Probabilistic Model of Data

- Assume that the labeled examples \((x_1, t_1), (x_2, t_2), \ldots, (x_N, t_N)\)
 are generated independently from some unknown but fixed distribution

- Captures distribution over features in \(x_i\)
- Captures distribution over labels in \(t_i\)
- Captures their correlation/dependence

Naïve Bayes Model

- In the discrete case representing \(p(x|t)\) requires an exponential size table
- The naive Bayes model makes a significant assumption that allows for a compact representation.
- We assume that features are conditionally independent given the label

Is it Gold?

- Testing marbles during the gold rush ...
 \(\oplus\) means Gold and \(\ominus\) means not Gold
 \(p(\oplus) = 0.01\) \(p(\ominus) = 0.99\)
 Prof $$ developed a gold detector
 \(p(D = yes|\oplus) = 0.98\) \(p(D = yes|\ominus) = 0.04\)

- A marble is evaluated and tests yes.
- Should we buy it?

The Bayesian Classifier

- In order to apply this scheme we need to know the quantities \(p(t)\) and \(p(x|t)\)
- For discrete classes \(p(t)\) is easy to tabulate

- Typically \(x\) is high dimensional.
 - How can we represent \(p(x|t)\) ?
 - When \(x\) is continuous? discrete?
Naïve Bayes Model

features are conditionally independent given the label

\[x \text{ has } k \text{ dimensions } \quad p(x|t) = \prod_{j=1}^{k} p(x_j|t) \]

- Implying the following classification rule

\[
p(t_{\text{new}} = \oplus|x_{\text{new}}) \propto p(t_{\text{new}} = \oplus) \prod_{j} p(x_{\text{new},j}|t_{\text{new}} = \oplus) \\
p(t_{\text{new}} = \ominus|x_{\text{new}}) \propto p(t_{\text{new}} = \ominus) \prod_{j} p(x_{\text{new},j}|t_{\text{new}} = \ominus)
\]

These are not probabilities but we can still pick the maximizing values.

Naïve Bayes Prediction: Example

\[p(\oplus) = 0.4 \quad p(\ominus) = 0.6 \]

3 Binary features

\[p(x_1 = \text{yes}|\oplus) = 0.2 \quad p(x_1 = \text{yes}|\ominus) = 0.4 \]

\[p(x_2 = \text{yes}|\oplus) = 0.6 \quad p(x_2 = \text{yes}|\ominus) = 0.6 \]

\[p(x_3 = \text{yes}|\oplus) = 0.8 \quad p(x_3 = \text{yes}|\ominus) = 0.1 \]

Predict the label for \(x = 010 \):

\[\oplus : 0.4 \cdot 0.8 \cdot 0.6 \cdot 0.2 = 0.0384 \]

\[\ominus : 0.6 \cdot 0.6 \cdot 0.6 \cdot 0.9 = 0.1944 \]

\[\Rightarrow \text{ predict } \ominus \]

Naïve Bayes Model

- Same Equations hold for more than two discrete labels
- Can adapt for real valued attributes, for example, by using a univariate Gaussian distribution for each such feature

Naïve Bayes Model – Binary Features

\[p(z_i = j) = p_j \]

\[p(x_{i,\ell} = 1|\text{class } j) = q_{j,\ell} \]

\[p(x_i|\text{class } j) = \prod_{\ell} q_{j,\ell}^{x_{i,\ell}}(1 - q_{j,\ell})^{1-x_{i,\ell}} \]

\[p(z_i = j \text{ and } x_i) = p_j \prod_{\ell} q_{j,\ell}^{x_{i,\ell}}(1 - q_{j,\ell})^{1-x_{i,\ell}} \]

\[p(z_i \text{ and } x_i) = \prod_{j} \left[p_j \prod_{\ell} q_{j,\ell}^{x_{i,\ell}}(1 - q_{j,\ell})^{1-x_{i,\ell}} \right]^{z_{i,j}} \]
Maximum likelihood: Write likelihood, take derivatives and solve to get

\[
\hat{p}(t = c) = \frac{\text{number of examples with class } c}{\text{number of examples}}
\]

\[
\hat{p}(x_j = a|t = c) = \frac{\text{num of ex with class } c \text{ and } x_j = a}{\text{number of examples with class } c}
\]

What does this mean for a concrete dataset?

Naïve Bayes for Text Classification

* Document1: {what a nice day}
 * Label: +
* Document2: {a green cat chased a green dog}
 * Label: +
* Document3: {green umbrella a nice day}
 * Label: -
* Document4: {a nice day}
* Document5: {what a green umbrella}

Classes: Yes, No
Features: word-slot in document has value word-i in lexicon
Features have a huge number of values
Number of features is document length

\[
\hat{p}(x_j = \text{"halligan"}|t = c) = \frac{\#[t = c, x_j = \text{"halligan"}]}{\#[t = c]}
\]

This is unrealistic. If every location index in document has different parameters then estimation is problematic.

Practical model assumes that all positions behave in the same manner so word counts are pooled across all positions

\[
\hat{p}(x_j = \text{"halligan"}|t = c) = \frac{\#[\text{slots with } \text{"halligan"} \text{ when } t = c]}{\#[\text{slots when } t = c]}
\]

* What happens if "halligan" never appeared in class c in training data?

\[
\hat{p}(t_{\text{new}} = \ominus|x_{\text{new}}) \propto \prod_j \hat{p}(x_{\text{new},j}|t_{\text{new}} = \ominus)
\]

\[
\hat{p}(t_{\text{new}} = \ominus|x_{\text{new}}) \propto \hat{p}(t_{\text{new}} = \ominus) \prod_j \hat{p}(x_{\text{new},j}|t_{\text{new}} = \ominus)
\]

* Is this good? bad? Can it be fixed?
Laplace smoothing (for standard case, not text application):

\[\hat{p}(t = c) = \frac{\#[t = c]}{N} \]

\[\hat{p}(x_j = a|t = c) = \frac{\#[t = c, x_j = a] + 1}{\#[t = c] + V} \]

\(V \) is the number of values that \(x_j \) takes.

We can also control the amount of smoothing

Laplace smoothing (for text application):

\[\hat{p}(t = c) = \frac{\#[t = c]}{N} \]

\[\hat{p}(x_j = a|t = c) = \frac{\#[t = c, x_j = a] + p}{\#[t = c] + pV} \]

\(V \) is the size of the vocabulary.

Text Classification

- Data pre-processing can significantly improve results
 - Remove "stop words"
 - Remove words with very small counts
 - Apply stemming

Common approach is

"Bag of Words": feature representation indexed by word (not location)
 - Binary: "Halligan appeared in document"
 - or TFIDF weighting
 \[\frac{(#t \text{ at doc}) \log \left(\frac{\#\text{docs}}{\#\text{docs that have } t} \right)}{\#t} \]

Recap: Naïve Bayes Algorithm

- Very simple
- Efficient

Quite successful in many cases (but often we can do better)
- So can serve as a baseline