Prelude
- Who is Kazushige Goto (I don’t expect you to know this one)
- Japanese patent clerk
- Started working on hand-tuning scientific code in his free time
- Mostly linear algebra (e.g., matrix multiply)
- He does the crazy stuff:
 - Unroll a loop some number of times
 - During execution, put the jump in the right place
- Expert in tuning for Pentium
- Worked at U of Texas
 - See recent article in NY Times
- Pentium 4 cluster: 1.5 teraflops to 2.0 teraflops

Register allocation
- What are registers?
 - Memory
 - Very close to the processor — very fast to access
 - On many architectures, required by ISA
 - RISC – all computations use registers
 - Pentium – many instructions register + memory
- Part of the memory hierarchy
 - Top: close to CPU, fast, small
 - Bottom: far from CPU, slow, large

Memory hierarchy
- What is the compiler’s role in the memory hierarchy?
 - Virtual memory?
 - Main memory?
 - Heap layout
 - Prefetching
 - Level-1 and level-2 cache?
 - Many locality optimizations
 - Loop transforms, tiling, strip mining
 - Registers
 - Compiler has direct control
Using registers

- Machine code: register names are explicit
 - Represent data dependences
 - Renaming may occur inside the processor
 - Alpha ISA: 32 integer, 32 floating point registers
 - Alpha 21264: 80 integer, 72 floating point registers
 - Why have more physical registers than ISA?

- How important is register allocation?
 - Widely recognized as the most important "optimization" performed by the compiler
 - An order of magnitude compared to poor or no register allocation
 - Most other optimizations: at most ~10% to 20%

Register allocation

- What is the problem?
 - Register allocation
 - Decide which values will be kept in registers
 - Register assignment
 - Select specific registers for each use

- Constraints
 - Primary: limited number of registers
 - Different kinds of registers — integer vs floating point
 - Special-purpose registers — SP
 - Instruction requirements — x86 mul must use eax, adx
 - Some values cannot go in registers

Register allocation

- What values can go in registers?
 - First, what does it mean to "allocate a variable in a register"
 - Most cases: variable becomes a register
 - All uses and defs replaced with the register
 - It has no storage on the stack

- What is the implication of that decision?
 - The compiler must be able to see all accesses
 - For example:
    ```
    int x;
    int *p = &x;
    (*p) = 7;
    foo(p);
    ```
 Might be able to handle (*p) = 7 case

Example

- Key idea: If we can color the graph with K colors, then we can allocate the variables to K registers

Example

- Graph is 2-colorable
Static single assignment

- What is the effect of SSA form on liveness?
- What does SSA do?
 - Breaks a single variable into multiple instances
 - Instances represent distinct, non-overlapping uses
- Effect:
 - Breaks up live ranges – often improves register allocation

Graph coloring

The big questions:

- Can we efficiently find a K-coloring of the graph?
- Can we efficiently find the optimal coloring of the graph (i.e., using the least number of colors)?
- What do we do when there aren’t enough colors (registers) to color the graph?

Graph coloring

- The bad news:
 - Graph coloring is NP-complete
- What does the optimal algorithm do?
 - Works on any graph
 - Tells us for certain if a graph is K-colorable
- Observations
 - We’ll never see the worst-case graph
 - We don’t necessarily need the perfect coloring

Spilling

- What if the graph is not K-colorable?
 - There aren’t enough registers to hold all variables
 - This happens a lot
 - Pick a variable, spill it back to the stack
 - Value lives on the stack
 - We have to generate extra code to load and store it
 - Need registers to hold value temporarily
 - Simple approach: keep a few registers around just for this purpose
 - Better approach:
 - Rewrite the code introducing a new temporary
 - Use the temporary to “load” and “store” the spilled variable
 - Rerun the liveness analysis and register allocation

Rewriting the code

Example: \texttt{add v1, v2}

Suppose v2 is selected for spilling and assign to stack location [SP+12]

Add a new variable t23 just for this instruction:

\begin{verbatim}
 mov [SP+12], t23
 add v1, t23
\end{verbatim}

Idea:

- t23 has a short live range and (hopefully) doesn’t interfere with other variables as much as v2
- Rerun the whole algorithm

Graph coloring

- Assume you have K registers – looking for K-coloring
- Observation:
 - Any node with less than K neighbors (degree < K) must be colorable
 - Why?
 - Pick the color not used by any neighbor
 - There must be one!
- This is the basis for Chaitin’s algorithm (Chaitin, 1981)
Chaitin’s algorithm

Ideas behind Chaitin’s algorithm:

- Pick any vertex \(n \) such that \(n^\circ < k \) and put it on the stack
- Remove that vertex from the interference graph
- And incident edges
- Goal: This may make some new nodes have fewer than \(k \) neighbors
- At the end, if some vertex \(n \) still has \(k \) or more neighbors, then spill the live range associated with \(n \)
- Otherwise successively pop vertices off the stack and color them in the lowest color not used by some neighbor

Chaitin’s Algorithm

1. While \(\exists \) vertices with \(< k \) neighbors in \(G_i \):
 - Pick any vertex \(n \) such that \(n^\circ < k \) and put it on the stack
 - Remove that vertex and all edges incident to it from \(G_i \)
 - This will lower the degree of \(n \)’s neighbors
2. If \(G_i \) is non-empty (all vertices have \(k \) or more neighbors) then:
 - Pick a vertex \(n \) (using some heuristic) and spill the live range associated with \(n \)
 - Remove vertex \(n \) from \(G_i \), along with all edges incident to it and put it on the stack
 - If this causes some vertex in \(G_i \) to have fewer than \(k \) neighbors, then go to step 1; otherwise, repeat step 2
3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor

Chaitin’s Algorithm in Practice

3 Registers

Stack

1 2 3

4 Registers

Stack

1 2 3 4

Chaitin’s Algorithm in Practice

3 Registers

Stack

2 1

4 Registers

Stack

4 2 1

5 Registers
Improvements

Optimistic Coloring (Briggs, Cooper, Kennedy, and Torczon)
- Instead of stopping at the end when all vertices have at least k neighbors, put each on the stack according to some priority
 - When you pop them off they may still color!

