
On Teaching
How to Design Programs

Norman Ramsey
Department of Computer Science

Tufts University



I want to help teachers

How to teach
How to Design Programs

(Felleisen, Findler, Flatt, Krishnamurthi)

(Even if you have never touched Racket)



Paper has hints, observations, problems

This talk:
• The design method
• What’s hard for students
• An outsider’s view of the technology
• One open problem

In the paper:
• Traps and pitfalls
• Much more of all the above



Paper has hints, observations, problems

This talk:
• The design method
• What’s hard for students
• An outsider’s view of the technology
• One open problem

In the paper:
• Traps and pitfalls
• Much more of all the above



Paper has hints, observations, problems

This talk:
• The design method
• What’s hard for students
• An outsider’s view of the technology
• One open problem

In the paper:
• Traps and pitfalls
• Much more of all the above



“Systematic problem-solving,” not “functional programming”

This is (my revised) design process:

Describe data Make data examples

Describe function Make functional examples

Create code template
from types

Fill in template

Test

Review and refactor



“Systematic problem-solving,” not “functional programming”

This is (my revised) design process:

Describe data Make data examples

Describe function Make functional examples

Create code template
from types

Fill in template

Test

Review and refactor



“Systematic problem-solving,” not “functional programming”

This is (my revised) design process:

Describe data Make data examples

Describe function Make functional examples

Create code template
from types

Fill in template

Test

Review and refactor



“Systematic problem-solving,” not “functional programming”

This is (my revised) design process:

Describe data Make data examples

Describe function Make functional examples

Create code template
from types

Fill in template

Test

Review and refactor



“Systematic problem-solving,” not “functional programming”

This is (my revised) design process:

Describe data Make data examples

Describe function Make functional examples

Create code template
from types

Fill in template

Test

Review and refactor



“Systematic problem-solving,” not “functional programming”

This is (my revised) design process:

Describe data Make data examples

Describe function Make functional examples

Create code template
from types

Fill in template

Test

Review and refactor



“Systematic problem-solving,” not “functional programming”

This is (my revised) design process:

Describe data Make data examples

Describe function Make functional examples

Create code template
from types

Fill in template

Test

Review and refactor



“Systematic problem-solving,” not “functional programming”

This is (my revised) design process:

Describe data Make data examples

Describe function Make functional examples

Create code template
from types

Fill in template

Test

Review and refactor



“Systematic problem-solving,” not “functional programming”

This is (my revised) design process:

Describe data Make data examples

Describe function Make functional examples

Create code template
from types

Fill in template

Test

Review and refactor



“Systematic problem-solving,” not “functional programming”

This is (my revised) design process:

Describe data Make data examples

Describe function Make functional examples

Create code template
from types

Fill in template

Test

Review and refactor



“Systematic problem-solving,” not “functional programming”

This is (my revised) design process:

Describe data Make data examples

Describe function Make functional examples

Create code template
from types

Fill in template

Test

Review and refactor



Example: Beginners can work with 2D-trees

Data examples:



Example: 2D-tree data definition

A (2Dpoint A) is a structure (make-point x y value)
where x and y are numbers and value is an A.

A (2Dtree A) is one of the following:
• A (2Dpoint A)
• A structure (make-v-boundary left x right), where

– x is a number,
– left is a (2Dtree A) in which every point has an x coordinate

at most x, and
– right is a (2Dtree A) in which every point has an x

coordinate at least x
• A structure (make-h-boundary above y below) . . .



Nearest point: functional example

Problem 5, homework 9 (of 11)
Find the point nearest �:

(Later: nearest hospital)

Answer: L



Nearest point: functional example

Problem 5, homework 9 (of 11)
Find the point nearest �:

(Later: nearest hospital)

Answer: L



Nearest point: description

; nearest-point :
; number number (2Dtree A) -> (2Dpoint A)
; *efficiently* returns the point in the given tree
; that is closest to the given (x, y) coordinates
(define (nearest-point x y tree)
(cond [(point? tree) tree]

[(h-boundary? tree)
(... x y

(h-boundary-y tree)
(h-boundary-above tree)
(h-boundary-below tree))]

[(v-boundary? tree)
(... x y

(v-boundary-x tree)
(v-boundary-left tree)
(v-boundary-right tree))]))



Nearest point: description

; nearest-point :
; number number (2Dtree A) -> (2Dpoint A)
; *efficiently* returns the point in the given tree
; that is closest to the given (x, y) coordinates
(define (nearest-point x y tree)
(cond [(point? tree) tree]

[(h-boundary? tree)
(... x y

(h-boundary-y tree)
(h-boundary-above tree)
(h-boundary-below tree))]

[(v-boundary? tree)
(... x y

(v-boundary-x tree)
(v-boundary-left tree)
(v-boundary-right tree))]))



