l Primitive operations.

l Dynamic type-tag checks.

l The integer aspect of generic arithmetic.

l Environment references.

l Automatic storage management (garbage collec-
tion).

l The handling of continuations.

We elaborate on this list later.

1.3 The 88000 architecture

The Motorola 88000 [Moto88a] is a load/store “RISC
style” architecture with pipelined instruction execu-
tion, thirty-two 32-bit registers, and instruction and
data caches. Most instructions occupy the instruction
pipeline for only a single cycle. Every instruction oc-
cupies 4 bytes.

Register RO contains the constant zero, and is not
writable. The other 31 registers are homogeneous, ex-
cept that subroutine call instructions implicitly store
the return address into RI. The architecture uses a
register scoreboard to stop the instruction pipeline
whenever it is necessary to wait for a memory refer-
ence to complete; this allows multiple memory reads
to occur simultaneously.

The 88000 has five general classes of instructions:
load/store, integer arithmetic/logical, transfer of con-
trol, bit manipulation, and floating point. The
load/store, integer, and bit manipulation instructions
generally read either two registers or a register and
an unsigned constant, and combine them to form a

result. The branch instructions generally read a sin-
gle register, from which a condition code or target
address is determined. The floating point instruc-
tions (together with integer multiplication and divi-
sion) are directed to a separate function unit, which
may execute in parallel with other instructions.

The load and store instructions compute their ad-
dress using either the sum of two registers (with one
optionally scaled), or the sum of a register and a 16-
bit unsigned literal. Byte, halfword, fullword, and
doubleword versions are available for each; byte and
halfword loads can optionally be sign extended. As-
suming a cache hit, memory references incur a two-
cycle latency [Moto88b]. Misaligned memory refer-
ences either cause a trap, or produce undefined re-
sults, depending on a user-settable status bit.

The usual complement of arithmetic, relational,
and logical instructions is available. The result com-
puted by the compare instruction is a bitvector of
condition code bits for all 10 signed and unsigned
comparisons. There is no hardware support for de-
tecting arithmetic overflow without taking a trap.

All transfer of control instructions come in two fla-
vors. The “.n” version executes the instruction in the
delay slot regardless of whether the branch is taken or
not, The “standard” version suppresses the execution
of the delay-slot instruction if the branch is taken’.
The jmp (jump) and jsr (jump to subroutine) in-
structions use as a target address a value in a regis-
ter. The branch instructions, including bsr (branch
to subroutine), bb0 and bbi (branch on a specific bit
in a register being 0 or l), and bend (branch on con-
dition) use a branch offset to specify the target.

Instructions for manipulating bit fields include field
extraction, masking, setting, clearing, and rotation.
The extraction and masking instructions are gener-
alizations of shift instructions found in other archi-
tectures. There is also a find first bit instruction
which computes the bit position of the most signif-
icant zero/one in a word.

1.4 The Screme system

The components of our Scheme system for the 88000
(dubbed Screme) comprise a native code optimizing
compiler with a built-in “machine independent” as-
sembler, a dynamic linker/loader, runtime support
(library, garbage collector, etc.), and a runtime de-
bugger. With the exception of the garbage collector
and a small portion of the runtime library, it is en-
tirely written in Scheme itself. The Screme compiler
is currently a cross compiler running on the Mac II

l&like some RISC architectures, the 88000 does not have
a branch that erecvtes the delay-slot instruction only if the
branch is taken.

173

under MacScheme, but will be bootstrapped to the
88000. The initial target is the 88000 plug-in board
for the Mac II.

One of our design goals has been to ease future
efforts of porting the system across boards and/or
operating systems. As a result, we have been in-
tentionally conservative about making assumptions
about the environment in which the implementation
may run, other than that the processor is an 88000.
More specifically, we certainly do not want to exclude
running on a Unix-based workstation rather than as a
Macintosh plug-in; these two systems make quite dif-
ferent assumptions about such things as virtual mem-
ory support and exception handling.

1.5 Overview

The remainder of this paper is a discussion of our
Scheme implementation. Section 2 gives a brief
overview of the compiler. Section 3 discusses the run-
time environment, including an examination of the
operations that need to be particularly fast, the rep-
resentations selected for various Scheme data types,
and the way the architecture’s 32 registers are used;
it concludes by giving several examples of code the
compiler generates for common operations. Section 4
evaluates the 88000 as an architecture for running
Scheme. Finally, section 5 discusses the status of
the project and improvements that we would like to
make.

2 The Screme Compiler

Although the compiler is probably the most impor-
tant part of the system, we only sketch its structure
here.

First, the Scheme reader performs lexical and syn-
tactic analysis, and converts a program into an S-
expression. The macro expander then “explains
away” the syntactic sweetener, yielding a program in
the core language.

