From VC-Dimension to Learning Results

- Let X be a domain of examples, D a distribution over X, C a concept class over X, and $f \in C$ the target concept.

- The set of error regions relative to f:
 \[\Delta(f) = \{ f \Delta c \mid c \in C \} \]
 where $f \Delta c$ stands for the symmetric difference of the concepts.

- Heavy-weighted error regions:
 \[\Delta_e(f) = \{ r \in \Delta(f) \mid \Pr_D[r] > \epsilon \} \]

- Useful samples:
 We say that a sample $S = \{x_1, \ldots, x_m\}$ of m examples is an ϵ-net if for all $r \in \Delta_e(f)$ we have $S \cap r \neq \emptyset$.

- **Fact:** if S is an ϵ-net and $h \in C$ is consistent with S, then
 \[\text{error}(h) = \Pr_{x \in D}[h(x) \neq f(x)] \leq \epsilon. \]

Probability Experiment 1: Draw IID sample S_1 of m examples.

Event A: S_1 is not an ϵ-net.

Probability Experiment 2: Draw two IID samples S_1, S_2 each of m examples.

Event B: event A happens and for some $r \in \Delta_e(f)$ such that $r \cap S_1 = \emptyset$ we have $|r \cap S_2| \geq \frac{em}{2}$.

Claim 1: If $m \geq \frac{8}{\epsilon} \ln 2$, then
\[\Pr[A] \leq 2 \Pr[B]. \]

Probability Experiment 3:
- Draw IID sample S of $2m$ examples.
- Randomly permute the order of examples.
- Let S_1 be first m examples and S_2 the rest.

Fact: same distribution as in experiment 2.

Probability Experiment 4: (parametrized by sample S of $2m$ examples)
- Randomly permute the order of examples.
- Let S_1 be first m examples and S_2 the rest.

Event B: event A happens and for some $r \in \Delta_e(f)$ such that $r \cap S_1 = \emptyset$ we have $|r \cap S_2| \geq \frac{em}{2}$.

Same as: $\exists r \in \Delta_e(f)$ such that
\[|r \cap S_2| \geq \frac{em}{2} \] and $r \cap S_1 = \emptyset$.

Same as: $\exists \tilde{r} \in \Pi_{\Delta_e(f)}(S)$ such that
\[|\tilde{r} \cap S_2| \geq \frac{em}{2} \] and $\tilde{r} \cap S_1 = \emptyset$.

Probability Experiment 4:
- Run A with an IID sample size m as in theorem and let its output be hypothesis h. Then with probability at least $1 - \delta$, $\text{error}(h) \leq \epsilon$.

Alternative Way to State Result:
\[\text{error}(h) \leq \frac{2}{m} \left(\log \frac{2}{\delta} + d \log \frac{2em}{d} \right). \]

Theorem: Let $VCD(C) = d$.
If an IID sample S is of size
\[m \geq \max \left\{ \frac{6}{\epsilon} \ln \frac{2}{\delta} + \frac{12d}{\epsilon} \ln \frac{13}{\epsilon} \right\} \]
then, with probability at least $1 - \delta$, S is an ϵ-net.

Corollary: Assume an algorithm A is guaranteed to find a consistent hypothesis in C. Run A with an IID sample size m as in theorem and let its output be hypothesis h. Then with probability at least $1 - \delta$, $\text{error}(h) \leq \epsilon$.

- Randomly permute the order of examples.
- Let S_1 be first m examples and S_2 the rest.
• Claim 2: \(Pr[B] \leq \max_S Pr[B'(S)] \).

• Claim 3:
\[
Pr[B'(S)] \leq |\Pi_{\Delta_t(f)}(S)| \cdot \max_{\hat{r}} P[\hat{r} \subseteq S_2]
\]
where \(\hat{r} \in \Pi_{\Delta_t(f)}(S) \) and \(|\hat{r}| \geq \frac{em}{2}\).

• Claim 4: For any \(\hat{r} \in \Pi_{\Delta_t(f)}(S) \) and such that \(|\hat{r}| \geq \frac{em}{2}\):
\[
Pr[\hat{r} \subseteq S_2] \leq \left(\frac{1}{2} \right)^{\frac{em}{2}}.
\]

• Claim 5: \(|\Pi_{\Delta_t(f)}(S)| \leq \Phi_d(2m) \leq \left(\frac{2em}{d} \right)^d \).

• Proof of Theorem:
\[
Pr[A] \leq 2Pr[B] \leq 2Pr[B'(S)]
\]
\[
\leq 2 \left(\frac{2em}{d} \right)^d \left(\frac{1}{2} \right)^{\frac{em}{2}} \leq 2\delta^2 = \delta
\]

last step uses: \(m \geq \max \left\{ \frac{6}{\epsilon} \ln \frac{2}{\delta}, \frac{8d}{\epsilon} \ln \frac{20}{\epsilon} \right\} \).