2 Registers:

2-colorable

Chaitin-Briggs Algorithm

1. While \(\exists \) vertices with \(< k \) neighbors in \(G_I \):
 - Pick any vertex \(n \) such that \(n \leq k \) and put it on the stack
 - Remove that vertex and all edges incident to it from \(G_I \)
2. If \(G_I \) is non-empty (all vertices have \(k \) or more neighbors) then:
 - Pick a vertex \(n \) (using some heuristic condition), push \(n \) on the stack and remove \(n \) from \(G_I \) along with all edges incident to it
 - If this causes some vertex in \(G_I \) to have fewer than \(k \) neighbors, then go to step 1; otherwise, repeat step 2
3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor
 - If some vertex cannot be colored, then pick an uncolored vertex to spill, spill it, and restart at step 1

Chaitin Allocator

1. Build SSA, build live ranges, rename
2. Build the interference graph
3. Fold unneeded copies
4. \(LR_x \rightarrow LR_y \) and \(< LR_x,LR_y> \) \(\notin GI \) \(\Rightarrow \) combine \(LR_x \) & \(LR_y \)
5. Remove nodes from the graph
6. While stack is non-empty
 - pop \(n \), insert \(n \) into \(GI \), & try to color it
7. Estimate cost for spilling each live range
8. While \(N \) is non-empty
 - if \(\exists \) \(n \) with \(n \leq k \) then
 - push \(n \) onto stack else pick \(n \) to spill
 - push \(n \) onto stack
 - remove \(n \) from \(G_I \)
9. Spill uncolored definitions & uses

Chaitin-Briggs Allocator

1. Build SSA, build live ranges, rename
2. Build the interference graph
3. Fold unneeded copies
4. \(LR_x \rightarrow LR_y \) and \(< LR_x,LR_y> \) \(\notin GI \) \(\Rightarrow \) combine \(LR_x \) & \(LR_y \)
5. Remove nodes from the graph
6. While stack is non-empty
 - pop \(n \), insert \(n \) into \(GI \), & try to color it
7. Estimate cost for spilling each live range
8. While \(N \) is non-empty
 - if \(\exists \) \(n \) with \(n \leq k \) then
 - push \(n \) onto stack else pick \(n \) to spill
 - push \(n \) onto stack
 - remove \(n \) from \(G_I \)
9. Spill uncolored definitions & uses
Picking a spill candidate

- Critical heuristic – spilling can be expensive
- Goal: minimize the performance impact
 - Spilled variable must be stored at each def, loaded at each use
 - Higher degree nodes interfere with more variables
 - Chaitin: minimize \(\text{spill.cost} + \text{current degree} \)
- Many subtle variations
 - Live range splitting
 - More sophisticated spill cost estimation
 - Impact on rest of the coloring problem
 - Interaction with other optimizations – scheduling, copy propagation

A different approach

- What if graph coloring approach is still too expensive?
 - Example: in a just-in-time compiler
 - Compilation time is critical
 - Compiler needs to be simple and fast
 - Interference graph has worst-case quadratic size
- Alternative: Linear scan register allocation (Poletto, 1999)
 - Make one pass over the list of variables
 - Spill variables with longest lifetimes – those that would tie up a register for the longest time

Linear scan

- First: Compute live intervals
 - Linearize the IR – usually just a list of tuples/instructions
 - A live interval for a variable is a range \([i, j]\)
 - The variable is not live before instruction \(i\)
 - The variable is not live after instruction \(j\)
- Idea: overlapping live intervals imply interference
 - Given \(R\) registers and \(N\) overlapping intervals
 - \(R\) intervals allocated to registers
 - \(N-R\) intervals spilled to the stack
 - What does this imply about the linearization?

Algorithm

- Sort live intervals
 - In order of increasing start points
 - Quickly find the next new interval
- Maintain a sorted list of active intervals
 - In order of increasing end points
 - Quickly find expired intervals
- At each step, update active as follows
 - Add the next interval from the sorted list
 - Remove any expired intervals (those whose end points are earlier than the start point of the new interval)

Example

- Variables
- Algorithm
 - Extra restriction: Never allow active to have more than \(R\) elements
 - Spill scenario: active has \(R\) elements, new interval doesn’t cause any existing intervals to expire
 - Heuristic: Spill the interval that ends last (furthest away from the current position)
 - Has optimal behavior for straight-line code
 - Appears to work well even in linearized code

Example (2 registers)

- Step 1: active = \([a]\)
- Step 2: active = \([a, b]\)
- Step 3: active = \([a, b, c]\) → spill \(c\) → active = \([a, b]\)
- Step 4: \(a\) and \(b\) expire, active = \([d]\)
- Step 5: active = \([d, e]\)
Linear scan

- Register allocation
 - Each new interval added to active gets the next register
 - Registers freed as intervals are removed

- Resulting code: within 10% of graph coloring

- Compilation time: 2 – 3 times faster than graph coloring

- Architectural considerations
 - How sensitive is architecture to register allocation?
 - Many registers (Alpha, PowerPC): use linear scan
 - Few registers (x86): use graph coloring

Next time

- Only two more classes

- Possible topics
 - More on optimizations
 - Memory management
 - Linking and loading
 - Instruction scheduling
 - Compiling other (non-imperative languages)