The analysis pass builds an abstract syntax tree,
distinguishes between global, local, and uplevel ref-
erences, alphatizes all non-global variable references,
and identifies calls to primitive procedures (primops).
It also performs escape and assignment analysis. Dur-
ing escape analysis, procedures are classified into
those which need to be represented as heap-allocated
closures, and those which may simply be compiled
into machine code. Assignment analysis inspects all
“Set ! ” forms (many of which are usually generated
by the macro expander), and introduces “cells” for
variables which are multiply assigned. AS a conse-
quence, all other variables can safely be assumed to
be bound to exactly one value, which may be freely

substituted (provided that side effects are not dupli-
cated).

The code generator first transforms the syntax tree
into a lower level representation, which distinguishes,
among other things, between the various kinds of pro
cedure call (unknown call, known call, inline lambda
application, primop call), and whether the call is in
tail position or not. The recognition of local calls al-
lows the code generator to set up tailored calling se-
quences, to suppress runtime argument-count check-
ing, and to use a shorter instruction sequence for
the call. A subsequent pass then performs a simple
kind of type determination by propagating type in-
formation along execution paths. This allows primop
calls to be specialized if the type of an argument is
known at code generation time. In addition, primop
calls are categorized as being in control flow or value
yielding context. Another pass over the intermedi-
ate representation annotates variable references with
last use information. Finally, storage is assigned and
instructions are generated. Specifically, variables are
allocated in registers, and spilled into stack frames
when necessary. At the present time, no instruction
scheduling for minimizing memory fetch latencies is
performed.

3 The Screme Runtime
Environment

3.1 General considerations

We now discuss the interesting aspects of the design
of the Screme runtime environment.

Conceptually, a runtime environment consists of
the following:

l A representational mapping from code and data
structures to machine structures.

l A set of system-wide invariants and conventions
that all code can assume to hold, and is required
to maintain.

l A set of support routines which compiled code
can invoke. Some of these are written in Scheme,
and are available to the user; others, which we
call millicode, are written in machine language,
have tailored calling sequences, and typically
destroy very few registers. Millicode routines,
which are termed “fastcall” by Brooks [Broo86],
are used to implement low-level operations such
as storage-allocation.

The design of the runtime environment for a lan-
guage with runtime type tag checking is considerably
more complex than for a language with manifest types

174

[Sheb87, Stee87]. First, none of the Scheme data
types maps directly on.a machine data type. Second,
since type tags are inspected frequently [Stee86], the
overhead for tag testing by the most common prim-
itive operations (procedure call, fixnum arithmetic,
and basic list processing) must be minimized.

The ubiquity of procedure calls in Scheme pro-
grams makes an efficient call/return sequence abso-
lutely mandatory. In addition, those primop calls
which are expanded inline by the compiler should
minimize the number of instruction cycles for the
common cases (fixnum arithmetic and list process-
ing), possibly at the expense of static code size.

The potentially unlimited extent of every Scheme
object mandates the presence of a garbage collector.
This imposes fundamental invariants on the code and
data structures, and allows for various time/space
trade-offs.

The first class status of procedures and continua-
tions warrants additional design considerations. Most
importantly, programs which do not make use of these
advanced features should not be unduly penalized by
implementation overhead due to their potential pres-
ence. On the other hand, if such features are used,
performance should not degrade drastically.

3.2 Partitioning of operations

Based on experience gained during several years of
using, implementing, and studying Scheme, we have
divided all runtime operations into three categories.
The first group of operations, whose execution time
efficiency we felt had to be maximized “at all costs”,
includes the following:

l Procedure call/return

- Setting up the arguments to a procedure.

- Testing whether the object being called is a
procedure.

- Argument count checking.

- Polling for interrupts2.

- Allocating a stack frame.

- Return object manipulation.

. - Deallocating a stack frame.

21f an interrupt could be serviced at an arbitrary time, the
code generator would have to maintain garbage-collector in-
variants between arbitrary instructions; this would result in
substantially poorer code. In our system, hardware interrupts
only register themselves (e.g., by setting a bit in an interrupt-
polling (IITPEID) register, but without doing anything that
might cause a garbage collection). The code generator must
guarantee that no infinite loop/recursion will occur without
interrupts being polled. We enforce this by requiring all (ex-
ternal) procedure entries and loops to poll the IITPEgD register.

- Returning from a procedure.

l Fixnum arithmetic

Testing whether an object is a fixnum.

Converting fixnums to machine integers for
hardware operations, and vice versa.

Addition, subtraction, and comparison of
fixnums.

Testing whether an integer overflow has oc-
curred.

b Basic list processing

- Testing whether an object is a pair.

- Accessing the car and cdr fields of a pair.

