The project is due in hardcopy by Monday May 3, 12:00 noon in Prof. Khardon’s mailbox in the main office.

Note: If you want to do another project of your own choice, please come to talk to me. I will accept any project that exercises and tests some of the material we covered, as long as it is not too easy or too hard. BUT you must negotiate such a project in advance.

1 Introduction

In this project we will study algorithms for Satisfiability, the canonical NP-Complete problem. The input is a formula in conjunctive normal form over a set of \(n \) Boolean variables. The question is whether the formula can be satisfied by some assignment of values to the variables. For example, the input formula

\[
(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_3})
\]

where \(x_1, x_2, x_3 \) are the Boolean variables, \(\overline{x} \) stands for the negation of \(x \), “\(\lor \)” stands for logical Or, and “\(\land \)” stands for logical And, is satisfiable by the assignment \(x_1 x_2 x_3 = 000 \).

Although the problem is NP-Hard it is known that “random” instances are easy to solve and various heuristics exist for the problem. A lot of research has gone into understanding and characterizing when and why instances are easy or hard; we will not explore these aspects in the project. Instead we will implement two simple algorithms for solving it and evaluate their performance on some instances.

Problems to test on: Input problems for your programs are available at /comp/160/files/project/. The formulas are encoded in a simple text annotation where the above example is represented as:

\[
\begin{align*}
x_1 & \ n x_2 & \ x_3 \\
x_1 & \ n x_2 & \ n x_3 \\
x_1 & \ n x_3
\end{align*}
\]

Each formula is given in a separate file.

2 Algorithm 1: Davis Putnam

This is a deterministic algorithm that always returns a correct answer (but may run for a long time in some cases).

The algorithm heuristically picks a variable and assigns a value for it (0 or 1). In our example we might assign \(x_2 = 0 \). This value is “plugged in” to the formula to produce a smaller one. Three effects are possible:
• Some clauses are already satisfied by this assignment; they can be removed from the formula when exploring it further. For example \((x_1 \lor \overline{x_2} \lor x_3)\) is satisfied when \(x_2 = 0\) regardless of the values of \(x_1, x_3\).

• Some clauses simply get smaller. For example \((\overline{x_1} \lor x_2 \lor \overline{x_3})\) becomes \((\overline{x_1} \lor \overline{x_3})\).

• Some clauses, that do not include the chosen variable, are not affected. This is the case for \((x_1 \lor \overline{x_3})\).

In our example, after assigning \(x_2 = 0\) we get the smaller formula \((\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor \overline{x_3})\). After making this assignment the algorithm recursively tries to satisfy the smaller formula. If this succeeds the solution can be returned. If this fails, the algorithm uses the other possible value \((x_2 = 1\) in our example) and tries to satisfy the resulting formula. Again if this succeeds the solution can be returned. If the second attempt fails then the formula is not satisfiable.

Notice that there is an important difference between removing a clause because it is already satisfied (the first case), and the case where a clause has no more literals when it gets smaller (in the second case). An empty clause (all its variables have already been removed and none was satisfied) cannot be satisfied. Therefore in this case the algorithm can return failure immediately. In other words, in this case there is no need for the recursive call. Taking this observation a step further, one should avoid using an assignment leading to such a situation because it simply wastes computation time.

To summarize, the algorithm makes a heuristic choice of variable to assign \((x_2\) in our example) and the value to assign to it first \((0\) in our example). The algorithm makes one or two recursive calls in order to find a satisfying assignment. If one call succeeds the algorithm returns the solution. If both fail the algorithm reports that the formula is not satisfiable.

3 Algorithm 2: WalkSat

This is a randomized algorithm that searches for a satisfying assignment of the input expression. If it finds one, it can safely output \texttt{Yes} and the assignment. This is obviously correct. If it does not find a satisfying assignment within a bound on its run time it stops and says \texttt{No}. This may be incorrect.

The algorithm belong to a family of algorithms using randomized local search. It works as follows. The algorithm starts by drawing a random assignment to all the variables; let’s call this assignment \(A\). It then works iteratively, each time “improving” \(A\) or stopping when \(A\) satisfies the expression or when its upper bound on the number of iterations is exhausted.

To improve \(A\) we pick a random clause among those not satisfied by \(A\). We then pick a variable in the clause and flip its assignment. In our example, consider starting with \(A = 001\). Evaluating the expression on \(A\) we see that only the third clause \((x_1 \lor \overline{x_3})\) is not satisfied by \(A\). In general there will be more than one such clause. We then pick a random clause in this set and pick a variable in that clause and flip its value. In the example there is only one clause to choose and it has two variables \(x_1\) and \(x_3\) that we may flip. At this stage there are two possibilities for choosing the variable. The greedy choice picks the variable that maximizes the number of clauses satisfied after the change. In our example if we flip \(x_1\) to get \(A = 101\) the second clause is not satisfied. If we flip \(x_3\) to get \(A = 000\) the expression is satisfied. Therefore the greedy step will choose to flip \(x_3\). Unfortunately the greedy step on its own is not sufficient to yield an effective algorithm.
Therefore, the algorithm includes a random element; the algorithm chooses a random variable with probability $p = 0.5$ and the greedy step with probability $1 - p = 0.5$.

To summarize, the algorithm initializes A and repeats changing A until a satisfying assignment is found or $I = 10000$ iterations have passed. In each iteration, it picks a random unsatisfied clause from the expression and then with $p = 0.5$ flips a random variable in that clause and with probability $1 - p = 0.5$ flips the variable selected by the greedy choice. If you wish you may change the heuristics proposed here for the greedy choice and probabilistic choice but should keep the general structure of the algorithm intact.

4 Your Program

You program should include code to read a formula from file, and the choice of algorithm (1 or 2). The code should then run the selected algorithm and return a Yes/No answer plus the satisfying assignment in case one is found.

Your design choices include the appropriate representation for formulas in memory, and any supporting data structures. In addition you need to pick the heuristic for choosing the variable and value to assign for the Davis Putnam procedure, and any details you may want to add to the WalkSat algorithm. It is advisable to first spend some time choosing a heuristic, then analyze what data representation will be best for calculating it, before embarking on an implementation.

You may use any language for your implementation but you must make sure that your program runs without problems on the department’s sun server.

5 Experimenting

After developing and debugging your program you should run some timing experiments to see how the algorithm scales to larger problems. You should run your program on all the test files provided in the directory listed above, and report run times and results. For WalkSat use $I = 10000$ as the maximal number of iterations and for Davis-Putnam you should bound the run time on any instance to at most 5 minutes.

Extra credit will be given for attempts to study the scaling of the algorithms on random formulas. For example, you can pick the number of variables, the number of clauses, and number of variables in a clause and then generate random formulas with these parameters. Plot the performance of your program as a function of each parameter when the other two are fixed.

6 What to Submit

- Please submit hardcopies of (1) Copies of your program and any scripts used to run it. Make sure your code is well documented, and that you explain how to run the code on department machines. (2) A short report on the project. The report should include: (2.1) An explanation the heuristics you use and why you chose them, and an explanation of the choice of data structures used to support the implementation. (2.2) The timing experiments and their results and any conclusions you can draw from them.
• In addition please email your program source code to roni@cs.tufts.edu.

• Please note that email submission is not sufficient; hardcopies are required for your project to be graded.

7 Criteria for grading projects

The projects will be graded based on the (1) amount of work done, (2) quality of the code, (3) documentation of the code, (4) explanation of choices of algorithms and data structures used, and (5) quality of the report.