From VC-Dimension to Learning Results

- Let X be a domain of examples, D a distribution over X, C a concept class over X, and $f \in C$ the target concept.
- The set of error regions relative to f: $\Delta(f) = \{f \Delta c \mid c \in C\}$ where $f \Delta c$ stands for the symmetric difference of the concepts.
- Heavy-weighted error regions: $\Delta_{\epsilon}(f) = \{r \in \Delta(f) \mid Pr_D[r] > \epsilon\}$
- Useful samples:
 We say that a sample $S = \{x_1, \ldots, x_m\}$ of m examples is an ϵ-net if for all $r \in \Delta_{\epsilon}(f)$ we have $S \cap r \neq \emptyset$.
- Fact: if S is an ϵ-net and $h \in C$ is consistent with S, then
 $$\text{error}(h) = Pr_{x \in D}[h(x) \neq f(x)] \leq \epsilon.$$

- **Theorem:** Let $VCD(C) = d$.
 If an IID sample S is of size
 $$m \geq \max\left\{\frac{6}{\epsilon} \ln \frac{2 \cdot 8d}{\delta}, \frac{8d}{\epsilon} \ln \frac{30}{\epsilon}\right\},$$
 then, with probability at least $1 - \delta$, S is an ϵ-net.
- **Corollary:** Assume an algorithm A is guaranteed to find a consistent hypothesis in C.
 Run A with an IID sample size m as in theorem and let its output be hypothesis h.
 Then with probability at least $1 - \delta$, $\text{error}(h) \leq \epsilon$.
- **Alternative Way to State Result:**
 with probability at least $1 - \delta$,
 $$\text{error}(h) \leq \epsilon = \frac{2}{m} \left(\log \frac{2}{\delta} + d \log \frac{2em}{d}\right).$$

- **Probability Experiment 1:** Draw IID sample S_1 of m examples.
 - **Event A:** S_1 is not an ϵ-net.

- **Probability Experiment 2:** Draw two IID samples S_1, S_2 each of m examples.
 - **Event B:** event A happens and for some $r \in \Delta_{\epsilon}(f)$ such that $r \cap S_1 = \emptyset$ we have $|r \cap S_2| \geq \frac{em}{2}$.
 - **Claim 1:** If $m \geq \frac{8}{\epsilon} \ln 2$, then $Pr[A] \leq 2Pr[B]$.

- **Probability Experiment 3:**
 - Draw IID sample S of $2m$ examples.
 - Randomly permute the order of examples.
 - Let S_1 be first m examples and S_2 the rest.
 - **Fact:** same distribution as in experiment 2.

- **Event B:** event A happens and for some $r \in \Delta_{\epsilon}(f)$ such that $r \cap S_1 = \emptyset$ we have $|r \cap S_2| \geq \frac{em}{2}$.
 - **Same as:** $\exists r \in \Delta_{\epsilon}(f)$ such that $|r \cap S_2| \geq \frac{em}{2}$ and $r \cap S_1 = \emptyset$.

- **Probability Experiment 4:**
 (parameterized by sample S of $2m$ examples)
 - Randomly permute the order of examples.
 - Let S_1 be first m examples and S_2 the rest.
 - **Event B’(S):** (same as B but for fixed S) $\exists \tilde{r} \in \Pi_{\Delta_{\epsilon}(f)}(S)$ such that $|\tilde{r} \cap S_2| \geq \frac{em}{2}$ and $\tilde{r} \cap S_1 = \emptyset$.

• **Claim 2:** \(\Pr[B] \leq \max_S \Pr[B'(S)] \).

• **Claim 3:**
 \(\Pr[B'(S)] \leq |\Pi_{\Delta(f)}(S)| \cdot \max_{\hat{r}} \Pr[\hat{r} \subseteq S_2] \)
 where \(\hat{r} \in \Pi_{\Delta(f)}(S) \) and \(|\hat{r}| \geq \frac{em}{2} \).

• **Claim 4:** For any \(\hat{r} \in \Pi_{\Delta(f)}(S) \) and such that \(|\hat{r}| \geq \frac{em}{2} \):
 \(\Pr[\hat{r} \subseteq S_2] \leq \left(\frac{1}{2} \right)^{\frac{em}{2}} \).

• **Claim 5:** \(|\Pi_{\Delta(f)}(S)| \leq \Phi_d(2m) \leq \left(\frac{2em}{d} \right)^d \).

• **Proof of Theorem:**
 \[
 \Pr[A] \leq 2\Pr[B] \leq 2\Pr[B'(S)] \\
 \leq 2 \left(\frac{2em}{d} \right)^d \left(\frac{1}{2} \right)^{\frac{em}{2}} \leq 2\delta = \delta \\
 \text{last step uses: } m \geq \max \left\{ \frac{6}{\epsilon} \ln \frac{2}{\delta}, \frac{8d}{\epsilon} \ln \frac{30}{\epsilon} \right\}
 \]