Statistical Relational Models and Learning

150SRL: Spring 2009, Tufts University
Instructor: Roni Khardon

What the course is about:

- World has objects and relations among them
- Rules about behavior in world are probabilistic
- Want to model both relational aspect and probabilities
- Useful to understand domain and for task (e.g., prediction)

SRL: Some Applications

- University: professors, students, courses, projects, registration, grades (predict success?)
- Citation database: articles, authors, topics, venues, citations (predict topics; predict citations; object identity)
- Movie database: movies, actors, producers, directors, showing location, user ratings, profits: (predict user rating; predict profit)
- Financial database: brokers, customers, info disclosures (predict success; predict fraud)

SRL: Course Info

- See Web Page
- Same model as 150AML Spring 2007 (Learning planning and acting . . .)

Probabilities and Bayesian Inference

This unit gives basic notions of probability theory, and our framework of working in probability spaces defined by a joint distribution over a number of random variables.

Slides use material from [RN] text and slides.

Probabilities: Example and Definitions

- We throw 2 dice (each with 6 sides and uniform construction).
- The result of the experiment is a pair of numbers \((a, b)\).
 Each such outcome is called an elementary event.
- The sample space is the set of elementary events.
 In our case it is \(\{(1, 1), (1, 2), \ldots, (6, 6)\}\).
- An event is a subset of the sample space. For example:
 Event \(F1\): outcomes where the first die has value 1.
 Event \(SE\): outcomes where the sum of the two numbers is even.
 Event \(S11\): outcomes where the sum of the two numbers is at least 11.
• Events A and B are Mutually Exclusive if $A \cap B = \emptyset$ (the empty set).
• All pairs of elementary events are mutually exclusive.
• Events F_1 and S_{11} are mutually exclusive.

Probability Distributions

A Probability Distribution on the sample space S is a mapping from events to real numbers that satisfies the axioms of probability.

1. $\Pr\{A\} \geq 0$ for any event A
2. $\Pr\{S\} = 1$
3. If A and B are mutually exclusive then $\Pr\{A \cup B\} = \Pr\{A\} + \Pr\{B\}$

Properties of Probabilities

- $\Pr\{\emptyset\} = 0$
- $A \subseteq B$ implies $\Pr\{A\} \leq \Pr\{B\}$
- For $\overline{A} = S \setminus A$, the complement of A, $\Pr\{\overline{A}\} = 1 - \Pr\{A\}$.

Event $\overline{F_1}$: outcomes where the first die has value not equal to 1.
$\Pr\{\overline{F_1}\} = 1 - (1/6) = 5/6$

Conditional Probability

- If $\Pr\{B\} \neq 0$ then the probability of A given B is $\Pr\{A|B\} = \frac{\Pr\{A \cap B\}}{\Pr\{B\}}$
- $\Pr\{F_1 \cap S_{11}\} = \Pr\{(1,1)\} + \Pr\{(1,3)\} + \Pr\{(1,5)\} = 1/12$
- $\Pr\{S_{11}\} = \Pr\{(6,6)\} = 1/36$
- $\Pr\{F_1 \cap S_{11}\} = \Pr\{F_1\} = \Pr\{\overline{F_1}\} = 0$
- $\Pr\{F_1 \cap S_{11}\} = \Pr\{F_1\} = \Pr\{\overline{F_1}\} = 0$
- $\Pr\{SE\} = \Pr\{SE\} = \frac{1/12}{1/12} = 1/6$
- $\Pr\{SE\} = \Pr\{SE\} = \frac{1/12}{1/12} = 1/3$
- $\Pr\{E\} = \Pr\{E\} = \frac{1/12}{1/12} = 0$

Bayes' Theorem

- $\Pr\{A \cap B\} = \Pr\{B\} \Pr\{A|B\}$
- Reorganizing we get:
 $\Pr\{A|B\} = \frac{\Pr\{A\} \Pr\{B|A\}}{\Pr\{B\}}$
- $\Pr\{S_{11}\} = \Pr\{S_{11}\} = \frac{1/12(1/6)}{1/6} = 1/2$
- This will be the basis of our Bayesian inference and learning procedures!
Statistical Independence

- Events A and B are statistically independent iff
 \[\Pr\{A \cap B\} = \Pr\{A\}\Pr\{B\} \]
- This is equivalent to the condition $\Pr\{A|B\} = \Pr\{A\}$
- Events $F1$ and SE are statistically independent
 Events SE and $S11$ are not
- Independence can be used to simplify computations!