- Testing for the empty list.

l Iteration

l Garbage collection

The second group of operations includes those
which should be relatively fast: all storage allocation
(for pairs, strings, vectors, and bytevectors), condi-
tional branching on false, especially when the out-
come of the test is determined by a primop call (both
the boolean value #f and the empty list count as
false), character, string, vector and bytevector op-
erations, uplevel variable references, and the use of
continuations for loop exits.

The third group includes generic arithmetic, gen-
eral uses of continuations, procedure calls with “rest”
arguments, and operations with side-effects. Specifi-
cally, assignments may interact with the garbage col-
lector.

The following subsections discuss our design solu-
tions and alternatives for implementing the opera-
tions in the first category. Since the implementation
of iteration and uplevel variable references depends
on the analysis phase of the compiler, these topics
are excluded from further discussion.

3.3 Registers

Each of the 32 general purpose registers is dedicated
to a particular use. At the highest level, the regis-
ters are divided into two categories, rooted and un-
rooted. The rooted registers are the only ones exam-
ined by the garbage collector. Therefore, the gener-
ated code must ensure that during any period within
which a garbage collection might occur, all rooted reg-
isters contain valid objects, and no live pointer is con-
tained in an unrooted register. If either of these in-
variants were not to hold, system integrity would be

175

violated, resulting in an almost certain crash at some
later time.

Eleven of the 32 registers are unrooted: RO (ZERO)
and RI (CODE), due to the hardware restrictions men-
tioned earlier; four scratch registers (SO-S3), which
are available to the code generator for storing in-
termediate results of open-coded primop calls; the
INTPEND register for allowing polling for interrupts;
the INARGS register, which is used for passing the
argument count on procedure calls; and registers
R29-R31, which by convention are reserved for oper-
ating system use, and are completely ignored by our
implementation.

The remaining 21 rooted registers are partitioned
into the following sets: eleven argument registers
(AO-AIO) used for passing arguments to procedures3;
six registers (MO-MS) for interfacing with millicode
routines; the RETURI? register for caching the cur-
rent “return object” (a relocatable encoding of the
return address); a continuation frame pointer (CONT);
a stack limit register (LIMIT); and the RUNTIME regis-
ter, which points to a vector of “global” information,
such as the values for all the global variables. All but
the last three can be used as rooted scratch regis-
ters when not being used for procedure and millicode
calls.

3.4 Objects

Each object in the system is represented as a 32-bit
quantity. The value of an unbozed object can be com-
pletely described in 32 bits. A boxed object is rep-
resented indirectly as a pointer to a heap-allocated
structure.

Our implementation differentiates between three
kinds of objects:

l Ezact fixnvms (unboxed), representing integers
between -22a and 22a - 1.

l Immediates (unboxed), which include booleans,
characters, small points, the empty list, and the
special values #! unspecif ied and #! undefined.

l Pointers (boxed), which refer to objects such
as pairs, vectors, strings, symbols, bytevectors,
bignums, ratnums, flonums, complexnums, pro-
cedures, ports, and continuation frames.

The two least significant bits in an object constitute
a tag, and indicate to which of the above categories a
given 32-bit quantity belongs. A tag of #bOO denotes

3Syntactic forms such as let introduce local variables that
are transformed into lambda-applications by the macro pre-
processing phase of the compiler. Local variables, therefore,
are treated like arguments, and are typically stored in the ar-
gument registers.

a fixnum, #blO an immediate, and #bii a pointer. A
tag value of #bOi is illegal.

The choice of #bOO as the fixnum tag allows many
arithmetic operations such as addition to be per-
formed without any tug manipulation [Stee87]. More-
over, by disallowing a tag value of #bOi, we obtain
a one-instruction “branch on bit” test to determine
if an object is a fixnum or a pointer. As both of
these tests are extremely common, we feel that the
performance improvement justifies the “wasting” of
the additional tag value. Furthermore, fixnums can
be directly used as vector indices, as vector elements
are aligned on word boundaries.

Another benefit is that by using the low two bits
as a tag, a number of dynamic type-checks can be
caught “for free” using the misaligned access trap.
This is detailed in the next section.

There are additional restrictions on object repre-
sentations. First, fixnums have a guard bit adjacent to
the sign bit, which allows a two-instruction overflow
check for addition and subtraction without causing a
trap. (See section 3.5.3 for an example.)

Several other constraints apply to the encoding of
immediate values. The representations of the empty
list ’ () and the boolean value #f have been chosen
so that they differ in only a few bits; this makes the
“if’ test-which treats both of these values as false-
inexpensive. Although the current Scheme standard
[Rees86] allows their representations to be identical,
we chose distinct representations in anticipation of
compatibility with future versions of Scheme.

