Motivation...
Big picture

- Front end responsibilities
 - Check that the input program is legal
 - Check syntax and semantics
 - Emit meaningful error messages
 - Build IR of the code for the rest of the compiler

Front end

- Strategy:
 - Specify the input language formally
 Regular expressions, context-free grammars
 - Use automatons to recognize valid strings
 Hey, this stuff is actually useful?
 - Automate construction
 Or, in our case, learn how automation works
 - Add “actions” to state transitions
 - Build IR data structure
 - Perform additional semantic checks
Front end design

- Two part design
 - Scanner
 - Reads in characters
 - Classifies sequences into words or tokens
 - Parser
 - Checks sequence of tokens against grammar
 - Creates a representation of the program (AST)

Scanner and parser

- Why separate scanner and parser?
 - Simplifies the implementation
 - Parsing is fundamentally harder
 - Word classification is easier – make it fast
 - Speed up parsing by working with tokens
Scanner

- Responsibilities
 - Read in characters
 - Produce a stream of tokens
 \[\text{key,if} \{ x, -, 5 \} \{ \ldots \} \]
 \[\text{id} \{ \ldots \} \text{op,==} \text{num,5} \{ \ldots \} \]
 - Token has a type and a value

Scanner

- Relation to parser

1. \(\text{goal} \rightarrow \text{expr} \)
2. \(\text{expr} \rightarrow \text{expr op term} \)
3. \(\text{term} \rightarrow \text{number} \)
4. \(\text{term} \rightarrow \text{id} \)
5. \(\text{op} \rightarrow + \)
6. \(\text{op} \rightarrow - \)

- Could be encoded in grammar:

6. \(\text{number} \rightarrow \text{number digit} \)
7. \(\text{digit} \rightarrow \text{digit} \)
8. \(\text{digit} \rightarrow 0 \mid 1 \mid 2 \mid 3 \ldots \)
Hand-coded scanner

- Explicit test for each token
- Read in a character at a time
- Example: recognizing keyword “if”

```c
char c = readchar();
if (c != 'i')
    error();
else {
    c = readchar();
    if (c != 'f')
        error();
    else
        return IF_TOKEN;
}
```

Scanner construction

- **Goal**: automate process
- Avoid writing scanners by hand
- Leverage the underlying theory of languages
Scanner construction

- Tokens specified as **regular expressions**

 Note: in PL, spelling identifies part of speech

- Scanner generator produces state machine
 - Recognizes the REs
 - Implemented as tables or directly in code

Regular expressions

- Rules or patterns to define **regular languages**
 - Alphabet Σ
 - Language is a set of strings
 - Let $L(r)$ denote the language described by RE r

- Regular expressions over Σ
 - ϵ is an RE denoting empty set
 - if a is in Σ, then a is an RE for $\{a\}$
 - if x and y are REs then:
 - xy is an RE for $L(x)L(y)$ **Concatenation**
 - $x|y$ is an RE for $L(x) \cup L(y)$ **Alternation**
 - x^* is an RE for $L(x)^*$ **Kleene closure**
Set operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union of L and M</td>
<td>(L \cup M = {s \mid s \in L \text{ or } s \in M})</td>
</tr>
<tr>
<td>Concatenation of L and M</td>
<td>(LM = {st \mid s \in L \text{ and } t \in M})</td>
</tr>
<tr>
<td>Kleene closure of L</td>
<td>(L^* = \bigcup_{0 \leq i \leq \infty} L^i)</td>
</tr>
<tr>
<td>Positive Closure of L</td>
<td>(L^+ = \bigcup_{1 \leq i \leq \infty} L^i)</td>
</tr>
</tbody>
</table>

Using regular expressions

- Concatenation: build up words
- Kleene closure: repetition
- Alternation: collect sets of words
Examples

Identifiers:
- Letter → (a|b|c| ... |z|A|B|C| ... |Z)
- Digit → (0|1|2| ... |9)
- Identifier → Letter (Letter | Digit)

Numbers:
- Integer → (+|-|ε) (0|1|2| ... |9)(Digit)
- Decimal → Integer Digit
- Real → (Integer | Decimal) E (+|-|ε) Digit
- Complex → (Real , Real)

Numbers can get much more complicated!