Product Probability Spaces

- The setting we will look at will normally have a set of random variables X_1, \ldots, X_n.
- Each variable X_i ranges over a finite set of values $v_{1,i}, \ldots, v_{k,i}$.
- An elementary event is an assignment of values to all variables.
- In our example, we have two variables, where X_1 is the value of the first die and X_2 of the second. The values in both cases are $1, \ldots, 6$.
- We can write a big table with n columns and $\prod_{i} v_{i,k}$ rows describing the probability of every elementary event.
- In our example we have 2 columns and 36 rows.

The Joint Distribution

<table>
<thead>
<tr>
<th>Cold</th>
<th>Cat</th>
<th>Allergy</th>
<th>Sneez</th>
<th>(\Pr{})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.84645</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.004455</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.010095</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.0018</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.006465</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.008672</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.0002475</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000094</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00072</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.001725</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.000002</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00018</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.000004</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.00076</td>
</tr>
</tbody>
</table>

Marginal Distribution

- Given the joint distribution we can get an induced probability distribution for any one variable (or any subset of them).
- This is the set of probabilities we get if we ignore the other variables.
- $\Pr(X_1)$ is the distribution of values for the first die ignoring the second. It can be described in a table with 1 column and 6 rows (one for each value).
- We describe this generically as:
 \[\Pr(X_1) = \sum \Pr\{X_1 = v_{1,i}\} \]
 This gives a probability distribution over X_1.
For particular values:
\[\Pr \{ X_1 = v_{1,j} \} = \sum_{v_2} \Pr \{ X_1 = v_{1,j} \text{ and } X_2 = v_{2,n} \} \]
\[\Pr \{ X_1 = 1 \} = \sum_{v_1} \Pr \{ X_1 = 1 \text{ and } X_2 = v_1 \} = 1/6 \]
\[\Pr \{ \text{Cold} = 0 \} = \sum_{v_1} \Pr \{ \text{Cold} = 0 \text{ and } \text{Sneeze} = v_1 \} \]
\[\Pr \{ \text{Cold} = 1 \} = \sum_{v_1} \Pr \{ \text{Cold} = 1 \text{ and } \text{Sneeze} = v_1 \} = 1 \]
\[\Pr \{ \text{Sneeze} = 1 \} = \sum_{v_1} \Pr \{ \text{Sneeze} = 1 \text{ and } \text{Allergy} = v_1 \} \]

Inference using the Joint
- **Compute probabilities of events**
 \[\Pr \{ \text{Cold} = 1 \text{ and } \text{Sneeze} = 1 \} = \sum \ldots = 0.0902875 \]
- **Causal Inference**
 \[\Pr \{ \text{Sneeze} = 1 | \text{Cold} = 1 \} = 0.0902875 = 0.902875 \]
- **Diagnostic Inference**
 \[\Pr \{ \text{Cold} = 1 | \text{Sneeze} = 1 \} = 0.902875 = 0.66 \]
- **Inter-Causal Inference**
 \[\Pr \{ \text{Cold} = 1 | \text{Sneeze} = 1 \text{ and } \text{Allergy} = 1 \} \]

Normalization
- \[\Pr \{ \text{Cold} = 1 | \text{Sneeze} = 1 \} = \frac{\Pr \{ \text{Sneeze} = 1 | \text{Cold} = 1 \} \Pr \{ \text{Cold} = 1 \}}{\Pr \{ \text{Sneeze} = 1 \}} = \frac{A}{2} \]
- \[\Pr \{ \text{Cold} = 0 | \text{Sneeze} = 1 \} = \frac{\Pr \{ \text{Sneeze} = 1 | \text{Cold} = 0 \} \Pr \{ \text{Cold} = 0 \}}{\Pr \{ \text{Sneeze} = 1 \}} = \frac{B}{2} \]
- \[\frac{A}{2} + \frac{B}{2} = 1 \text{ so } \alpha = A + B \text{ and} \]
- \[\Pr \{ \text{Cold} = 1 | \text{Sneeze} = 1 \} = \frac{A}{A+B} \]
- Will often use normalization to simplify the computation.

