Our first learning algorithm
- How would you classify the next example?

Supervised Learning

Application

Training Data → Learning Algorithm → Classifier

New Data

Predictions of Labels for new data
Our first learning algorithm

• How would you classify the next example?

kNN Algorithm (simple form)

• At “training time” do nothing.
• Store examples.

• When given new example:
 - find k nearest neighbors
 - Predict L= majority vote of their labels

kNN Algorithm

• Theoretical basis + intuition:
 • “in the limit”, when the dataset is dense, this should pick up “all important regions”
 • Very flexible classifier: no prior commitment to the shape, density, or distribution of regions

kNN: problems and extensions

• In some cases we have ”noisy” labels in training data, or otherwise the label map is not smooth.

 • How can we address this?

kNN: problems and extensions

• Expensive test time/application: because for every new example we must scan the entire dataset to find the neighbors.

 • In many cases a Linear Time Scan is too expensive.

 • How can we address this?
kNN: problems and extensions

- Expensive test time/application: because for every new example we must scan the entire dataset to find neighbors.
- In many cases a Linear Time Scan is too expensive.
- How can we address this?

Some form of pruning in the search process.
kd-trees

kNN: problems and extensions

- k is a free parameter of the algorithm
- And different values of k are suitable to different datasets
- How can we choose k automatically?

Can use "validation data" to evaluate how each k performs

The use of "validation data" to automatically refine or adjust algorithm to a specific application is an important idea that we will come back to multiple times.

kNN: problems and extensions

- (for large k and/or non uniformly sampled regions) Some neighbors are significantly closer than others.
- Weighted kNN weights the prediction of each neighbor by some function of its distance (e.g., 1/distance).
- How can we address these issues?

Algorithm completely dependent on the distance metric and representation
- E.g., Euclidean distance:
 - Different features may have different scale
 - Treats all dimensions equally
 - Sensitive to high dimension/irrelevant features (why?)
Normalizing Feature Range

- Linear scaling into \([0,1]\)
 \[x \leftarrow \frac{x - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} \]

- Z-normalization: scale to have mean 0 and std 1
 \[x \leftarrow \frac{x - \mu_x}{\sigma_x} \]

Relief Algorithm

- Pick instance + nearest hit (same label) + nearest miss (different label)
- Update weights based on distances and whether hit is closer/farther than miss
- This is done on each feature separately

\[w_i \leftarrow w_i - |x_i^{\text{hit}} - x_i| + |x_i^{\text{miss}} - x_i| \]

- Distance is modified to

\[\|x - y\|_w^2 = \sum w_i(x_i - y_i)^2 \]

kNN: problems and extensions

- So far we know how to predict one of a small number of categories - i.e. we are solving the classification problem.

- Can we adjust the algorithm to predict numerical real-valued labels? (i.e., solve the regression problem)

kNN Recap

- Simple basic algorithm
- Has theoretical guarantees
- Adjustment of the basic scheme can make it robust and widely applicable
- Performs surprisingly well in many cases