Soft k-Means Clustering

- Pick \(k \) cluster centers
- Repeat:
 - Associate examples with centers \(p_{ij} \sim \text{similarity b/w center } i \text{ and ex } j \)
 - Re-calculate means as weighted average of examples in cluster
- Until convergence

Mixture Models

- Motivated by soft k-means
- We develop a "generative model" for clustering:
 - Assume there are \(k \) clusters
 - Clusters are not required to have the same number of points
 - And not required to have the same shape

Mixture of Normals in 1D

Repeat for \(i = 1, \ldots, N \)
Pick cluster Id \(z_i \) from discrete distribution with parameters \(p_1, p_2, \ldots, p_k \)
\[
\text{Note: } z_i \in \{1, 2, \ldots, k\}
\]
Pick the example \(x_i \) from normal distribution with parameters \(\mu_{z_i}, \sigma_{z_i} \)
\[
\text{Example: when } z_i = 3 \text{ using } \mu_3 \text{ and } \sigma_3
\]

Maximum likelihood estimation

- First analyze assuming \(z_i \) are known
- Convenient notation: represent the number \(z_i \) as a "unit vector" bit sequence
 - Example: \(k=4 \)
 \[
 z_1 = 1 \Rightarrow 1000
 z_2 = 2 \Rightarrow 0100
 z_3 = 3 \Rightarrow 0010
 z_4 = 4 \Rightarrow 0001
 \]
- Notation: \(z_{ij} \) is \(j \)th bit within \(z_i \)
 \[
 z_1 = 2 \Rightarrow 0100 \Rightarrow z_{12} = 1 \quad z_{13} = 0
 \]
Maximum likelihood estimation

- First analyze assuming z_i are known
- The Complete Data includes all the x_i, z_i

$Data = (x_1, z_1), (x_2, z_2), \ldots, (x_N, z_N)$

Maximum likelihood estimation

- The Likelihood

$$L = \prod_i p(z_i)p(x_i|z_i, \mu_{z_i})$$

$$= \prod_i \frac{1}{(1/k) \sqrt{2\pi \sigma}} e^{-\frac{1}{2\sigma^2} (x_i - \mu_{z_i})^2}$$

$$= \prod_i \frac{1}{(1/k) \sqrt{2\pi \sigma}} e^{-\frac{1}{2\sigma^2} \sum_j z_{i,j} (x_i - \mu_j)^2}$$

Notation trick: exactly one term remains from the sum!

Maximum likelihood estimation

$$L = \prod_i \frac{1}{(1/k) \sqrt{2\pi \sigma}} e^{-\frac{1}{2\sigma^2} \sum_j z_{i,j} (x_i - \mu_j)^2}$$

LogL $= \text{const} - \frac{1}{2\sigma^2} \sum_i \sum_j z_{i,j} (x_i - \mu_j)^2$

$$\frac{\partial \log L}{\partial \mu_j} = \ldots = 0 \implies$$

$$\mu_j = \frac{\sum_i z_{i,j} x_i}{\sum_i z_{i,j}}$$

This is not surprising.

Maximum likelihood estimation

- First analyze assuming z_i are known
- The Complete Data includes all the x_i, z_i

$Data = (x_1, z_1), (x_2, z_2), \ldots, (x_N, z_N)$

- The Observed Data includes all the x_i

$Data = x_1, x_2, \ldots, x_N$

\implies Cannot use previous estimate.

- What is the likelihood in this case?

The EM Algorithm

- A general algorithm for maximizing likelihood when we have hidden random variables
- The algorithm has a simple form when applied to mixture models
- We will constrain ourselves to that simple form
- And will mention the general scheme of the EM algorithm briefly

Maximum likelihood estimation

- The Observed Data includes all the x_i

$Data = x_1, x_2, \ldots, x_N$

- Maximum likelihood prescribes that we should optimize:

$$p(\text{observed}) = p(x_1, \ldots, x_N)$$

$$= \sum_{z_1} \sum_{z_2} \ldots \sum_{z_N} p(x_1, \ldots, x_N, z_1, \ldots, z_N)$$

The Equation for the likelihood needs to sum out (marginalize) over the z_i. No simple closed form.
The EM Algorithm

• EM is an iterative algorithm
• Initialize probability model \(p' \)
• Repeat
 - use \(p' \) to calculate an improved model \(p'' \)
 - Set \(p' = p'' \)
• Until no further improvement

EM Algorithm for Mixture Models

• Repeat
 - [E] Calculate using \(p' \)
 \[f_{i,j} = E_{p'(x_i|\mu'_j)}[z_{i,j}] = p(z_i = j|\{\mu'_j\}, Data) \]
 - [M] Estimate \(p'' \) parameters using max likelihood solution of the complete data by replacing the unknown \(z_{i,j} \) by \(f_{i,j} \)

EM for Mixtures in 1D

- [E] Calculate
 \[f_{i,j} = E_{p(x_i|\mu'_j)}[z_{i,j}] = p(z_i = j|\{\mu'_j\}, Data) \]
 \[f_{i,j} = \frac{p((z_i = j) \text{ and } x_i)}{p(x_i)} = \frac{p((z_i = j) \text{ and } x_i)}{\sum_{t} p((z_i = t) \text{ and } x_i)} = \frac{(1/k) \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2\sigma^2}(x_i-\mu'_j)^2}}{\sum_{t}(1/k) \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2\sigma^2}(x_i-\mu'_t)^2}} \]
 First part holds for any mixture model.