Conditional Independence
- Events \(A \) and \(B \) are statistically independent given event \(C \) iff
 \[\Pr \{ A \cap B | C \} = \Pr \{ A | C \} \Pr \{ B | C \} \]
- This is equivalent to the condition \(\Pr \{ A \cap B \} = \Pr \{ A \} \)
- As in standard independence this can simplify the computations.
- Events \(\{ S \} \) outcomes where at least one die has value 6.
- \[\Pr \{ \text{SE} | \text{S11} \} = 1/3 \]
- \[\Pr \{ \text{SE} | \text{S11 and A6} \} = 1/3 \]

Independence in Product Distributions
- In product distributions we can express a more general form of independence.
- \(X_1 \) and \(X_2 \) are independent iff \(\Pr \{ X_1 \cap X_2 \} = \Pr \{ X_1 \} \Pr \{ X_2 \} \)
- This means that for all \(v_1 \) and \(v_2 \)
 \[\Pr \{ X_1 = v_1 \text{ and } X_2 = v_2 \} = \Pr \{ X_1 = v_1 \} \Pr \{ X_2 = v_2 \} \]
- And similarly for conditional independence
 \[\Pr \{ X_1 \text{ and } X_2 \} = \Pr \{ X_1 | X_2 \} \Pr \{ X_2 \} \]
- \[\Pr \{ X_1 = v_1 \text{ and } X_2 = v_2, \text{ and } X_3 = v_3 \} = \Pr \{ X_1 = v_1 | X_2 = v_2, X_3 = v_3 \} \Pr \{ X_2 = v_2, X_3 = v_3 \} \]

Bayesian Networks
This unit introduces Bayesian networks and basic (ad hoc) inference using them.
Slides use material from [RN] text and slides.
Product Probability Spaces

- We have \(n \) variables, \(X_1, \ldots, X_n \).
- Each variable \(X_i \) ranges over a finite set of values \(v_{i,1}, \ldots, v_{i,k} \).
- We can write a big table with \(n \) columns and \(\prod_i k_i \) rows describing the probability of every elementary event.
- Table grows exponentially with \(n \).
 Not feasible unless \(n \) is very small.

Bayesian Networks

- Allow us to represent distributions more compactly.
- Take advantage of the structure available in a domain.
- Basic idea: represent dependence and independence explicitly.
- If \(\Pr(X_1 \cap X_2) = \Pr(X_1)\Pr(X_2) \) then we can use two 1-dimensional tables instead of a 2-dimensional table.
 - If each has 6 values, this means 12 entries instead of 36!

Example

- Edges represent "direct influence".
- Assume that \(\text{Cat} \) and \(\text{Cold} \) do not depend on other variables.
- \(\text{Allergy} \) depends only on \(\text{Cat} \).
- \(\text{Sneeze} \) depends on \(\text{Cold} \) and \(\text{Allergy} \).
- \(\text{Sneeze} \) depends on \(\text{Cat} \) BUT only through \(\text{Allergy} \).
 - For each node we associate a conditional probability table.

The network structure expresses independence of variables.

- \(\Pr(\text{Cat} | \text{Cold}) = \Pr(\text{Cat}) \)
- \(\Pr(\text{Allergy} | \text{Cat, Cold}) = \Pr(\text{Allergy} | \text{Cat}) \)
- \(\Pr(\text{Sneeze} | \text{Allergy, Cat, Cold}) = \Pr(\text{Sneeze} | \text{Allergy, Cold}) \)

More generally, the joint distribution can be expressed as the product of the distributions in the network:

\[
\Pr(\text{Cat, Cold, Allergy, Sneeze}) = \Pr(\text{Cat})\Pr(\text{Cold})\Pr(\text{Allergy} | \text{Cat})\Pr(\text{Sneeze} | \text{Allergy, Cold})
\]
Pr\{Cold=1, Cat=0, Allergy=0, Sneeze=1\} = Pr\{Cat=0\}Pr\{Cold=1\}Pr\{Allergy=0\} = 0.99 \cdot 0.1 \cdot 0.9 = 0.0891

Pr\{Sneeze=1\} = Pr\{Cold=1\}Pr\{Allergy=0\} = 0.99 \cdot 0.1 = 0.099

Pr\{Sneeze=1\} = Pr\{Cat=0\}Pr\{Cold=1\}Pr\{Allergy=0\} = 0.99 \cdot 0.1 \cdot 0.9 = 0.0891

So to represent a distribution we need to represent the network and CPTs.

If for all nodes the number of parents is small then all CPTs are small and we have a compact representation.

d-Separation

A set of nodes \(E \) d-separates \(X \) and \(Y \) iff every path is blocked. A path is blocked iff some \(z \) on path has one of 3 configurations:

1. \(z \in E \) and path goes through \(z \)
2. \(z \notin E \) and both arrows out of \(z \)
3. \(z \notin E \), children(\(z \)) \(\notin E \), and both arrows into \(z \)

Theorem: if \(E \) d-separates \(X, Y \) then \(X \) is independent of \(Y \) given \(E \).

