Data Preparation
Feature manipulation and Feature Selection

Manipulating Features

- Data preparation is important
- What to do if we have too many features? Or feature data not in the form expected?
- Transformations for individual features
- Transformation/selection over the entire feature set

Normalizing Feature Range

- Linear scaling into [0,1]
 \[x' = \frac{x - x_{min}}{x_{max} - x_{min}} \]
- Z-normalization: scale to have mean 0 and std 1
 \[x' = \frac{x - \mu_x}{\sigma_x} \]
 \(\min, \max, \mu, \sigma \) calculated from train set only

Discretizing Features

- What if we want to use a discrete-only learning algorithm but have data with real valued features?
- Preprocess to discretize feature
- How?

Discretizing Features

- Unsupervised methods:
 (do not use label to determine partition)
 - Equal bin size (a fixed grid)
 - Predetermined by feature range
 - Pros and cons?
 - Equal frequency
 - Divide to get same number of points in each bin
 - Adapt to data
 - Pros and cons?

Discretizing Features

- Supervised methods (use label):
 - Looks for partitions that help identify label
 Example: run DT algorithm on single feature and include all node splits from the tree.
 This is most helpful after pruning as otherwise partitions too specific and we get no generalization.
Discrete to Numerical Features

- We have discrete features (with unordered or ordinal values) but want to use a learning algorithm that expects numerical features. How?
- Say x_i has possible values A,B,C,D and example has feature value C?
- Two dominant approaches:
 - As unit vectors: 1000,0100,0010,0001
 - As "increasing weight" vectors 1000,1100,1110,1111

Too many features

- When working on an application it is tempting to identify and record more and more features that may be relevant for classification
- In some applications (e.g., text) there is a huge set of potential features (e.g., in bag of words representation)
- But too many features can be harmful
 - Why?

Too many features can be harmful

- kNN distance function and classification dominated by extra features
- In general with many random features we are likely to get correlations by chance and this leads to overfitting
- Solutions:
 - Instance transformation
 - Feature selection

Principal Component Analysis

- PCA is a standard method for instance transformation
- It is "unsupervised" in that it looks only at example locations and not their labels
- Intuitively: project the data onto k dimensions with highest variation
 - [we will not cover technical details]

Manifold Methods

- Data resides on a "manifold"
- Embed data in low dim space, while preserving local distances
 - [we will not cover technical details]
Feature Selection

- **Supervised methods** make use of labels to identify useful features.
- **How?**
 - Ad hoc methods
 - Filter methods
 - Wrapper methods

Relief Algorithm

- We have already discussed Relief in the context of kNN
- Pick instance + nearest hit + nearest miss
- Update weights based on distances and whether hit is closer/farther than miss
 \[||x - y||_w^2 = \sum w_i(x_i - y_i)^2 \]
- Can also be used to select features.

Filter Methods

- **Pick a criterion for evaluating features**
 - InfoGain
 - Correlation with label
 \[\rho_{X,Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y} \]
 - Mutual information with label
 \[I(X; Y) = \sum_x \sum_y p(x, y) \log \frac{p(x, y)}{p(x)p(y)} \]

Filter Methods

- **What happens if we duplicate the top ranking feature?**
- **Are single feature tests sufficient?**

Filter Methods

- **Are single feature tests sufficient?**

Visualization from Carla Brodley's slides
Adaptive Methods

• 2nd feature selected is chosen in context of already using the 1st etc

• Must Evaluate feature sets not individual features

• We can adapt filter methods to do this.

Wrapper Method

• Is an adaptive method, and in addition:

• Evaluates feature sets by directly using the learning algorithm on the data.

• Selection tailored for the intended learning algorithm

Wrapper Method

Input features → Feature subset search → Induction Algorithm

Feature subset evaluation → Induction Algorithm

• Eval subset by running and testing alg, e.g., using validation set

• Incremental search over subsets

• Forward, backward, combined, beam, ...

Wrapper Method

Search Method: sequential forward search

A, B → B, C → B, D

A, B, C → B, C, D

Visualization from Carla Brodley’s slides

Wrapper Method

Search Method: sequential backward elimination

ABC → ABD → ACD → BCD

AB → AD → BD

A → D

Visualization from Carla Brodley’s slides

Features: Summary

• Supervised vs unsupervised methods

• Individual features
 - Feature normalization
 - Feature discretization
 - Discrete features as numbers

• Entire feature set
 - Instance transformation methods
 - Filter Methods
 - Wrapper methods
 - Algorithm specific selection methods