Finally, the representation of characters was chosen
so that fixnum/character conversions are inexpensive,
and so that extended character sets can be handled.

A pointer refers to a structure in the heap, which
contains two header vlords in addition to the object’s
data. The first header word usually contains an en-
coding of the object’s class. However, for procedure
objects, it points to the object’s compiled code (see
section 3.5.1). Th e second header word contains a
23-bit length field, an internal object bit4, and an
&bit class tag field that (redundantly) encodes the
object’s class if the class is “known to the system”.
The latter allows many primitives to be implemented
more efficiently; it is somewhat horizontally encoded
to increase the performance of the garbage collector.
Although it would have been possible to encode the
header information in a single word, we have chosen
the less compact representation in order to increase
performance.

4If the internal object bit is set in the second header word,
it is an indication that the structure is internal to some other
structure. This effectively allows a pointer to refer to a location
inside an object. In the current implementation this is used
primarily for return addresses and entry points within code
objects and for continuation frames within the frame cache.

X76

3.5 Implementation of common
operations

3.5.1 Procedure call and return

We have adopted a “caller saves” convention. The
standard procedure calling sequence requires that the
caller perform the following actions:

l Save any live registers in the current continuation
frame. This frame is allocated upon entry to the
caller (see below). Also, variable values in live
registers are spilled on the stack only once.

l Place the arguments in the argument registers Al
through AIO. If there are 10 or more arguments,
the overflow arguments are placed in a vector,
which itself is passed in AIO.

l OR together the argument count and the con-
tents of the INTPEND register, and place the re-
sult in the INARGS register.

l Load register A0 with the procedure object. This
will allow the procedure to access its referencing
environment.

l Place the return object (which encodes
turn address) in the RETURN register.

l Compute the procedure’s “code object”
voke it.

the re-

and in-

An explicit check that the object in A0 is a pro
cedure is avoided using a well-known technique of
putting a stub in the “code” slot of all boxed, non-
procedure objects that immediately traps to the de-
bugger. (The “code” slot doubles as the “class” slot
for non-procedure objects.) Thus an attempt to in-
voke any non-procedure object in our system either
raises an address alignment trap (if the object is un-
boxed), or traps to the debugger directly (if the object
is boxed).

The called procedure checks the number of argu-
ments and the interrupt bit. If it makes further pro-
cedure calls in non-tail position from within its body,
it stores the return object in the continuation frame,
and allocates its own frame(s). However, if it only
calls primops, or calls other procedures tail recur-
sively, then the return address remains cached in the
RETURN register, which elides both a store and a load
instruction. This savings occurs for all procedures at
the leaves of the execution tree, and is made possible
because of the large number of registers in the 88000.

To simplify this discussion, we have ignored the
complications introduced by “rest arguments”. How-
ever, the additional expense is incurred only upon
entry of procedures that expect such arguments.

Upon return, the frame allocated on entry is deal-
located, the return object is placed in the RETURN
register, converted to a machine address (see section
3.7), and a jump to that address is executed. At the
call site, all live registers (possibly including AO) are
restored, and execution proceeds.

The following is the code sequence for the most gen-
eral case: a non-tail call to an unknown procedure,
with n arguments being passed. (Note: names con-
taining the string “$$” are integer offsets; the addu
and subu instructions perform addition and subtrac-
tion, respectively, without trapping on overflow.)

;save AO, but only if live
Cst AO,CONT,frame$$slotO]
<save all live registers in the frame>
<load argument registers with n arguments>
<load A0 vith the procedure object)

;load procedure’s code object
Id CODE,AO,object$$class

;set t args to n, include interrupt bit
or INARGS,INTPEND,n

;NDTE: memory latency causes l-cycle delay
; here unless it can be filled by
; reorganizing instructions

;convert code object to entry address
addu CODE,CODE,class$$instructions

;jump to procedure, after converting
;return address to return object
jsr.n CODE
subu RETURN,CODE,l

<<three data words of return chunk information>>
::;
;;;at call site, after call has completed
;;;
;reload AO, if necessary
Cld AO,CONT,frame$$slotO]
<restore all live registers)

Thus, the most general call takes 5 instructions,
and a minimum of 6 cycles (more if the instruction
which loads the CODE register generates an address
not in the cache),

Upon entry to the called procedure, the following is
executed, assuming that the procedure expects m ar-
guments, does not have “rest,, arguments,calls other
procedures, and needs to allocate one continuation
frame.