Conditional Independence

Each node is conditionally independent of all others given its Markov blanket: parents + children + children’s parents.

How to Construct a Network?

- Can represent any distribution using a network.
- By repeated application of \(\Pr\{A, B\} = \Pr\{A|B\}\Pr\{B\} \)
- Choose ordering of variables \(X_1, \ldots, X_n \).
- For \(i = 1 \) to \(n \)
 - Add \(X_i \) to network with \(\Pr(X_i|X_1, \ldots, X_{i-1}) \).
- The joint distribution is:
 \(\Pr(X_1, X_2, \ldots, X_n) = \prod_{i=1}^{n} \Pr(X_i|X_1, \ldots, X_{i-1}) \).
- But this is no improvement as \(X_n \) is connected to all predecessors (so we need a huge table for it).

Example

You are at work, neighbour John calls to say your home alarm is ringing, but neighbour Mary doesn’t call. Sometimes alarm set off by minor earthquakes. Is there a burglar?

Variables and ordering:

- Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:

**Instead, at each stage choose a subset such that parents(\(X_i \)) \(\subseteq \{X_1, \ldots, X_{i-1}\} \).

- Choice of parents must satisfy \(\Pr(X_i|X_1, \ldots, X_{i-1}) = \Pr(X_i|\text{parents}(X_i)) \)
 - so that \(X_i \) is independent of other predecessors given its parents.
 - If parents(\(X_i \)) is small then representation is compact.
 - For example if for all \(X_i \), \(|\text{parents}(X_i)| \leq 3 \) then instead of \(2^n \) entries we have \(n2^3 = 8n \) entries !

- How should we order the variables ?
 - Causal links tend to produce small representations.
 - Choose “root causes” first. Then continue with causal structure as much as possible.
What if we choose another ordering?

Variable ordering (1):
Mary Calls, John Calls, Alarm, Burglary, Earthquake

Variable ordering (2):
Mary Calls, John Calls, Earthquake, Burglary, Alarm,

How to Construct a Network

• May work with domain experts to decide on structure and then find values of probabilities.
• Choosing a "bad order" can have adverse effect: Large probability tables.
• "Unnatural" dependencies, that are in turn hard to estimate.
• Luckily, experts are often good at identifying causal structure, and prefer giving probability judgments for causal rules.

Compact conditional distributions

• Deterministic nodes can be represented explicitly.
• Other structure can be used: Noisy Or is common.

Parents \(U_1 \ldots U_k \) include all causes (can add leak node)
Independent failure probability \(q_i \) for each cause alone
\[
P(X|U_1, \ldots, U_j, \bar{U}_{j+1}, \ldots, U_k) = 1 - \prod_{i=1}^k q_i
\]
Using \(k \) parameters instead of \(2^k \) parameters.

Real Valued Nodes

• Use parametric distributions for the nodes: Normal, Uniform
• With real parents: linear Gaussian is common:
\[
Y|X \sim \mathcal{N}(Ax + b, \Sigma)
\]
• If all nodes are Gaussian or linear Gaussian then the joint is Gaussian and inference is relatively easy.
• If parents are discrete can use Conditional Gaussian, that is Gaussian for each assignment of parent values.

Real Valued Nodes

• Discrete child of continuous parent: often use sigmoid (logit):
\[
P(\text{Buys} = \text{true}|\text{Cost} = c) = \frac{1}{1 + \exp(-c + \mu \sigma)}
\]
Computing with Bayes Nets

- We have seen how to reconstruct the joint distribution from the network.
- Can we compute other probabilities efficiently?
 \[
 \Pr\{\text{Cold} = 1 \text{ and } \text{Sneeze} = 1\} = ? \\
 \Pr\{\text{Sneeze} = 1 | \text{Cold} = 1\} = ? \\
 \Pr\{\text{Cold} = 1 | \text{Sneeze} = 1\} = ? \\
 \Pr\{\text{Cold} = 1 | \text{Sneeze} = 1 \text{ and } \text{Allergy} = 1\} = ?
 \]

