Occam Algorithms

• Let X be a domain of examples and C, H concept classes over X.

• **Theorem 0:** Let A be a learning algorithm such that $\forall c \in C$ A takes a sample of m examples and outputs a hypothesis $h \in H$ consistent with S.
Then when using a sample of size
$$m \geq \frac{1}{\epsilon} \ln \frac{|H|}{\delta},$$
A is a PAC learning algorithm for C using H.

• Let $X = \cup_{n\geq1}X_n$ be a stratified domain and $C = \cup_{n\geq1}C_n$, $H = \cup_{n\geq1}H_n$, be stratified concept classes over X.

• Let A be a learning algorithm that takes a sample S and returns a hypothesis h. Let $H_{n,m} = \{h|h$ is output by A when learning $c \in C_n$ with a sample of m examples}.

• **Theorem 1:** If $\forall n, \forall c \in C_n, \forall S$ s.t. $|S| = m$, A outputs a hypothesis $h \in H_{n,m}$ consistent with S.
Then when using a sample of size
$$m \geq \frac{1}{\epsilon} \ln \frac{|H_{n,m}|}{\delta},$$
A is a PAC learning algorithm for C using H.

• Note that, in the above, a constraint between m and $|H_{n,m}|$ must be satisfied.

Compression Algorithms

• **Definition:** For $\alpha \geq 0$ and $0 \leq \beta < 1$.
Algorithm A is an (α, β)-Occam algorithm for learning C by H if on any sample $S \subseteq X_n$ of m examples labeled by $c \in C_n$ A outputs $h \in H_n$ consistent with S and such that
$$size(h) \leq [n \cdot size(c)]^{\alpha}m^{\beta}.$$
• In the above, $size(x)$ measures the number of bits used to represent x in the respective representation language.

• **Theorem 2:** If A is an (α, β)-Occam algorithm for learning C by H.
Then when using a sample of size
$$m \geq \max \left\{ \frac{2}{\epsilon} \ln \frac{1}{\delta}, \left(\frac{2[n \cdot size(c)]^{\alpha}}{\epsilon}\right)^{\frac{1}{1-\beta}} \right\},$$
A is a PAC learning algorithm for C using H.

• Fix any learning algorithm L that takes an ordered sample B as input and produces a hypothesis $hyp(B)$ based on the sample.

• Algorithm A is a compression algorithm for concept class C (w.r.t L) with size d if when given ordered samples $S = \{x_1, \cdots, x_m\}$, A outputs $B \subseteq S$ s.t.
1. $|B| \leq d$.
2. $hyp(B)$ is consistent with S.

• **Theorem 3:** A compression scheme is a PAC learner for class C when using a sample of size
$$m \geq \frac{2}{\epsilon} \ln \frac{1}{\delta} + 2d + \left(\frac{2d}{\epsilon}\right) \ln \frac{2}{\epsilon}.$$