Prelude
- What happened on August 14, 2003?
 - 2003 North American Blackout
 - 50 million people without power
- How did it happen?
 - Cascading power line failure
 - More power on a line causes it to heat up
 - Heating causes the metal conductor to expand
 - The power line sags, hits a tree, fails
- Why didn’t power co.’s respond more quickly?
 - No alarm sounded on early failures
 - Software bug!

Big picture
- Front end responsibilities
 - Check that the input program is legal
 - Check syntax and semantics
 - Emit meaningful error messages
 - Build IR of the code for the rest of the compiler

Front end design
- Two part design
 - Scanner
 - Reads in characters
 - Classifies sequences into words or tokens
 - Parser
 - Checks sequence of tokens against grammar
 - Creates a representation of the program (AST)

Scanner and parser
- Why separate scanner and parser?
 - Simplifies the implementation
 - Parsing is fundamentally harder
 - Word classification is easier – make it fast
 - Speed up parsing by working with tokens

Lexical analysis
- The input is just a sequence of characters.
 - Example:
    ```
    if (i == j)
    z = 0;
    else
    z = 1;
    ```
- More accurately, the input is:
  ```
  \tif (i \eq j)\\n  \txt z = 0;\\n  \else\\n  \txt z = 1;
  ```
- Goal: Partition input string into substrings
 - And classify them according to their role
Scanner

- Responsibilities
 - Read in characters
 - Produce a stream of tokens


```
key.id <op><id> op=<op><id> ... 
```

- Token has a type and a value

Hand-coded scanner

- Explicit test for each token
 - Read in a character at a time
 - Example: recognizing keyword "if"

```c
if (c != 'i')
  error();
else {
  c = readchar();
  if (c != 'f')
    error();
  else
    return IF_TOKEN;
}
```

- What about other tokens?
 - Example: "if" is a keyword, "if0" is an identifier

```c
if (c != 'i') {
  other tokens...}
else {
  c = readchar();
  if (c != 'f') {
    other tokens...}
  else {
    c = readchar();
    if (c not alpha-numeric) {
      putback(c);
      return IF_TOKEN;
    }
    while (c alpha-numeric) {
      build identifier
    }
```

Hand-coded scanner

- Problems:
 - Many different kinds of tokens
 - Fixed strings (keywords)
 - Special character sequences (operators)
 - Tokens defined by rules (identifiers, numbers)
 - Tokens overlap
 - "if" and "if0" example
 - "=" and "=="
 - Coding this by hand is too painful!
 - Getting it right is a serious concern

Outline

Problems we need to solve:
- Scanner specification language
 - How to describe parts of the input language
- The scanning mechanism
 - How to break input string into tokens
- Scanner generator
 - How to translate from (1) to (2)
- Ambiguities
 - The need for lookahead
Problem 1: Describing the scanner

- We want a high-level language \(D \) that
 - Describes lexical components, and
 - Maps them to tokens (determines type)
- But doesn’t describe the scanner algorithm itself!

- Part 3 is important
 - Allows focusing on what, not on how
 - Therefore, \(D \) is sometimes called a specification language, not a programming language
- Part 2 is easy, so let’s focus on Parts 1 and 3

Token examples

- Keyword
 - Exact sequence of characters
- Identifier
 - Sequence of letters or numbers, starting with a letter
- Number
 - Sequence of digits
- Whitespace
 - Sequence of space, tab, carriage-return

Specifying tokens

- Many ways to specify them
- Regular expressions are the most popular
 - REs are a way to specify sets of strings
 - Examples:
 - \('a' \) – denotes the set \{“a”\}
 - \('a'|'b' \) – denotes the set \{“a”, “b”\}
 - \('a''b' \) – denotes the set \{“ab”\}
 - \('a''b'* \) – denotes the set \{“a”, “ab”, “abb”, “abbb”, … \}
- Why regular expressions?
 - Easy to understand
 - Strong underlying theory
 - Very efficient implementation

Formal languages

- **Def.** a language is a set of strings
 - Alphabet \(\Sigma \) : the character set
 - Language is a set of strings over alphabet
 - Each regular expression denotes a language
 - If \(A \) is a regular expression, then \(L(A) \) is the set of strings denoted by \(A \)
 - Examples: given \(\Sigma = \{ 'a', 'b' \} \)
 - \(A = 'a' \) \(L(A) = \{ "a" \} \)
 - \(A = 'a'|'b' \) \(L(A) = \{ "a", "b" \} \)
 - \(A = 'a''b' \) \(L(A) = \{ "ab" \} \)
 - \(A = 'a''b'* \) \(L(A) = \{ "a", "ab", "abb", "abbb", … \} \)