::;
;;;argument and interrupt check
. . . ,.,
;check argument count and interrupt bit,
; if good, to $noCheck
=mP SO,INARGS,a
bbl eq,SO,$noCheck

;othervise investigate by calling millicode
addu CODE,RUNTIWE,runtime$$poll
jsr CODE

177

<<data vord for polling routine>>
$noCheck:
;store return object in caller’s frame
st RETURN,CONT,frame$$return-chunk

;;;
;;;frame allocation
;;;
;check for frame cache overflov
;if ok, to $ok, after allocating one frame

cmP SO,CONT,LIMIT
bb1.n gt,SO,$ok
subu CONT, CONT, frame-delta

;othervise, handle frame cache overflov
; in millicode
addu CODE,RUNTIME,runtime$$cache-overflow
jsr CODE
<<data vord for overflov routine>>

$ok:
<<code for procedure body>>

If all checks succeed, this entry sequence consumes 7
cycles.

The code sequence for procedure exit is simple:

; deallocate frame
addu CONT,CONT,frame-delta

; reload return object
Id RETURN,CONT,frame$$return-chunk

;NOTE: Potentially a 2 cycle memory delay here
;convert object to return address
addu CODE,RETURN,chunk$$instructions

;return to caller

jw CODE
;NOTE: one-cycle memory delay here

Under the assumption that the reloading of the re-
turn object hits the cache, this return sequence also
consumes 7 cycles.

A general procedure call therefore costs 13 cycles,
and the return costs another 7 cycles. Three of
these cycles could potentially be eliminated through
instruction reordering. For realistic programs, we
would expect that one of them can always be avoided.
For purposes of comparison, the Common Lisp im-
plementation group for the IBM RT PC [McDo87]
reports that a simple function call of a symbol with
no arguments takes 45 cycles, and that the returning
of one value takes 35 cycles. (Note, however, that a
single branch on the RT typically takes several cy-
cles.)

3.52 Basic list processing

Accessing the car or cdr field of a list cell (pair)
involves the following steps:

l Testing that the object is a pointer. This is done
implicitly by relying on the address misalignment
trap.

l Testing that the structure pointed at is a pair.
Since the pair tag is encoded as zero, a compari-
son instruction can be elided, though the condi-
tional branch is still necessary.

l Reading the data element from memory.

It is an error to take the car or cdr of the empty list.
The following code sequence implements the appli-

cation (car pair), where the value of pair is as-
sumed to reside in register Ai, and the result is to be
returned in register ok.

;get type tag
ld.bu SO,Ai,object$$tag

;get car (causes trap if not pointer)
Id Sl,Ai,pair$$car

;potential one cycle memory delay
;trap if not a Pair
tend neO,SO,exception$not-a-pair

;copy car field to rooted register
or Ak,Sl,ZERO

Thus, (car pair) is compiled into 4 instructions,
which execute in 5 cycles (including one cycle due
to memory delay), assuming cache hits on both load
instructions. The extra instruction that copies the
result from a non-rooted to a rooted register is neces-
sary to ensure that no rooted register contains an il-
legal value in the event of a trap caused by the second
load instruction. By complicating the trap handler,
it may be possible to eliminate the extra instruction.

3.5.3 Fixnum arithmetic

Most language implementations set a bound on the
range of integers for which arithmetic operations are
implemented; this bound generally coincides with the
size of a machine word. A Scheme implementation,
on the other hand, is expected to provide arbitrary-
precision integer arithmetic. Arithmetic operations
are additionally complicated by the fact that most
operators must work on all available numeric types,
which usually include floating point numbers, and
possibly rational and complex numbers.

Clearly, such genetic ari2hme2ic must generally be
implemented by calls to out-of-line procedures. How-
ever, since arithmetic on small integers is extremely
common, always dispatching on the generic arith-
metic millicode would incur an unacceptable exe-
cution time penalty. Therefore, most implementa-
tions divide the space of integers into jiznums, which
fit (along with tagging information) into a single
machine word, and bignums, which are represented
via pointers to heap-allocated structures containing
a multiword representation of the value [Whit86].
Fixnums are assigned a unique tag value; most arith-
metic on fixnums is implemented inline.

178

The presence of differing type tags for fixnums and
other numeric quantities means that arithmetic oper-
ators in the language cannot be directly mapped onto
the standard machine instructions unless there is spe-
cial hardware support. Without such support, arith-
metic operations necessarily comprise arithmetic in-
structions as well as instructions for checking fixnum
tags and detecting overflow.

In Screme, generic arithmetic is fully implemented
in millicode. However, important flxnum opera-
tions such as addition, subtraction, and compari-
son are open-coded for efficiency. The following
code sequence implements binary addition, with the
operands in registers Ai and Ak, and the result re-
turned in a different register Am:

;perform addition
addu Am,Ai,Ak

;test 1st operand for fixnm
bbl tagbit$not-fixnum,Ai,$_1

; test 2nd operand for fixnum
bW.n tagbit$not-fixnum,Ak,$-2

;prepare for overflow test
clr so,Am,3o<o>

$3:
;branch to generic millicode
bsr $-segment-generic
<<word to encode op. for generic routine>>

s-2:
;check for overflow
bend 9,SO,$,l

s-3:
;continue vith remainder of program

This code sequence occupies six instruction words and
one data word. In the case of both operands and
the result being fixnums, it executes in 5 cycles. An
overflow has occurred if the sign bit and the guard bit
differ. We test this by masking off all but these two
bits, and use the generality of the bend instruction to
test if the masked value is either the most negative
integer, or is positive.

