Our second algorithm

Let’s look at a simple dataset for motivation:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Hot</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
</tbody>
</table>

- **Class**: Play tennis
- **Attributes**:
 - Outlook
 - Temp
 - Humidity
 - Windy

Decision Trees

- DTs give a different way to identify regions in instance space:
 - Recursively split on values of features to define regions that have single label
- What does this look like with numerical features? (with threshold node tests, for example temp>23)

Decision Trees

- Given training set, can we build a tree that agrees with the data? (yes; easy; why?)
- What is a good decision tree?
- Given training set, how can we build a good tree?
Decision Trees

• Which attribute should we choose for root of tree?
• A numerical example:

 [Pos,Neg] before and after split

 \[50,50\] \rightarrow \[35,15\] + \[15,35\]

 \[50, 0\] + \[0,50\]

 \[10,30\] + \[30,10\] + \[10,10\]

 \[25,25\] + \[25,25\]

Assume we picked Outlook for the root. Then we must continue splitting each branch Until ...

Continuing to Split

Decision Tree Learning Algorithm

• If data has a pure class

 - Make leaf node with that class

• Otherwise

 - Pick feature to split on

 - Divide data into sub-datasets \(s_j \) according to the feature’s values

 - Recursively build a tree for each subset

Final Decision Tree

Decision Trees

• Several selection criteria have been proposed and used.

• Information gain is commonly used (C4.5, J48)

• We need to learn about entropy ...

Decision Trees

\[Entropy(p_1, \ldots, p_n) = \sum p_i \log \frac{1}{p_i} = - \sum p_i \log p_i\]

For 2 classes \(p_1 = p, p_2 = 1 - p \) and this simplifies to

\[Entropy(p) = - \sum p \log p - (1 - p) \log (1 - p)\]
Decision Trees

Now consider a split \(S \rightarrow S_1, \ldots, S_k \) where the \(S_i \) are subsets of \(S \) and may include examples from multiple classes.

\[
\text{Gain}(\text{Split}) = \text{Ent}(S) - \sum_j \frac{|S_j|}{|S|} \text{Ent}(S_j)
\]

Example: calculating Gain

- **Outlook = Sunny:**
 - \(\text{Gain}(\text{Outlook}) = \text{info}[9,5] - \text{info}[2,3],[4,0],[3,2]) = 0.940 - 0.693 = 0.247 \) bits
 - \(\text{gain}(\text{Outlook}) = 0.247 \) bits

- **Outlook = Overcast:**
 - \(\text{Gain}(\text{Outlook}) = \text{info}[1,0] - 0 \) bits
 - \(\text{gain}(\text{Outlook}) = 0.029 \) bits

- **Outlook = Rainy:**
 - \(\text{Gain}(\text{Humidity}) = \text{info}[3,2],[4,0],[3,2]) = (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971 = 0.693 \) bits
 - \(\text{gain}(\text{Windy}) = 0.048 \) bits

Decision Tree Learning Algorithm

- **If data has a pure class**
 - Make leaf node with that class
- **Otherwise**
 - Pick feature to split on
 - Divide data into sub-datasets \(S_j \) according to the feature's values
 - Recursively build a tree for each subset

Improved Heuristic for Wide Splits

\[
\text{Gain}(\text{Split}) = \text{Ent}(S) - \sum_j \frac{|S_j|}{|S|} \text{Ent}(S_j)
\]

Heuristic for wide splits

\[
\text{SplitInfo} = \sum_j \frac{|S_j|}{|S|} \log \frac{|S|}{|S_j|}
\]

\[
\text{GainRatio} = \frac{\text{Gain}}{\text{SplitInfo}}
\]
Other Criteria / Tasks

The Gini Criterion = 4p(1 – p)
The [KM] Criterion = 2\sqrt{p(1 – p)}

What do these look like?

Criterion for Regression = \frac{1}{l} \sum_{i=1}^{l} (v_i - \bar{v})^2
\bar{v} = \frac{1}{l} \sum_{i=1}^{l} v_i

Real Valued Attributes

• Naïve treatment makes a very wide split with possibly one example per branch.
• Is this good?
 • Alternative picks threshold t and tests (feature >= t)
 to get a binary split.
 • How can we pick t?

Missing Attribute Values

• Common in real data
 • We can handle this in a way that works across algorithms (that is, also for kNN).
 • How?
 • But we can do better with a solution tailored for decision trees. How?

The Bad News

• This does not quite work ...

Overfitting in DT

• Why Does this happen?
 • Few examples at lower levels in tree
 • Quantities calculated "not reliable" in this case
 • Even worse with "noisy data"
 • And when features not sufficiently rich
• Solutions?

Overfitting in DT

• Min # points at leaf for split to be legal
 • Stop growing tree if "no information"
 • Pruning: grow full tree and then test whether some parts should be removed.
 • How? Note that full tree always looks better on training data so just using accuracy on training data will not work
Overfitting in DT

- Solution 1 (C4.5, J48): uses a confidence interval based on class ratio at leaf and number of examples in the training set.
- This is not fully justified but works well in practice.
- Solution 2: use a validation set. Known as reduced error pruning (REP)

Pruning in C4.5 / J48

- p is true error and f is observed error
- Algorithm uses $f \sim \mathcal{N}(p, \frac{p(1-p)}{n})$
- and some reasoning to claim that (actual formula used by C4.5 is more complex):

 \[
 p \leq f + \sqrt{\frac{1}{4n} Z^2 \alpha}
 \]
- The error rate at each node is replaced with the upper bound
- Then the best pruning can be chosen

REP Example

<table>
<thead>
<tr>
<th>Decision</th>
<th>Keep</th>
<th>Prune</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>color</td>
<td>red</td>
<td>black</td>
</tr>
<tr>
<td>traffic density</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>speed</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>moon</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>cereal</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

DT Recap

- DT divide the example space through recursive splits of feature values.
- Recursive learning algorithm relies on good choice of root attribute.
- IG and other criteria are used for choice.
- Several variants, improvements, and generalizations
- Overfitting is a significant issue: solved by pruning or other methods.