
COMP 150TW: Paragraph = Issue + Discussion (Samples)

The Engineering Method of Technical Writing

November 8, 2016

Questions:

1. How well does the issue frame the discussion?

A. Very well

B. Well enough

C. Not so well

D. Not at all well

2. Rank the paragraphs from best to worst

3. About each paragraph: what would you improve?

• About the issue?

• About the discussion?

Abby’s sample

From Brown et al., “Dis-Function: Learning Distance Functions
Interactively,” 2012.

What is needed, then, is a system to bridge the space
between the experts and the tools. In this paper we
introduce an approach and prototype implementation,
which we name Dis-Function, that allows experts to
leverage their knowledge about data to define a distance
metric. Using our system, an expert interacts directly
with a visual representation of the data to define an
appropriate distance function, thus avoiding direct ma-
nipulation of obtuse model parameters. The system first
presents the user with a scatterplot of a projection of
the data using an initial distance function. During each
subsequent iteration, the expert finds points that are not
positioned in accordance with his or her understanding
of the data, and moves them interactively. Dis-Function
learns a new distance function which incorporates the
new interaction and the previous interactions, and then
redisplays the data using the updated distance function.

Behnam’s sample

Jacobvitz, Hilton, and Sorin, “Multi-Program Benchmark Defini-
tion,”, ISPASS 2015.

A notable approach to variable instruction count sam-
pling is the Co-Phase Matrix methodology [19]. This
approach is based on determining the behavior of two
programs in a co-phase: a period during which their be-
haviors and contention exhibit a consistent pattern. As-
suming two programs paired together, such that the first
program has M phases and the second has N phases,
one can construct a M × N co-phase matrix that rep-
resents the performance behavior of all co-phases of
the two programs. For more than two programs, the
dimensionality of the co-phase matrix increases; K
programs form a K-dimensional matrix. Each entry in
the co-phase matrix is the performance of that co-phase,
and it is obtained with detailed simulation. The overall
behavior of the multi-program execution is then esti-
mated by a fast analytical simulation which tracks what
phase each program is in, looks up the performance
characteristics of that co-phase in the co-phase matrix,
and then determines how long the co-phase will last
(i.e., how long until either program changes phase be-
havior). The process repeats until the end of the sample
of one program is reached, which means this approach
is a variable instruction count methodology.

Diogenes’s sample

From Amin and Tate, “Java and Scala’s Type Systems are Un-
sound,” OOPSLA 2016.

An entirely different approach is to change the goal
of minimization. Whereas traditionally minimization
has removed the complex features, one could alterna-
tively minimize to remove the features with the least
cross-cutting impact. That is, if a feature is simply
another case in a proof, with no effect on the design of
the proof, or its guarantees, then remove it. This might
significantly reduce the capability of the calculus, but
such a reduction does not matter if that capability is not
relevant to the question at hand. In this way, the discus-
sion of the work could focus on the most challenging
aspects of the language or proof, which the researchers’
expertise is most relevant to, rather than the aspects that
might easily be recreated by the reader or successor.

1



Jason’s sample

From Batson et al., Spectral Sparsification of Graphs: Theory
and Algorithms.

What exactly do we mean by sparse? We would cer-
tainly consider a graph sparse if its average degree were
less than 10, and we would probably consider a graph
sparse if it had one billion vertices and average degree
one hundred. We formalize the notion of sparsity in the
usual analysis-of- algorithms way by considering infi-
nite families of graphs, and proclaiming sparse those
whose average degrees are bounded by some constant,
or perhaps by a polynomial in the logarithm of their
number of vertices.

Matt’s sample

From the book chapter “Beautiful Concurrency,” Simon Peyton
Jones, 2007.

But the fundamental shortcoming of lock-based pro-
gramming is that locks and condition variables do not
support modular programming. By “modular program-
ming” I mean the process of building large programs
by gluing together smaller programs. Locks make this
impossible. For example, we could not use our (cor-
rect) implementations of withdraw and deposit
unchanged to implement transfer; instead we had
to expose the locking protocol. Blocking and choice
are even less modular. For example suppose we had a
version of withdraw that blocks if the source account
has insufficient funds. Then we would not be able to
use withdraw directly to withdraw money from A or
B (depending on which has sufficient funds), without
exposing the blocking condition – and even then it’s
not easy. This critique is elaborated elsewhere [7,8,4].

Norman’s sample

This sample from Don Knuth, with one change, is from page 4 of
The Art of Computer Programming, Volume One: Fundamental
Algorithms (second edition):

So much for the form of algorithms; now let us under-
stand one. It should be mentioned immediately that
the reader should not expect to read an algorithm as if
it were part of a novel; such an attempt would make
it pretty difficult to understand what is going on. An
algorithm must be seen to be believed, and the best way
to learn what an algorithm is all about is to try it. The
reader should always take pencil and paper and work
through an example of each algorithm immediately
upon encountering it in the text. Usually the outline of
a worked example will be given, or else the reader can

easily conjure one up. This is a simple and painless
way to gain an understanding of a given algorithm, and
all other approaches are generally unsuccessful.

The original opens slightly differently:

So much for the form of algorithms; now let us perform
one.

Decide for yourself if you think the paragraph is more about
performing algorithms or more about understanding them.

Remy’s sample

From “EXE: Automatically Generating Inputs of Death” by Chris-
tian Cadar et al., CCS’06.

The result of these features is that EXE finds bugs in
real code, and automatically generates concrete inputs
to trigger them. It generates evil packet filters that ex-
ploit buffer overruns in the very mature and audited
Berkeley Packet Filter (BPF) code as well as its Linux
equivalent (§ 5.1). It generates packets that cause in-
valid memory reads and writes in the udhcpd DHCP
server (§ 5.2), and bad regular expressions that com-
promise the pcre library (§ 5.3), previously audited for
security holes. In prior work, it generated raw disk
images that, when mounted by a Linux kernel, would
crash it or cause a buffer overflow [46].

Xinmeng’s sample

From Georgiou et al., “The promise and challenge of high-
throughput sequencing of the antibody repertoire,” 2014.

Organism age also influences the antibody repertoire.
During early ontogeny, the mammalian adult B-cell
repertoire is generated in a predictable developmentally
programmed fashion, whereas in advanced age humoral
immune responsiveness deteriorates; this phenomenon
is referred to as immunosenescence and is thought to
be attributable in part to a progressive restriction of the
antibody repertoire. For example, among the elderly
there is an increased prevalence of autoantibodies and,
at the serological level, an increased amount of either
a single or a small number of serum immunoglobulins
that are produced at a high level by benign outgrowths
of one or more plasma cell clones.

2


	Questions:
	Abby's sample
	Behnam's sample
	Diogenes's sample
	Jason's sample
	Matt's sample
	Norman's sample
	Remy's sample
	Xinmeng's sample


