Occam Algorithms

- Let X be a domain of examples and C, H concept classes over X.
- **Theorem 0:** Let A be a learning algorithm such that $\forall c \in C$ A takes a sample of m examples and outputs a hypothesis $h \in H$ consistent with S
 Then when using a sample of size $m \geq \frac{1}{\epsilon} \ln \frac{|H|}{\delta}$
 A is a PAC learning algorithm for C using H.

- Definition: For $\alpha \geq 0$ and $0 \leq \beta < 1$
 Algorithm A is an (α, β)-Occam algorithm for learning C by H
 if on any sample $S \subset X_n$ of m examples labeled by $c \in C_n$
 A outputs $h \in H_n$ consistent with S and such that
 $\text{size}(h) \leq [n \cdot \text{size}(c)]^\alpha m^\beta$
- In the above, $\text{size}(x)$ measures the number of bits used to represent x in the respective representation language.
- **Theorem 2:** If A is an (α, β)-Occam algorithm for learning C by H,
 Then when using a sample of size $m \geq \max \left\{ \frac{2}{\epsilon} \ln \frac{1}{\delta} \left(\frac{2[n \cdot \text{size}(c)]^\alpha m^\beta}{\epsilon} \right) \right\}$
 A is a PAC learning algorithm for C using H.

- **Theorem 3 (VC Dimension):** Let C be a concept class with $\text{VC}D(C) = d$ then:
 1. for $m \leq d$ we have
 $\pi_C(m) = 2^d$
 2. for $m > d$ we have
 $\pi_C(m) \leq \left(\frac{\epsilon m}{d} \right)^d = O(m^d)$
 2. for an algorithm that takes IID sample and returns a consistent hypothesis in C:
 for $m \geq \max \left\{ \frac{6}{\epsilon} \ln \frac{2}{\delta}, \frac{8d}{\epsilon} \ln \frac{30}{\delta} \right\}$ we have
 $\Pr[\text{err} > \epsilon] < 2\pi_C(2m) \left(\frac{1}{2} \right)^{\epsilon m} < \delta$
 3. if an algorithm PAC learns C then it must use
 $m = \Omega \left(\frac{d}{\epsilon} \ln \frac{1}{\delta} \right)$