Margin-Based Convergence Results

- **Margin:**
 \[F = \{ f : X \to R \} \text{ is a class of functions } f \in F \]
 \[S = \{ x_1, \ldots, x_m \}, x_i \in X, \text{ is a sample} \]
 \[y_1, \ldots, y_m \text{ are the labels } y_i \in \{-1, 1\} \]
 \[m_S(f) = \min_i \gamma_i = \min_i y_i f(x_i) \]

- **Theorem 1:** Let \(F = \{ f : X \to [-M, M] \} \), hypothesis class \(H = \{ sign(f) \mid f \in F \} \), \(d = Fat_F(\frac{2}{\gamma}) \), and fix any \(\gamma > 0 \).

 For all distributions \(D \), parameters \(\epsilon, \delta \):

 if we take IID sample with \(m \) examples and find hypothesis \(h = \text{sign}(f) \) with \(m_S(f) \geq \gamma \),
 then with probability at least \(1 - \delta \),
 \[\epsilon_{err}(h) \leq \frac{2}{m} \left(\log \frac{4}{\delta} + d \log \left(\frac{16eM}{d\gamma} \right) \log \left(\frac{128M^2}{\gamma^2} \right) \right) \].

- **Notation:**
 \[f \in F, h = \text{sign}(f), S = \{ x_1, \ldots, x_m \} \]
 \[err(f) = \Pr_{(x,y) \in D}[h(x) \neq y] \]
 \[err_S(f) = \frac{1}{m} | \{ x_i | h(x_i) \neq y_i \} | \]

- **Probability Experiment 1:** Draw IID sample \(S_1 \) of \(m \) examples.
- **Event A:** \(\exists \) hypothesis \(h = \text{sign}(f) \) s.t. \(err_{S_1}(f) = 0, \ epsilon(f) \geq \epsilon, m_{S_1}(f) \geq \gamma \).

- **Probability Experiment 2:** Draw two IID samples \(S_1, S_2 \) each of \(m \) examples.
- **Event B:** \(\exists \) hypothesis \(h = \text{sign}(f) \) s.t. \(err_{S_1}(f) = 0, err_{S_2}(f) \geq \frac{m}{\gamma}, m_{S_1}(f) \geq \gamma \).

- **Claim 1:** If \(m \geq \frac{8}{\epsilon} \ln 2 \), then
 \[Pr[A] \leq 2Pr[B] \].

- **Fix G a \(\frac{1}{2} \)-cover of \(F \) w.r.t. \(S_1, S_2 \).**
- **Let num_S(g, \gamma) be the number of examples in sample \(S \) for which \(g \) has margin \(< \gamma \).**
- **Event C:** \(\exists g \in G \) s.t. \(err_{S_1}(g) = 0, \]
 \[\text{num}_{S_2}(g, \gamma) \geq \frac{m}{\gamma}, m_{S_1}(g) \geq \gamma \].

- **Claim 2:** Event B implies event C and therefore \(Pr[A] \leq 2Pr[C] \).
• Probability Experiment 3:
 - Draw IID sample S of $2m$ examples.
 - Randomly permute the order of examples.
 - Let S_1 be first m examples and S_2 the rest.
• Fact: same distribution as in experiment 2.

• Probability Experiment 4:
 (parameterized by sample S of $2m$ examples)
 - Randomly permute the order of examples.
 - Let S_1 be first m examples and S_2 the rest.

• Event $C'(S)$: same as C but for fixed S and experiment 4.

• Event $C''(S,g)$: same as $C'(S)$ but for fixed $g \in G$.

• Claim 3: $Pr[C] \leq \max_S Pr[C'(S)]$.

• Claim 4: $Pr[C'(S)] \leq N(F,2m,\frac{\gamma}{2})\left(\frac{4m}{\gamma}\right)$.

• Proof of Theorem 1:
 $Pr[A] \leq 2N(F,2m,\frac{\gamma}{2})\left(\frac{4m}{\gamma}\right) \leq \ldots \leq \delta$
 To get the last bound we apply Theorem 0 with $\gamma \leftarrow \frac{2}{\gamma}$, $m \leftarrow 2m$, $(b-a) \leftarrow 2M$, $d \leftarrow \text{Fat}_F(\frac{\gamma}{2})$.

