Homework Assignment 3

This assignment is due by Tuesday March 2 (in class). Assignments should be handed in before the class begins.

Problem 1: Solve exercises 6.5-8, 6.5-9 (page 166), 8.2-4 (page 197), 8.33, 8.3-4 (page 200), 24.3-2, and 24.3-10 (page 663) in the textbook.

For 8.3-3 please state a loop invariant and use it in your proof.

Problem 2: [extra credit; 20 points] In each of the following questions you are asked to design an $O(n)$ algorithm that takes as input: an array with n distinct numbers and an integer $k \leq n$ (the array is not in sorted order). Note that k is not a constant and it may depend on n (e.g. we may have $k = \sqrt{n}$) so an algorithm with $O(kn)$ run time does not satisfy the requirement. In each part you need to argue both the correctness and run time of the algorithm.

(i) Give an $O(n)$ algorithm that finds the k smallest numbers in the array.

(ii) Give an $O(n)$ algorithm that finds the elements of rank $\lceil \frac{n}{2} \rceil - k + 1, \lceil \frac{n}{2} \rceil - k + 2, \ldots, \lceil \frac{n}{2} \rceil, \ldots, \lceil \frac{n}{2} \rceil + k$ in the array (so we are looking for a “band” of $2k$ elements around the median).

(iii) Give an $O(n)$ algorithm that finds the k elements that are closest in value to the median. For example, if $k = 5$, $n = 11$ and the array is 1, 2, 3, 4, 5, 6, 8, 14, 15, 16, 17, then the median is 6 and the 5 closest numbers are 2, 3, 4, 5, 8. Note that the array in the example is shown in sorted order but the input array is not necessarily sorted.

Hints: You may assume a linear time algorithm for selection (see Chapter 9) but you do not need to know or explain its details in your solution. Parts (i), (ii) should be helpful for part (iii).