Learning Bayes Networks

- Fully observed vs. hidden variables
- Known structure vs. unknown structure
- Maximum likelihood vs. Bayesian

Fully observed Case

- Classic example: Naive Bayes algorithm.
- Likelihood decomposes and we get separate estimate for parameters of every node.
- For discrete variables we get maximum likelihood for multinomial variables which is given by frequency counts.
- Bayesian solution: if we use a conjugate prior (Dirichlet for multinomial) then posterior in same family. Posterior and MAP given by adjusted frequency counts. Calculating posterior is simply inference in the Bayes network.

Unobserved Variables

- Classic example: Mixture of Gaussians.
 \[\Pr \{ x, c \} = \Pr \{ c = c \} \mathcal{N}(x | \mu_c, \Sigma) \]
- Maximum likelihood can be calculated by EM algorithm.
- Note that we need to perform inference as part of the learning algorithm.
- In example we calculate
 \[E[C = c | X, \mu_1, \ldots, \mu_k, \Sigma_1, \ldots, \Sigma_k] \]

Structure Learning

- Hard in general case; tractable in some cases (tree; order known)
- Heuristic search: Define a score function and perform local search to optimize network and parameters.
- Maximum likelihood: \(\arg \max_c \arg \max \Pr \{ D | G, \theta \} \)
- Overfitting may be an issue.

Bayesian Structure Learning

- Define priors \(\Pr \{ G \} \) and \(\Pr \{ \theta | G \} \).
- Marginal likelihood (evidence function) for \(G \):
 \[\Pr \{ D | G \} = \int \Pr \{ D | \theta, G \} \Pr \{ \theta | G \} d\theta \]
- Posterior: \(\Pr \{ G | D \} \sim \Pr \{ D | G \} \Pr \{ G \} \)
- With large sample size \(M \) score (log posterior) becomes:
 \[\text{score} \{ G | D \} = \log \Pr \{ D | G, \hat{\theta} \} + \log \Pr \{ G \} - \frac{1}{2} \text{Dim}(G) \log M \]

- Can search for MAP using heuristic search. NB this is a model selection problem.
- Posterior may be hard to calculate. Sample from posterior for Bayesian averaging.
Parameter Learning in MRFs

- The likelihood does not decouple due to normalization factor Z.
- i index of cliques; j index over examples

\[L = \Pr \{ D | \theta \} = \prod_i \frac{1}{Z} e^{-\sum_j \Psi_i(X_{Qj})} \]

\[LL = - \sum_j \sum_i \Psi_i(X_{Qj}) \cdot \sum_j \ln Z = - \sum_j \sum_i \Psi_i(X_{Qj}) \cdot M \ln Z \]

\[\frac{\partial LL}{\partial \Psi_{i,v}} = - \sum_j I(x_{Qj}^i = v) + M \Pr \{ X_{Qj} = v \} \]

Therefore at the solution we have:

\[\Pr \{ X_{Qj} = v \} = \frac{N_{X_{Qj}^i}}{M} \]

Optimize with gradient descent or other methods.