Nearest point: description

; nearest-point :
; number number (2Dtree A) -> (2Dpoint A)
; *efficiently* returns the point in the given tree
; that is closest to the given (x, y) coordinates
(define (nearest-point x y tree)
(cond [(point? tree) tree]

[(h-boundary? tree)
(... x y

(h-boundary-y tree)
(h-boundary-above tree)
(h-boundary-below tree))]

[(v-boundary? tree)
(... x y

(v-boundary-x tree)
(v-boundary-left tree)
(v-boundary-right tree))]))



Nearest point: template

; nearest-point :
; number number (2Dtree A) -> (2Dpoint A)
; *efficiently* returns the point in the given tree
; that is closest to the given (x, y) coordinates
(define (nearest-point x y tree)
(cond [(point? tree) tree]

[(h-boundary? tree)
(... x y

(h-boundary-y tree)
(h-boundary-above tree)
(h-boundary-below tree))]

[(v-boundary? tree)
(... x y

(v-boundary-x tree)
(v-boundary-left tree)
(v-boundary-right tree))]))



Nearest point: template

; nearest-point :
; number number (2Dtree A) -> (2Dpoint A)
; *efficiently* returns the point in the given tree
; that is closest to the given (x, y) coordinates
(define (nearest-point x y tree)
(cond [(point? tree) tree]

[(h-boundary? tree)
(... x y

(h-boundary-y tree)
(h-boundary-above tree)
(h-boundary-below tree))]

[(v-boundary? tree)
(... x y

(v-boundary-x tree)
(v-boundary-left tree)
(v-boundary-right tree))]))



Nearest point: template

; nearest-point :
; number number (2Dtree A) -> (2Dpoint A)
; *efficiently* returns the point in the given tree
; that is closest to the given (x, y) coordinates
(define (nearest-point x y tree)
(cond [(point? tree) tree]

[(h-boundary? tree)
(... x y

(h-boundary-y tree)
(h-boundary-above tree)
(h-boundary-below tree))]

[(v-boundary? tree)
(... x y

(v-boundary-x tree)
(v-boundary-left tree)
(v-boundary-right tree))]))



Nearest point: template

; nearest-point :
; number number (2Dtree A) -> (2Dpoint A)
; *efficiently* returns the point in the given tree
; that is closest to the given (x, y) coordinates
(define (nearest-point x y tree)
(cond [(point? tree) tree]

[(h-boundary? tree)
(... x y

(h-boundary-y tree)
(h-boundary-above tree)
(h-boundary-below tree))]

[(v-boundary? tree)
(... x y

(v-boundary-x tree)
(v-boundary-left tree)
(v-boundary-right tree))]))



Part II
What’s Hard?



Type-directed programming is hard

Templates are constructed based on type of input.

If input is Atomic use library functions

Sum use cond

Product use selector functions

Arrow Apply it

OMG the flaws!

Most common: repeated elimination of sums, products
(Paper, Section 3)



Type-directed programming is hard

Templates are constructed based on type of input.

If input is Atomic use library functions

Sum use cond

Product use selector functions

Arrow Apply it

OMG the flaws!

Most common: repeated elimination of sums, products
(Paper, Section 3)



“Purpose statements” are hard

Hard in semesters 1, 2, 3, and 4

Reasonably good early examples:
;;meters->english; number -> string
;;input the distance in meters then
;; converts them to english

;; move-big-hand : time -> time
;; adds one minute to time structure

After 5 weeks:
;; stations-on : railway -> list-of-stations
;; returns an ordered list of all stations
;; on the railway, southernmost first

Recommendation: “Review and refactor”



Purpose statement’s acid test: recursion

Vague purpose statement? Mentally inline the code.
• “Works” until functions become recursive

Students are very aggressive inliners

Diagnosis: difficulty with procedural abstraction



Purpose statement’s acid test: recursion

Vague purpose statement? Mentally inline the code.
• “Works” until functions become recursive

Students are very aggressive inliners

Diagnosis: difficulty with procedural abstraction



Part III
The technology



I didn’t need five “language levels”

. . . Scheme . . . Full Racket

Simple Advanced Student Lang

Pure Intermediate Student Lang+

�

�

No local/let vars
(first-order)

Beginning Student Lang



I didn’t need five “language levels”

. . . Scheme . . . Full Racket

Simple Advanced Student Lang

Pure Intermediate Student Lang+

�

�

No local/let vars
(first-order)

Beginning Student Lang



I didn’t need five “language levels”

. . . Scheme . . . Full Racket

Simple Advanced Student Lang

Pure Intermediate Student Lang+

�

�

No local/let vars
(first-order)

Beginning Student Lang



I didn’t need five “language levels”

. . . Scheme . . . Full Racket

Simple Advanced Student Lang

Pure Intermediate Student Lang+

�

�

No local/let vars
(first-order)

