Recall Linear Threshold Units

- The basic model:
 \[\text{Output} = f(\sum w_j x_j) = f(w^T x) \]
- Where \(f \) can be one of:
 \[f = \text{sign()} \text{ Value in } \{-1, 1\} \]
 \[f = \text{step()} \text{ Value in } \{0, 1\} \]

\[\sigma(a) = \frac{1}{1+e^{-a}} \]
\[p(f = 1) = \sigma(w^T x) \]

Linear Sigmoid Units

- Note: we are focusing on one example and omitting the index \(i \) saying that this is the \(i \)'th example to avoid clutter in notation

\[\sigma(a) = \frac{1}{1+e^{-a}} \]
\[p(f = 1) = \sigma(w^T x) \]

Linear Sigmoid Units

- Today we will work with units whose output is a real value in \([0,1]\)
 \[\text{Output} = \hat{y} = \sigma(\sum w_j x_j) = \sigma(w^T x) \]
 \[\sigma(a) = \frac{1}{1+e^{-a}} \]
- This conveniently satisfies
 \[\sigma'(a) = \frac{-1}{(1+e^{-a})^2} \sigma(a)(1-\sigma(a)) \]

Multi Layer Networks

- Must first develop convenient notation
- This is different from single unit notation
- But it simplifies the exposition of the algorithm that follows
Multi Layer Networks

1. Must first develop convenient notation
2. Denote input as before by \(x_1, \ldots, x_n \)
3. An internal node is identified by its index \(i \), and its output is \(x_i \)
4. All internal nodes are \(x_{n+1}, \ldots, x_N \)
5. And the final output is \(x_N \)
6. The link from unit \(j \) to \(i \) has weight \(w_{j,i} \)
7. The sum at unit \(i \) is \(s_i = \sum_j w_{j,i} x_j \)
8. The output at \(i \) is \(x_i = \sigma(s_i) = \sigma(\sum_j w_{j,i} x_j) \)

Multi Layer Networks

As before we get an example \((x,y)\).

x specifies the input units \(x_1, \ldots, x_n \)
y is the intended output of \(x_N \)

Nothing is known about intention for middle layers (a.k.a. hidden units)

Apply same error function

And gradient descent

Multi Layer Networks

The error function

\[\text{Err} = \frac{1}{2} [y - x_N]^2 \]

Gradient update:

\[w_{j,i} = w_{j,i} - \eta \frac{\partial \text{Err}}{\partial w_{j,i}} \]

How can we calculate the gradient for an arbitrary \(w_{j,i} \) (at middle or top layer)?

Multi Layer Networks

The error function

\[\text{Err} = \frac{1}{2} [y - x_N]^2 \]

Gradient update:

\[w_{j,i} = w_{j,i} - \eta \frac{\partial \text{Err}}{\partial w_{j,i}} \]

Two basic observations:

\[\frac{\partial \text{Err}}{\partial w_{j,i}} = \frac{\partial \text{Err}}{\partial x_i} \frac{\partial x_i}{\partial w_{j,i}} \]

Just a derivative of linear function

\[\frac{\partial x_i}{\partial w_{j,i}} = \frac{\partial \sum_j w_{j,i} x_j}{\partial w_{j,i}} = x_j \]
Multi Layer Networks

- The error function
 \[\text{Err} = \frac{1}{2} [y - x_N]^2 \]
- Gradient update:
 \[w_{j,i} = w_{j,i} - \eta \frac{\partial \text{Err}}{\partial w_{j,i}} \]
- Two basic observations:
 \[\frac{\partial \text{Err}}{\partial w_{j,i}} = \frac{\partial \text{Err}}{\partial s_i} \frac{\partial s_i}{\partial w_{j,i}} \]
 \[\frac{\partial s_i}{\partial w_{j,i}} = \sum_j w_{j,i} x_j = x_i \]

Backpropagation Algorithm

- A few more steps (on the board) yield the Backpropagation algorithm

 Step 1: Start by initializing all \(w_{j,i} \) to small random values

 Step 2: Algorithm on previous slide updates after each example
 - This is known as "stochastic gradient descent" (similar to perceptron)
 - The standard Backpropagation algorithm makes multiple iterations over training set: in each iteration it collects the gradients from all examples in the training set and only then makes an update.