EM for Mixtures in 1D

- [M] Calculate for all \(i,j \)
 \[\mu''_j = \frac{\sum_i f_{i,j} \cdot x_i}{\sum_i f_{i,j}} \]
- [M] Calculate for all \(j \)
 \[\mu'_{\cdot j} = \mu''_j \]
- Assign for all \(j \): \(\mu'_{\cdot j} = \mu''_j \)

General form of EM

• Define an auxiliary function \(Q(p',p'') \)
• Relative to observed variables \(O \) and hidden variables \(H \)
 \[Q(p',p'') = E_{p'(H|O)}[\log p''(H,O)] \]
The EM Algorithm

- EM is an iterative algorithm
- Initialize probability model p'
- Repeat
 - use p' to calculate an improved model p''
 - Set $p = p''$
- Until no further improvement

EM Algorithm for Mixture Models

- Repeat
 - [E] Calculate using p'
 \[f_{i,j} = E_{p(z|x,\mu_j)}[z_{i,j}] = p(z_i = j|\mu_j, Data) \]
 - [M] Estimate p'' parameters using max likelihood replacing the unknown $z_{i,j}$ by $f_{i,j}$

Using the same methodology on any mixture model (not just Gaussian) yields the same template.

Semi-Supervised Naïve Bayes Model

- What if we have many documents but labels for only a few of them?
- Can the unlabeled documents help?
- Before exploring this question we will develop the EM algorithm for this model where the labels are not known

Semi-Supervised Naïve Bayes Model

- Naïve Bayes: Probabilistic model with strong simplifying assumptions
- Illustrating application: text categorization where we have data for (document, label)
- What if we have many documents but labels for only a few of them?
- Can the unlabeled documents help?

Recall: Naïve Bayes Model

- Each class induces a distribution over features.
- Features are conditionally independent given the class
- In these slides I use the model with binary features
Recall: Naïve Bayes Model

\[p(z_i = j) = p_j \]
\[p(x_i | \text{class } j) = q_{j,t} \]

\[p(x_i | \text{class } j) = \prod_t q_{j,t} (1 - q_{j,t})^{1 - x_i,t} \]

\[p(z_i = j \text{ and } x_i) = p_j \prod_t q_{j,t} (1 - q_{j,t})^{1 - x_i,t} \]

\[p(z_i \text{ and } x_i) = \prod_j \left[p_j \prod_t q_{j,t} (1 - q_{j,t})^{1 - x_i,t} \right]^{z_{i,j}} \]

Recall: Maximum Likelihood

\[p_j = p(z_i = j) = \frac{\text{number of examples with class } j}{\text{number of examples}} \]

\[q_{j,t} = p(x_i,t = 1 | z_i = j) = \frac{\text{num of ex with class } j \text{ and } x_{i,t} = 1}{\text{number of examples with class } j} \]

Naïve Bayes as Mixture Model

Repeat for \(i = 1, \ldots, N \)

Pick cluster Id \(z_i \) from discrete distribution with parameters \(p_1, p_2, \ldots, p_k \)

Pick the example \(x_i \) from Naive Bayes distribution with parameters \(q_{z_i} \)

EM Algorithm

- Complete Data Likelihood

\[L = \prod_i \prod_j \left[p_j \prod_t q_{j,t} (1 - q_{j,t})^{1 - x_i,t} \right]^{z_{i,j}} \]

- Log Likelihood

\[\log L = \sum_i \sum_j z_{i,j} \log p_j + \sum_i z_{i,j} \log q_{j,t} + (1 - z_{i,j}) \log(1 - q_{j,t}) \]

EM Algorithm

- Maximum Likelihood for complete data

\[\log L = \sum_i \sum_j z_{i,j} \log p_j + \sum_i z_{i,j} \log q_{j,t} + (1 - z_{i,j}) \log(1 - q_{j,t}) \]

[we already solved this a few lectures ago]

\[p_j = \frac{\sum_i z_{i,j}}{N} \]

\[q_{j,t} = \frac{\sum_i z_{i,j} x_{i,t}}{\sum_i z_{i,j}} \]

EM Algorithm

- E Step: Calculating \(f_{i,j} \)

\[f_{i,j} = E_{\mu}(z_i | x_i, z_{-i,j}) = \frac{p(z_i = j \text{ and } x_i)}{\sum_c p(z_i = c \text{ and } x_i)} \]

\[= \frac{p_j \prod_t q_{j,t} (1 - q_{j,t})^{1 - x_i,t}}{\sum_c p_c \prod_t q_{c,t} (1 - q_{c,t})^{1 - x_i,t}} \]
EM Algorithm for Naïve Bayes

- Repeat
 - Calculate:
 \[f_{i,j} = \frac{p_i \prod_{\ell} q_{i,j,\ell}^{x_{i,\ell}} (1 - q_{i,j,\ell}^{1-x_{i,\ell}})}{\sum_i p_i \prod_{\ell} q_{i,j,\ell}^{x_{i,\ell}} (1 - q_{i,j,\ell}^{1-x_{i,\ell}})} \]
 - Calculate:
 \[p''_i = \frac{\sum_j f_{i,j}}{N} \]
 \[q''_{i,j,\ell} = \frac{\sum_{i,j} f_{i,j} x_{i,\ell}}{\sum_{i,j} f_{i,j}} \]
- Assign: \(p' \leftarrow p'' \) and \(q' \leftarrow q'' \)

Semi-Supervised Naïve Bayes Model

- Naïve Bayes for text categorization
- What if we have many documents but labels for only a few of them?
- Can the unlabeled documents help?
- Use EM: for examples where \(z_i \) is known use \(f_{i,j} = z_{i,j} \) instead of estimating it
- Nothing else changes in the algorithm!

Summary

- EM is a general algorithmic framework for inference with hidden random variables
- It takes a simple form for mixture models alternating between estimating "fractional memberships" and using these in maximum likelihood calculations.
- General derivation through the \(Q(p',p) \) function is applicable in more complex models.
- Mixture model easily generalizes to capture semi-supervised learning