Beginning Student Lang



Don’t be fooled by the DrRacket IDE

GUI often distracted or frustrated students
• Designed for full Racket, including Help
• Mysterious program analyses (colored arrows)

The major win:

Every time you compile,
untested code is thrown in your face

Result: students think testing is essential



Don’t be fooled by the DrRacket IDE

GUI often distracted or frustrated students
• Designed for full Racket, including Help
• Mysterious program analyses (colored arrows)

The major win:

Every time you compile,
untested code is thrown in your face

Result: students think testing is essential



Don’t be fooled by the DrRacket IDE

GUI often distracted or frustrated students
• Designed for full Racket, including Help
• Mysterious program analyses (colored arrows)

The major win:

Every time you compile,
untested code is thrown in your face

Result: students think testing is essential



Go deep into “world programs”

ICFP’09:
• Interactive apps by composing pure functions
• “Build a program like applications students use”

Easily overlooked opportunities:
• Look at world; see data; define representation
• Design programs, not just functions
• Make choices that matter



Go deep into “world programs”

ICFP’09:
• Interactive apps by composing pure functions
• “Build a program like applications students use”

Easily overlooked opportunities:
• Look at world; see data; define representation
• Design programs, not just functions
• Make choices that matter



Go deep into “world programs”

ICFP’09:
• Interactive apps by composing pure functions
• “Build a program like applications students use”

Easily overlooked opportunities:
• Look at world; see data; define representation
• Design programs, not just functions
• Make choices that matter



Go deep into “world programs”

ICFP’09:
• Interactive apps by composing pure functions
• “Build a program like applications students use”

Easily overlooked opportunities:
• Look at world; see data; define representation
• Design programs, not just functions
• Make choices that matter



Go deep into “world programs”

ICFP’09:
• Interactive apps by composing pure functions
• “Build a program like applications students use”

Easily overlooked opportunities:
• Look at world; see data; define representation
• Design programs, not just functions
• Make choices that matter



Part IV: An open problem



Assessment is too binary

What we really care about:
• Was the code developed by systematic design?

What experienced instructors do:
• Deduct “points”

Open problems: Find a middle ground

Identify “primary traits?”



Assessment is too binary

What we really care about:
• Was the code developed by systematic design?

What experienced instructors do:
• Deduct “points”

Open problems: Find a middle ground

Identify “primary traits?”



Assessment is too binary

What we really care about:
• Was the code developed by systematic design?

What experienced instructors do:
• Deduct “points”

Open problems: Find a middle ground

Identify “primary traits?”



Assessment is too binary

What we really care about:
• Was the code developed by systematic design?

What experienced instructors do:
• Deduct “points”

Open problems: Find a middle ground

Identify “primary traits?”



Assessment is too binary

What we really care about:
• Was the code developed by systematic design?

What experienced instructors do:
• Deduct “points”

Open problems: Find a middle ground

Identify “primary traits?”



Conclusion:
Try it yourself



HtDP: low cost, high reward

• Delivers effective problem-solving
– Good for students
– Easy to sell “systematic software development”

• The technology really helps
• Plenty of functional-programming goodness
• I had lots of fun

Please contribute!
• Dare to make changes
• Help solve some open problems

(Paper, Section 6)



HtDP: low cost, high reward

• Delivers effective problem-solving
– Good for students
– Easy to sell “systematic software development”

• The technology really helps
• Plenty of functional-programming goodness
• I had lots of fun

Please contribute!
• Dare to make changes
• Help solve some open problems

(Paper, Section 6)



From end-of-term self-assessment

I didn’t grasp the importance of laying out a template.
I got into the habit of coding without templates. . . I didn’t
understand that by outlining the function based on in-
put data, the design of the function was in many ways
simplified and structured, making it harder to veer off
course. Unfortunately, when data began to grow more
complex, I failed to transition to using the template ap-
proach, and this resulted in a few uncomfortable weeks
of coding. Without knowing how to establish a template
based on the data of a function, I often felt very lost.



From end-of-term self-assessment

. . . As the problems became more complicated with more
conditions, I realized that I couldn’t do everything in my
head. Writing [functional] examples concretizes each
condition, its input and expected output, so that I can fo-
cus on solving one case at a time, which is significantly
less daunting. Functional examples are also test cases
which help me debug my code part by part.



From end-of-term self-assessment

While purpose statements are only written into the code
for each individual function, they are useful for thinking
about a problem as whole. [When] the entire problem
is executed through one function which uses multiple
helper functions, the signature and purpose statement
make it easy to break down a problem into the individ-
ual parts addressed in each helper function. Often the
change from one type of data with a certain meaning into
another cannot be done in one step. Here it is the pur-
pose statements and signatures that show each smaller
step of the problem.


