Occam Algorithms

Let X be a domain of examples and C, H concept classes over X.

Theorem 0: Let A be a learning algorithm such that $\forall c \in C$ A takes a sample of m examples and outputs a hypothesis $h \in H$ consistent with S.

Then when using a sample of size

$$m \geq \frac{1}{\epsilon} \ln \frac{|H|}{\delta}$$

A is a PAC learning algorithm for C using H.

Definition: For $\alpha \geq 0$ and $0 \leq \beta < 1$ Algorithm A is an (α, β)-Occam algorithm for learning C by H if on any sample $S \subseteq X_n$ of m examples labeled by $c \in C_n$ A outputs $h \in H_n$ consistent with S and such that

$$\text{size}(h) \leq [n \cdot \text{size}(c)]^\alpha m^\beta$$

In the above, $\text{size}(x)$ measures the number of bits used to represent x in the respective representation language.

Theorem 2: If A is an (α, β)-Occam algorithm for learning C by H, then when using a sample of size

$$m \geq \max \left\{ \frac{2}{\epsilon} \ln \frac{1}{\delta}, \left(\frac{2n \cdot \text{size}(c)\alpha}{\epsilon} \right)^{1-\beta} \right\}$$

A is a PAC learning algorithm for C using H.

Compression Algorithms

Let $X = \cup_{n \geq 1} X_n$ be a stratified domain and $C = \cup_{n \geq 1} C_n$, $H = \cup_{n \geq 1} H_n$, be stratified concept classes over X.

Let A be a learning algorithm that takes a sample S and returns a hypothesis h. Let $H_{n,m} = \{ h | h \text{ is output by } A \text{ when learning } c \in C_n \text{ with a sample of } m \text{ examples} \}$

Theorem 1: If $\forall n, \forall c \in C_n, \forall S$ s.t. $|S| = m$, A outputs a hypothesis $h \in H_{n,m}$ consistent with S.

Then when using a sample of size

$$m \geq \frac{1}{\epsilon} \ln \frac{|H_{n,m}|}{\delta}$$

A is a PAC learning algorithm for C using H.

Note that, in the above, a constraint between m and $|H_{n,m}|$ must be satisfied.

Definition: For $\alpha \geq 0$ and $0 \leq \beta < 1$ Algorithm A is an (α, β)-Occam algorithm for learning C by H if on any sample $S \subseteq X_n$ of m examples labeled by $c \in C_n$ A outputs $h \in H_n$ consistent with S and such that

$$\text{size}(h) \leq [n \cdot \text{size}(c)]^\alpha m^\beta$$

Fix any learning algorithm L that takes an ordered sample B as input and produces a hypothesis $\text{hyp}(B)$ based on the sample.

Algorithm A is a compression algorithm for concept class C (w.r.t L) with size d if when given ordered samples $S = \{ x_1, \cdots, x_m \}$, A outputs $B \subseteq S$ s.t.

1. $|B| \leq d$.
2. $\text{hyp}(B)$ is consistent with S.

Theorem 3: A compression scheme is a PAC learner for class C when using a sample of size

$$m \geq \frac{2}{\epsilon} \ln \frac{1}{\delta} + 2d + \left(\frac{2d}{\epsilon} \right) \ln \frac{2}{\epsilon}$$