3.6 Continuation frames

A continuation is represented by a continuation frame
(activation record), which is an internal structure
within a frame cache. The frame cache contains
a large number of contiguous continuation frames.
Continuation frames must be more general than ac-
tivation records for a traditional language, because
it is possible that a pointer to a continuation (i.e., a
frame and all its predecessors) might be captured by
storing it in a variable [Clin88].

Although space limitations preclude a detailed dis-
cussion of our frame cache implementation, the fol-
lowing points briefly summarize its salient character-
istics:

When a frame cache overflow occurs, a new frame
cache is allocated from the heap and linked to
the old one; on underflow, the old frame cache is
reinstated.

Allocating a continuation frame requires three
cycles: two for comparing the LIMIT and CONT
registers, and one to bump the frame pointer
CONT.

Deallocating a continuation frame takes just one
cycle, since underflow is detected by means of a
special return address that is placed in a dummy
frame at the bottom of each frame cache.

When a continuation is captured, its frame
caches are marked as shared; whenever an un-
derflow into a shared cache occurs-or whenever
a continuation is restarted-xecution proceeds
out of a copy of the frame cache.

Clearly, programs that do not use continuations are
not penalized when they allocate or deallocate contin-
uation frames upon procedure entry or exit, because
the frame pointer could not be adjusted for free in
any event. Programs using continuations in a non-
trivial manner incur “only” the overhead of frame
cache copying.

3.7 Garbage collection

Although we currently use a simple stop and copy
garbage collector, the system has been designed with
a fast generation scavenging collector [Unga84] in
mind, in order to allow the programming of embed-
ded applications. Aside from the requirement that
the register set be partitioned into rooted and un-
rooted registers, the presence of a garbage collector
manifests itself in the following ways:

Since code objects may be relocated during a
garbage collection, code pointers must generally
be stored as a combination of a code segment

(i.e., code object), and an offset within the ob-
ject’s structure.

In order to increase the performance of the
garbage collector, the low three bits of the tag
field of a boxed object contain a horizontal en-
coding of whether the structure contains objects,
binary data (e.g., strings), or a combination of
the two.

For some objects, the length field is redundant,
but is always included in order to simplify the
collector.

179

4

Information must be deposited in each continu-
ation frame concerning the number and position
of root pointers within the frame.

Because of the way a generation scavenging col-
lector works, an assignment of a pointer value
to a structure field must be registered with the
collector if the structure belongs to an older gen-
eration than the pointer. However, since it is
guaranteed that frame caches always belong to
the youngest generation, pointers may be stored
into stack frames without requiring notification
of the garbage collector.

Evaluation of the 88000 as a
Target Machine

4.1 Supporting features

Despite the high level of the Scheme programming
language and the “low-level” RISC architecture, we
found the 88000 to be a relatively nice architecture on
which to build a Scheme implementation. The large,
homogeneous register set leaves a generous supply of
registers for arguments, local variables, and the mil-
licode interface. We disagree with the conclusion by
Steenkiste and Hennessy that 32 registers cannot ef-
fectively be used in a Lisp implementation [Stee86].
Although that number seems excessive if registers are
used only for parameter-passing, there are a number
of global values that we wanted in registers, but that
were placed in memory because we ran out of register
space. Examples are heap-allocation pointers and ad-
dresses of the most common millicode routines. Con-
versely, a previous attempt by members of our group
at implementing Scheme on the 68000 found its 16
inhomogeneous registers to be inadequate.

Perhaps the most pleasant surprise was the useful-
ness of the misaligned memory exception in detect-
ing runtime errors. This architectural feature allowed
a number of important code sequences to be imple-
mented more efficiently. Near the beginning of the
project, we designed (on paper) a tagged version of
the architecture, and sketched out non-tagged and
tagged versions of code sequences for some bench-
marks. To our surprise, the tagged versions were not
significantly better; in some cases, the tag manipula-
tion overhead made the tagged version more costly5.

5We do not mean to imply by this that tagged hardware
is a bad idea for Lisp implementations. Rather, the instruc-
tion set should be designed with tagging in mind from the very
start [Hill86], instead of selecting an existing instruction set
and adding tagging as an afterthought. Hardware tags are par-
ticularly important if floating point operations are to execute
efficiently (i.e., without boxing all floating point objects).