 Alternatively solve for ε:
 \[
 \frac{\gamma n}{2} = \log \frac{2}{\delta} + \log N(F,2m,\frac{\gamma}{2}),
 \]
 \[
 \varepsilon = \frac{2}{m} \left(\log \frac{2}{\delta} + \log N(F,2m,\frac{\gamma}{2}) \right),
 \]
 and using the same values in Theorem 0:
 \[
 \varepsilon = \frac{2}{m} \left(\log \frac{4}{\delta} + d \log \left(\frac{16emM}{d\gamma} \right) \log \left(\frac{128mM^2}{\gamma^2} \right) \right).
 \]

• Theorem 2:
 For $X = \{ z \in R^n \mid \|z\| \leq M \}$
 $F = \{ f = w \cdot x \mid w \in R^n, \|w\| = 1 \}$
 we have $d = \text{Fat}_F(\gamma) \leq \left(\frac{M}{\gamma} \right)^2$.

• Corollary 3:
 (specialize theorem 1 for linear separators)
 \[
 \text{error}(h) \leq \frac{2}{m} \left(\log \frac{4}{\delta} + \frac{64M^2}{\gamma^2} \log \left(\frac{16em\gamma}{64M} \right) \log \left(\frac{512mM^2}{\gamma^2} \right) \right).
 \]

• Theorem 4:
 (stronger result w/o fixing γ)
 if algorithm finds hypothesis $h = \text{sign}(w \cdot x)$ with $m_S(w) = \gamma \geq \frac{M}{2\sqrt{m}}$
 then with probability at least δ, $\text{error}(h) \leq \frac{2}{m} \left(\sqrt{m} + \log \frac{4}{\delta} + \frac{256M^2}{\gamma^2} \log \left(\frac{16em\gamma}{64M} \right) \log \left(\frac{512mM^2}{\gamma^2} \right) \right)$.

• Theorem 5:
 (variant of theorem 4)
 if algorithm finds hypothesis $h = \text{sign}(w \cdot x)$ with $m_S(w) = \gamma \geq \frac{M}{m}$
 then with probability at least δ, $\text{error}(h) \leq \frac{2}{m} \left(\log(m) + \log \frac{4}{\delta} + \frac{256M^2}{\gamma^2} \log \left(\frac{16em\gamma}{64M} \right) \log \left(\frac{512mM^2}{\gamma^2} \right) \right)$.
• Theorem 6:
 (compression based convergence - lecture 8)
 \[\text{error}(h) \leq \frac{1}{m-d}(d \ln\left(\frac{e^m d}{d}\right) + \ln\frac{1}{\delta}) \]
 Perceptron is a compression scheme with compression size \(d = \text{the mistake bound} \)
 \[d = \frac{M^2}{\gamma^2} \]

• Theorem 7:
 (compression based bound for Perceptron)
 \[\text{error}(h) \leq \frac{2}{m}\left(\frac{M^2}{\gamma^2} \ln\left(\frac{e^m \gamma^2}{M^2}\right) + \ln\frac{1}{\delta}\right) \]

• Compare this to the bound from theorem 5:
 \[\frac{2}{m}\left(\log(m) + \log\frac{4}{\delta} + \frac{256M^2}{\gamma^2} \log\left(\frac{16em\gamma}{64M}\right) \log\left(\frac{512mM^2}{\gamma^2}\right)\right) \]

• Non-Separable Data:
 For \(w\) and \(\gamma\) and define \(\zeta = (\zeta_1, \ldots, \zeta_m)\)
 \[\zeta_i = \max\{0, \gamma - y_i(w \cdot x_i - \theta)\} \]

Theorem 8:
 (convergence in non-separable case)
 if algorithm finds hypothesis \(w\) with slack vector \(\zeta\) w.r.t. \(\gamma\)
 then can use bound of corollary 3:
 \[\text{error}(h) \leq \frac{2}{m}\left(\log\frac{4}{\delta} + \frac{64M^2}{\gamma^2} \log\left(\frac{16em\gamma}{64M}\right) \log\left(\frac{128mM^2}{\gamma^2}\right)\right) \]

with \(\hat{\gamma} = \frac{\gamma}{\sqrt{1+||\zeta||^2}}, \hat{M} = \sqrt{M^2 + 1}.\)