Back to scanners

- How do we use regular expressions?
 - Every RE has an equivalent finite state automaton that recognizes its language
 (Actually, more than one)
 - Example: a(b|c)*

- Idea: scanner simulates the automaton
Example

- Consider the problem of recognizing register names

\[Register \rightarrow r \ 012 \ldots 9 \ 012 \ldots 9^* \]

![Diagram showing state transitions for recognizing register names]

- Start in state \(S_0 \) & take transitions on each input character
- FA accepts a word \(x \) iff \(x \) leaves it in a final state \((S_2) \)
- Other transition go to an error state, \(S_e \)

Implementation

- Finite automaton
 - States, characters
 - State transition \(\delta(\text{state},\text{charclass}) \) determines next state
 - Automaton is deterministic

- Next character function
 - Reads next character into buffer
 - (May compute character class by fast table lookup)

- Transitions from state to state
 - Implement \(\delta \) as a table
 - Access table using current state and character
Example

Turning the recognizer into code

<table>
<thead>
<tr>
<th>δ</th>
<th>r</th>
<th>$0,1,2,3,4,$</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$5,6,7,8,9$</td>
<td></td>
</tr>
<tr>
<td>s_0</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_1</td>
<td>s_e</td>
<td>s_2</td>
<td>s_e</td>
</tr>
<tr>
<td>s_2</td>
<td>s_e</td>
<td>s_2</td>
<td>s_e</td>
</tr>
<tr>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
</tbody>
</table>

Char \leftarrow next character
State $\leftarrow s_0$

while (Char \neq EOF)
State $\leftarrow \delta$(State, Char)
Char \leftarrow next character

if (State is a final state)
then report success
else report failure

Example

Adding actions

<table>
<thead>
<tr>
<th>δ</th>
<th>r</th>
<th>$0,1,2,3,4,$</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$5,6,7,8,9$</td>
<td></td>
</tr>
<tr>
<td>s_0</td>
<td>s_1</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td></td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_1</td>
<td>s_e</td>
<td>s_2</td>
<td>s_e</td>
</tr>
<tr>
<td>s_2</td>
<td>s_e</td>
<td>s_2</td>
<td>s_e</td>
</tr>
<tr>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
</tbody>
</table>

Char \leftarrow next character
State $\leftarrow s_0$

while (Char \neq EOF)
State $\leftarrow \delta$(State, Char)
perform specified action
Char \leftarrow next character

if (State is a final state)
then report success
else report failure
What if we need a tighter specification?

- \(r \ Digit \ Digit \) allows arbitrary numbers
 - Accepts \(r00000 \)
 - Accepts \(r99999 \)
 - What if we want to limit it to \(r0 \) through \(r31 \) ?

- Write a tighter regular expression
 - \(\text{Register} \rightarrow r ((0|1|2) (Digit \ | \epsilon) | (4|5|6|7|8|9) | (3|30|31)) \)
 - \(\text{Register} \rightarrow r0|r1|r2 \ldots |r31|r00|r01|r02 \ldots |r09 \)

- Produces a more complex DFA
 - Has more states
 - Same cost per transition
 - Same basic implementation

Tighter register specification

- The DFA for
 \[
 \text{Register} \rightarrow r ((0|1|2) (Digit \ | \epsilon) | (4|5|6|7|8|9) | (3|30|31))
 \]

- Accepts a more constrained set of registers
- Same set of actions, more states
Tighter register specification