Another useful architectural feature has been the
availability of both delay-slot and non-delay-slot ver-
sions of conditional branch instructions. When the
compiler is unable to fill in the delay slot, it is con-
venient to avoid the branch penalty when the branch
is not taken. This is especially advantageous when a
conditional branch is testing for an exceptional con-
dition, where the speed of the taken branch is unim-
portant. On the other hand, it would have been nice
to have had branches that executed the delay-slot in-
struction only when the branch was taken.

4.2 Problematic features

The architecture contains a number of “glitches” and
non-orthogonalities that have occasionally been frus-
trating. These include the following:

l The two-instruction penalty for adding a literal
exceeding 14 bits in magnitude to a register (e.g.,
for character literals).

l The lack of sign-extended literals and offsets.

l The lack of an indexed jump instruction which,
if present, would have allowed single-instruction
jumps through return objects.

l The lack of a “signed divide” instruction, which
increases the cost of the quotient operation by
nine instructions.

l The inability to directly obtain the remainder
of a division. We were therefore required to
synthesize it using division, multiplication, and
subtraction instructions, which is not signifi-
cantly faster than implementing the operation in
Scheme source code.

l The lack of overflow detection without taking a
trap.

l The problem that neither the non-commutative
arithmetic operations (subtract and divide), nor
the “complement second operand” versions of
and and or allow a literal to be used as the first
operand rather than the second.

We also note that (effectively) 14 of the possible
16 boolean operations in register-register mode were
implemented.

5 Current Status and Future
Work

5.1 Status

As of the time of this writing, the company (Tek-
tronix) has put the project “on hold” for non-

180

technical reasons. Because we did not have working
hardware at the time the project was active, we have
used the 88000 simulator to debug the compiler and
runtime system. We have not yet implemented either
floating point or bignum arithmetic. However, the
generic arithmetic structure is in place. Also, regis-
ter spilling is not performed, limiting the compiler to
toy programs. Finally, the debugging environment is
not implemented.

We have yet to implement an instruction reorga-
nizer that is compatible with our system. The “stan-
dard” reorganizer cannot be used because it violates
assumptions made by the code generator concern-
ing header words in code and garbage collector in-
variants. In addition, we suspect that we would
be displeased with any post-processing instruction
scheduler-as advocated by Gross [Gros83] for tradi-
tional languages-because the two-cycle memory la-
tency behooves the merging of independent code se-
quences that contain delay slots, which our compiler
generates with high frequency (e.g., car, cdr). This,
in turn, requires scratch registers to be available to
the scheduler for holding (additional) temporary re-
sults introduced by the reorganization. Ideally, it
would seem that the register allocator and reorganizer
should be implemented together [Bird87], although a
strategy which reserves two registers (corresponding
to the two-cycle memory delay) for the reorganizer
might be adequate.

Due to the lack of working hardware, we can only
offer a “pseudo” benchmark at this point. Consider
the definition of the Fibonacci procedure below.

(define (fib x>
(letrec ((fibo (lambda (n)

(if (< n 2)
n
(+ (fib0 (- n I)) (fibo (- n 2)))))))

(fib0 xl))

We have computed that the 88000 code generated
by our compiler would execute (fib 20) in roughly
492,500 cycles, or 24.65 milliseconds at 20MHz. In
comparison, the native code produced by MacScheme
on a Mac II for the same procedure takes 867 millisec-
onds to execute (fib 2O), which is about 35 times
slower. In general, well informed sources have esti-
mated that the 88000 runs between 15 and 20 times
faster than the Mac II.

5.2 Improvements

In considering what might have been done differently
in our implementation, three things come to mind.
The first is that a significant execution penalty is paid
to accommodate the possibility that code might be
moved by the garbage collector. This leads to the

representation of code addresses as tagged pointers,
which requires a good deal of dynamic tag manipula-
tion, as well as a significant amount of space for code
object headers in the code itself. Because we expect
the garbage collection of code to be a phenomenon
that is (almost) exclusively utilized during program
development, this amounts to a decision to slow down
application programs in order to make it easier to
implement an interactive programming environment.
We would prefer either seeing this bookkeeping done
in some other way, or having a compiler switch that
would generate “application” code in which code ad-
dresses are represented as fixnums.

Another decision that we may wish to rethink is
the treatment of continuation frames as fixed-sized
internal objects within a frame cache. The current
design “wastes” perhaps half the space in a typical
frame cache due to a combination of fragmentation
and the space used for internal header information.