Computing a Marginal Distribution

- To compute \(\Pr(\text{Cold}, \text{Sneeze})\)
- First compute \(\Pr(\text{Allergy})\) by summing \(\text{Cat}\) out of \(\Pr(\text{Allergy, Cat}) = \Pr(\text{Cat}) \Pr(\text{Allergy} | \text{Cat})\)
- Then compute \(\Pr(\text{Sneeze} | \text{Cold})\) by summing \(\text{Allergy}\) out of \(\Pr(\text{Sneeze, Allergy} | \text{Cold}) = \Pr(\text{Sneeze} | \text{Allergy, Cold}) \Pr(\text{Allergy})\)
- Finally compute
 \[
 \Pr(\text{Cold, Sneeze}) = \Pr(\text{Sneeze} | \text{Cold}) \Pr(\text{Cold})
 \]
- Can similarly compute \(\Pr\{\text{Cold} = 1 \text{ and } \text{Sneeze} = 1\}\)

In general, “sum out” variables that do not appear in the question. Try to maintain small tables along the way.

Causal Inference

- To compute \(\Pr(\text{Sneeze} = 1 | \text{Cold} = 1)\)
- First compute \(\Pr(\text{Allergy})\) as in previous example.
- Then compute
 \[
 \Pr(\text{Sneeze} = 1 | \text{Cold} = 1) = \sum_v \Pr(\text{Sneeze} = 1, \text{Allergy} = v, \text{Cold} = 1) \Pr(\text{Allergy} = v)
 \]

Diagnostic Inference

- Use Bayes’ Rule to compute \(\Pr(\text{Cold} = 1 | \text{Sneeze} = 1)\)
 \[
 A_1 = \Pr(\text{Cold} = 1 | \text{Sneeze} = 1) = \frac{\Pr(\text{Sneeze} = 1 | \text{Cold} = 1) \Pr(\text{Cold} = 1)}{\Pr(\text{Sneeze} = 1)} = \frac{N_1}{N_0 + N_1}
 \]
 \[
 A_0 = \Pr(\text{Cold} = 0 | \text{Sneeze} = 1) = \frac{\Pr(\text{Sneeze} = 1 | \text{Cold} = 0) \Pr(\text{Cold} = 0)}{\Pr(\text{Sneeze} = 1)} = \frac{N_0}{N_0 + N_1}
 \]
- But \(A_0 + A_1 = 1\)
- \(\Pr(\text{Cold} = 1 | \text{Sneeze} = 1) = \frac{N_1}{N_0 + N_1} = \frac{N_0 + N_1}{N_0 + N_1} \cdot \frac{N_1}{N_0 + N_1} = \frac{N_1}{N_0 + N_1}
 \]
- \(\text{Normalize}(N_0, N_1) = \frac{N_0 + N_1}{N_0 + N_1}
 \]

- From the CPT we have:
 \[
 \begin{align*}
 \Pr(\text{Cold} = 0) &= 0.90 \quad \text{and} \quad \Pr(\text{Cold} = 1) = 0.10 \\
 \Pr(\text{Sneeze} = 1 | \text{Cold} = 0) &= 0.05175 \\
 \Pr(\text{Sneeze} = 1 | \text{Cold} = 1) &= 0.902875
 \end{align*}
 \]
- computed as in previous example using \(\Pr(\text{Allergy})\)
 \[
 \begin{align*}
 N_0 &= 0.05175 \cdot 0.90 = 0.046575 \\
 N_1 &= 0.902875 \cdot 0.10 = 0.0902875 \\
 \Pr(\text{Cold} = 1 | \text{Sneeze} = 1) &= \frac{N_1}{N_0 + N_1} = 0.66
 \end{align*}
 \]
Inference in Burglary Example

- Use B, E, A, J, M to denote variables
- Compute $\Pr\{A = 1 | E = 1, J = 1\}$
- By computing and normalizing

\[
\Pr\{J = 1 | A = 1, E = 1, J = 1\} \cdot \Pr\{A = 1 | E = 1\} = 0.001 \cdot 0.95 + 0.999 \cdot 0.29 = 0.29066
\]

Poly-Tree Networks

A singly connected network. There are no cycles even ignoring the direction of edges.

Inference — Overview

- In general the situation is more complicated than in our simple network. The problem is NP-Hard.
- Can always compute via the joint but this may not be efficient.
- Efficient Algorithms are known for graphs with poly-tree structure.
- Otherwise, try to turn graph into a tree, or use simulation methods to approximate the probability.
- Simulation is not guaranteed to give good answers but works well in some cases.
- Details next time: using [RN] slides and extra slides.

Familiar Problems as Bayes Nets

- Naive Bayes Algorithm
- Mixture of Gaussians
- Linear Regression
- Bayesian Linear Regression
- ...