Multi Layer Networks

Illustration of Backpropagation

\[\eta = 0.1 \]
\[w_{56} = w_{67} = 1 \]
\[w_{35} = w_{36} = w_{45} = w_{46} = 0.6 \]
\[w_{13} = w_{14} = w_{23} = w_{24} = 1 \]

Input example: \((x_1, x_2) = (2, 3) \)
Desired output: \(L = 0 \)

Backpropagation Example

First step: compute \(s_i, x_i, \) and \(\sigma'_i = x_i (1 - x_i) \)
\[s_3 = 1 \times 2 + 1 \times 3 = 5 \]
\[x_3 = \frac{1}{1 + e^{-5}} = 0.993 \]
\[\sigma'_3 = 0.007 \]
\[s_4 = 5 \]
\[x_4 = 0.993 \]
\[\sigma'_4 = 0.007 \]
\[s_5 = 0.6 \times 0.993 + 0.6 \times 0.993 = 1.192 \]
\[x_5 = 0.767 \]
\[\sigma'_5 = 0.179 \]
\[s_6 = 1.192 \]
\[x_6 = 0.767 \]
\[\sigma'_6 = 0.179 \]
\[s_7 = 1 \times 0.767 + 1 \times 0.767 = 1.534 \]
\[x_7 = \frac{1}{1 + e^{-1.534}} = 0.823 \]
\[\sigma'_7 = 0.146 \]
Backpropagation Example

Second Step: compute Δ_i

$\Delta_7 = -\sigma'_7 \ast (L - x_7) = -0.146 \ast (0 - 0.823) = 0.120$

$\Delta_5 = \sigma'_5 w_{57} \Delta_7 = 0.179 \ast 1 \ast 0.120 = 0.021$

$\Delta_6 = \Delta_5$

$\Delta_3 = \sigma'_3 \left[w_{35} \Delta_5 + w_{36} \Delta_6 \right] = 0.000176$

$\Delta_4 = \Delta_3$

Backpropagation Example

Third Step: update weights

$w_{13} = w_{13} - \eta x_1 \Delta_3 = 1 - 0.1 \ast 2 \ast 0.000176 = 0.9999648$

\ldots

$w_{35} = w_{35} - \eta x_3 \Delta_5 = 0.6 - 0.1 \ast 0.993 \ast 0.021 = 0.557$

\ldots

$w_{35} = w_{35} - \eta x_5 \Delta_7 = 1 - 0.1 \ast 0.767 \ast 0.120 = 0.9908$

\ldots

Multi Layer Networks

- Not easy to optimize; the error surface has a lot of local minima
- Solutions:
 - Momentum:

 $w_{j,i} = w_{j,i} - \eta \frac{d\text{Error}}{d w_{j,i}} + \alpha$ previous update]

 - Use multiple restarts and pick one with lowest training set error
 - … many more recent techniques

What does the hidden layer do?

- Example: self-encoders

[Images from Mitchell’s textbook]

What does the hidden layer do?

[Images from Mitchell’s textbook]
Multi Layer Networks

- How to pick network size (and shape)?
- Similar to model selection in other models
 - cross validation
 - Combine fit + penalty
- How many updates?
 - Overfitting with large number of updates
 - Can do with large network and moderate number of updates

Convolutional Networks

- Architecture inspired by vision system
- Alternating layers of grid based structures
- Each node calculates local function on patch from previous layer

Convolutional Networks

- Alternate layers of:
 - "convolution layer" applies filter to patch from previous layer; weights repeat in all nodes (i.e. same filter)
 - "Pooling layer" combines multiple filters of same block
- Followed by fully connected layers

Multi Layer Networks

- Renewed interest in Deep Networks in last decade
- Several schemes for special network structure and special node functions
- Several schemes for training
- Combination of these ideas with BigData
- Yields
 - Impressive improvements in performance in vision and other applications

Multi Layer Networks

- How to pick network size (and shape)?
- Similar to model selection in other models
 - cross validation
 - Combine fit + penalty
- How many updates?
 - Overfitting with large number of updates
 - Can do with large network and moderate number of updates
Deep Networks

- Autoencoders: similar to 8-3-8 idea.
- Network fragments can be used to learn one level of internal representations in an unsupervised manner.
- Restricted Boltzmann Machines (RBM): a probabilistic model with similar intuitive role.
- Stacking these gives a deep network.
- Further supervised training of entire model after this step.

Deep Networks

- Active area of research.
- Still not well understood.
- Public interest due to empirical success.

Multi Layer Neural Networks

- Complex representation of functions.
- Can be trained with gradient based methods.
- But training can be tricky.
- Hidden layer "learning representation".
- Recent work on deep networks adds special architecture and/or training procedures.