<table>
<thead>
<tr>
<th>δ</th>
<th>r</th>
<th>0,1</th>
<th>2</th>
<th>3</th>
<th>4-9</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_1</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_1</td>
<td>s_e</td>
<td>s_2</td>
<td>s_2</td>
<td>s_5</td>
<td>s_4</td>
<td>s_e</td>
</tr>
<tr>
<td>s_2</td>
<td>s_e</td>
<td>s_3</td>
<td>s_3</td>
<td>s_3</td>
<td>s_3</td>
<td>s_e</td>
</tr>
<tr>
<td>s_3</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_4</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_5</td>
<td>s_e</td>
<td>s_6</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_6</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
</tbody>
</table>

Table encoding RE for the tighter register specification

Building DFAs

- Each RE has an equivalent DFA
 - May be hard to directly construct the right DFA

- What about an RE such as $(a | b)^* abb$?

- This FA is different:
 - S_0 has a transition on ϵ
 - S_1 has two transitions on a

- This is a non-deterministic finite automaton

Deterministic automaton
Non-deterministic finite automata

- An NFA accepts a string x iff \exists a path though the transition graph from s_0 to a final state such that the edge labels spell x.
 \[\text{\text{(Transitions on } \varepsilon \text{ consume no input)}\]

- To “run” the NFA, start in s_0 and guess the right transition at each step.
 - Always guess correctly
 - If some sequence of correct guesses accepts x then accept

- Why study NFAs?
 - They are the key to automating the RE \rightarrow DFA construction
 - (We can paste together NFAs with ε-transitions)

NFA Example

- Input:
 - Must know the future

- Input:
 - $abaab$
Relationship between NFAs and DFAs

- DFA is a special case of an NFA
 - DFA has no ε transitions
 - DFA’s transition function is single-valued
 - Same rules will work
- DFA can be simulated with an NFA \textit{(obvious)}
- NFA can be simulated with a DFA \textit{(less obvious)}
 - Simulate sets of possible states
 - Possible exponential blowup in the state space
 - Still, one state per character in the input stream

Automatic scanner construction

- To convert a specification into code:
 1. Write down the RE for the input language
 2. Build a big NFA
 3. Build the DFA that simulates the NFA
 4. Systematically shrink the DFA
 5. Turn it into code

- Scanner generators
 - Lex and Flex work along these lines
 - Algorithms are well-known and well-understood
 - Key issue is interface to parser \textit{(define all parts of speech)}
 - You could build one in a weekend!
Automatic scanner construction

RE \rightarrow NFA (*Thompson's construction*)
- Build an NFA for each term
- Combine them with ε-moves

NFA \rightarrow DFA (*subset construction*)
- Build the simulation

DFA \rightarrow Minimal DFA
- Hopcroft's algorithm

DFA \rightarrow RE (*Not part of the scanner construction*)
- All pairs, all paths problem
- Take the union of all paths from s_0 to an accepting state

C scanner

```c
{%
#include "c_breeze.h"
#include "parser.tab.h"
%
identifier       ([a-zA-Z_]\[0-9a-zA-Z_\]*)
short_escape     ([0-7]["'\n\"]\)
any_white         ([\011\013\014\015\ ])%

{any_white}+     { }
for
  { lval.tok = get_pos(); return ctokFOR; }
if
  { lval.tok = get_pos(); return ctokIF; }
{identifier}
  { lval.tok = get_pos();
    lval.idN = new idNode(cbtext, cblval.tok);
    if ( is_typename(cbtext)) return TYPEDEFname;
    else return IDENTIFIER; }
{decimal_constant}
  { lval.expN = atoi(cbtext);
    return INTEGERconstant; }
%
...any special code...
```
Next time...

- Sign up on mailing list:
 https://www.eecs.tufts.edu/mailman/listinfo/comp181

- RE → NFA → DFA → scanner

- Algorithms (yikes!)
Automatic scanner construction

- Construct a DFA to recognize any RE
- Overview:
 - Direct construction of a nondeterministic finite automaton (NFA) to recognize a given RE
 - Construct a deterministic finite automaton (DFA) to simulate the NFA
 - Minimize the number of states
 - Generate the scanner code