Finally, we might reexamine the storage needs for
list cells (pairs). In our implementation, every list
cell occupies 16 bytes, 8 of which are overhead. An
alternate implementation technique would be to use
a three-bit tag, with fixnums being #bOOO, immedi-
ates #blOO, pairs #blOl, and other pointers #bllO;
other tags would be illegal to allow one-instruction
branches on fixnum, pointer, and pair. This would
have advantages that include car and cdr being one-
instruction operations, and pair-cells taking only 8
bytes of memory. These gains would seem to out-
weigh the disadvantages of requiring object-allocation
on 8-byte boundaries and the slowing down of vector
operations by one or two cycles.

6 Acknowledgements

In addition to the authors, Norman Adams, Will
Clinger, and Ken Dickey contributed heavily to this
system’s design and implementation. We would like
to express appreciation to Will and Ken for their help-
ful comments on this manuscript.

181

References

[Bird871

[Broo82]

[Br0086]

[Clin88]

[Gros83]

[Hi11861

[Klan861

[Kran88]

[McDo87]

Bird, P.H.L., Code Generation and
Instruction Scheduling for Pipelined
SISD Machines, PhD thesis, University
of Michigan (1987).

Brooks, R.A., Gabriel, R.P., and Steele,
G.L., Jr., “An Optimizing Compiler for
Lexically Scoped LISP,” Proc. SIGPLAN
‘82 Symposium on Compiler
Construction, pp. 261-275 (June 1982).

Brooks, R.A. et al., “Design of an
Optimizing, Dynamically Retargetable
Compiler for Common Lisp,” Proc. 1986
ACM Conference on Lisp and Functional
Programming, pp. 67-85 (August 1986).

Clinger, W.D., Hartheimer, A.H., and
Ost, E.M., “Implementation Strategies
for Continuations,” Proc. 1988 ACM
Conference on Lisp and Functional
Programming, pp. 124-131 (July 1988).

Gross, T., Code Optimization of Pipeline
Constraints, Technical Report No.
83-255, Stanford University Computer
Systems Laboratory (December 1983).

Hill, M. et al., “Design Decisions in
SPUR,” IEEE Computer, Vol. 19(10),
pp. 8-22 (November 1986).

Kranz, D., Kelsey, R., Rees, J., Hudak,
P., Philbin, J., and Adams, N., “ORBIT:
An Optimizing Compiler for Scheme,”
Proc. SIGPLAN ‘86 Symposium on
Compiler Construction, pp. 219-233
(June 1986).

Kranz, D.A., ORBIT: An Optimizing
Compiler for Scheme, PhD thesis, Yale
University (1988).

McDonald, D.B., Fahlman, S.E., and
Spector, AZ., An Eficient Common
Lisp for the IBM RT PC, Technical
Report CMU-CS-87-134,
Carnegie-Mellon University (July 1987).

[Moto88a] Motorola, Inc., MC881 00 3%Bit
Third-Generation Microprocessor
Technical Summary, Document No.
BR-588/D, Motorola, Inc. (1988).

[Moto88b] Motorola, Inc., MC88200 Cache Memory
Management Unit Technical Summary,
Document No. BR-589/D, Motorola, Inc.
(1988).

[Rees86]

[Sheb87]

[Stee78]

[Stee86]

[Stee87]

[Unga84]

[Whit861

Rees, J. and Clinger, W. (Editors),
“Revised Revised Revised Report on the
Algorithmic Language Scheme,” ACM
SIGPLAN Notices, Vol. 21(12), pp. 37-79
(December 1986).

Shebs, S. and Kessler, R., “Automatic
Design and Implementation of Language
Datatypes,” Proc. SIGPLAN ‘87
Symposium on Interpreters and
Interpretive Techniques, pp. 26-37 (June
1987).

Steele, G.L., Jr., Rabbit: A Compiler for
Scheme” Technical Report 474, MIT
Artificial Intelligence Laboratory (May
1978).

Steenkiste, P. and Hennessy, J., “LISP
on a Reduced-Instruction-Set-Processor,”
Proc. 1986 ACM Conference on Lisp and
Functional Programming, pp. 192-201
(August 1986).

Steenkiste, P. and Hennessy, J., “Tags
and Type-Checking in LISP: Hardware
and Software Approaches,” Proc.
ASPLOS 11, pp. 50-59 (October 1987).

Ungar, D., “Generation Scavenging: A
Non-Disruptive High Performance
Storage Reclamation Algorithm,” Proc.
1986 ACM Symposium on Practical
Software Development Environments, pp.
157-167, (April 1984). Also published as
ACM SIGPLAN Notices, Vol. 19(5),
(May 1984)) and as ACM Software
Engineering Notes, Vol. 9(3), (May
1984).

White, J .L., “Reconfigurable,
Retargetable, Bignums: A Case Study in
Efficient, Portable Lisp System
Building,” Proc. 1986 ACM Conference
on Lisp and Functional Programming,
pp. 174-191 (August 1986).

182

