Maximum Margin Classifiers

- We have already defined the Maximum Margin criterion
 \[
 \max_w \min_{x^i} y_i(w \cdot x^i + w_0)
 \]
 Subject to \(\|w\|^2 = 1\)
- and have shown that it is equivalent to the optimization problem:
 \[
 \min_v \|v\|^2
 \]
 Subject to \(y_i(v \cdot x^i + v_0) \geq 1\)

This is also the standard Primal formulation of the Support Vector Machines

All done? No, there is more ...

Primal/Dual SVM

- By forming the Lagrangian and following standard procedures in optimization we can translate the "primal" problem into a "dual" problem that provides the same solutions.
 \[
 \max_\alpha \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N y_i y_j \alpha_i \alpha_j (x^i \cdot x^j)
 \]
 Subject to \(\sum_{i=1}^N \alpha_i y_i = 0\)
 \(\alpha_i \geq 0\)
Dual SVM: some properties

\[\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j (x_i \cdot x_j) \]

Subject to \(\sum_{i=1}^{N} \alpha_i y_i = 0 \)

\(\alpha_i \geq 0 \)

• This is also a QP
• The first constraint: equal weight to positive and negative examples

Dual SVM

\[\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j (x_i \cdot x_j) \]

Subject to \(\sum_{i=1}^{N} \alpha_i y_i = 0 \)

\(\alpha_i \geq 0 \)

• The corresponding primal solution is:

\[w = \sum_k \alpha_k y_k x_k \]

• Same as dual perceptron!
• \(\alpha_k = 0 \) unless \(x^k \) is "on the margin"

Dual SVM

\[\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j (x_i \cdot x_j) \]

Subject to \(\sum_{i=1}^{N} \alpha_i y_i = 0 \)

\(\alpha_i \geq 0 \)

• Using examples only through inner products \(\rightarrow \) can be used with kernels

Dual SVM

\[\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j K(x_i, x_j) \]

Subject to \(\sum_{i=1}^{N} \alpha_i y_i = 0 \)

\(\alpha_i \geq 0 \)

• Using examples only through inner products \(\rightarrow \) can be used with kernels

Primal & Kernel Hard Margin SVM

\[\min_{v} \|v\|^2 \]

Subject to \(y_i (v \cdot x_i + v_0) \geq 1 \)

The dual formulation is given by

\[\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j K(x_i, x_j) \]

Subject to \(\sum_{i=1}^{N} \alpha_i y_i = 0 \)

\(\alpha_i \geq 0 \)
Max Margin Classifier

- Consider again the original problem

\[
\min_v \|v\|^2 \\
\text{Subject to } y_i(v \cdot x^i + v_0) \geq 1
\]

- There is a problem when the data is noisy or just not linearly separable

- Why?
- How can we get around it?

Soft Margin SVM

- Consider again the original problem

\[
\min_v \|v\|^2 \\
\text{Subject to } y_i(v \cdot x^i + v_0) \geq 1
\]

- Allowing slack for "hard to separate" points

\[
\min_v \|v\|^2 + C \sum_i \xi_i \\
\text{Subject to } y_i(v \cdot x^i + v_0) \geq 1 - \xi_i \\
\xi_i \geq 0
\]

The ξ_i allow us to violate the original constraints
But they are discouraged with the penalty in the minimization objective.

Very large C acts like hard margin formulation.
Smaller C allows for a tradeoff.

Primal & Kernel Soft Margin SVM

\[
\min_v \|v\|^2 + C \sum_i \xi_i \\
\text{Subject to } y_i(v \cdot x^i + v_0) \geq 1 - \xi_i \\
\xi_i \geq 0
\]

The dual formulation is given by

\[
\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j K(x^i, x^j) \\
\text{Subject to } \sum_i y_i \alpha_i = 0 \\
0 \leq \alpha_i \leq C
\]

SVM in Practice

- Very successful.
- Easy to use systems, e.g., libsvm
- Important to normalize features
- Important to pick kernel for problem
- Important to pick good parameter setting for C and any kernel parameters

Support vector machines

- Max margin linear separators
- Soft margin can tolerate "noisy data"
- And is the standard approach in practice
- Both versions are kernel methods
- Solved with QP optimization packages
- And/or with specialized SVM solvers
- Must tune C and Kernel parameters