Building REs

- Regular expressions over \(\Sigma \)
- Atomic REs
 - \(\varepsilon \) is an RE denoting empty set
 - If \(a \) is in \(\Sigma \), then \(a \) is an RE for \(\{a\} \)
- Compound REs
 - If \(x \) and \(y \) are REs then:
 - \(xy \) is an RE for \(L(x)L(y) \)
 - \(x|y \) is an RE for \(L(x) \cup L(y) \)
 - \(x^* \) is an RE for \(L(x)^* \)

Using regular expressions

- Concatenation: build up words
- Kleene closure: repetition
- Alternation: collect sets of words
- Back to our language problem…
Keywords
- Exact strings: "if" or "for" or "while"
 - Singleton sets
 - Built up using concatenation
 \[L('i' 'f') = \{ "if" \} \]
 \[L('f' 'o' 'r') = \{ "for" \} \]
 - We can abbreviate 'i' 'f' as 'if'
 'if' | 'for' | 'else' | ...

Integers
- Integer: non-empty sequence of digits
 \[\text{digit} = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' \]
 \[\text{integer} = \text{digit} \text{ digit}^* \]
 - Another abbreviation:
 \[A+ \cup AA^* \]

Identifiers
- Identifier: string of letters or numbers starting with a letter
 \[\text{letter} = 'a' | 'b' | ... | 'z' | 'A' | ... | 'Z' \]
 \[\text{identifier} = \text{letter} (\text{letter} | \text{digit})^* \]
 - Is this the same as (letter|digit)+?
 - How about (letter*|digit*)?

Other examples
- Numbers
 \[\text{int} = ('+' | '-' | \epsilon) \text{ digit}^+ \]
 \[\text{decimal} = \text{int} \ \text{ digit}^+ \]
 \[\text{real} = (\text{int} | \text{decimal}) ('E' ('+' | '-' | \epsilon) \text{ digit}^+) \]
 - What about IP addresses?
 \[\text{ip} = \text{digit}^+ . \text{ digit}^+ . \text{ digit}^+ . \text{ digit}^+ \]
 - Is this right?
 - Can we be more precise?

Outline
Problems we need to solve:
- Scanner specification language
 - How to describe parts of the input language
- The scanning mechanism
 - How to break input string into tokens
- Scanner generator
 - How to translate from (1) to (2)
- Ambiguities
 - The need for lookahead

Overview of scanning
- How do we recognize strings in the language?
 Every RE has an equivalent finite state automaton that recognizes its language
 (Actually, more than one)
 - Idea: scanner simulates the automaton
 - Read characters
 - Transition automaton
 - Return a token if automaton accepts the string
Finite Automata

- Regular expressions = specification
- Finite automata = implementation

- A finite automaton consists of
 - An input alphabet \(\Sigma \)
 - A set of states \(S \)
 - A start state \(q_0 \)
 - A set of accepting states \(F \subseteq S \)
 - A set of transitions \(s \rightarrow a \rightarrow s' \)

Finite Automata

- Transition
 - Is read
 - In state \(s_1 \) on input “a” go to state \(s_2 \)
 - If end of input
 - If in accepting state => accept
 - Otherwise => reject

Finite Automata State Graphs

- A state
 - The start state
 - An accepting state
 - A transition

A Simple Example

- A finite automaton that accepts only “1”

Another Simple Example

- FA accepts any number of 1’s followed by a single 0
 - Alphabet: \{0,1\}

- Check that “1110” is accepted but “110…” is not

And Another Example

- Alphabet \{0,1\}
- What language does this recognize?
“Realistic” example

• Consider the problem of recognizing machine register names

\[
\text{Register} \rightarrow r \ (0|1|2| \ldots |9) \ (0|1|2| \ldots |9)^*
\]

Implementation

• Finite automaton
 • States, characters
 • State transition δ uniquely determines next state
 • Automaton is deterministic

• Next character function
 • Reads next character into buffer
 • (May compute character class by fast table lookup)

• Transitions from state to state
 • Implement δ as a table
 • Access table using current state and character

Example

Turning the recognizer into code

\[
\delta \\
| r | 0,1,2,3,4,5,6,7,8,9 | \text{All others} \\
| s_0 | s_1 | s_2 | s_3 | s_4 | s_5 | s_6 | s_7 | s_8 | s_9 \\
| s_1 | s_2 | s_3 | s_4 | s_5 | s_6 | s_7 | s_8 | s_9 | s_0 \\
| s_2 | s_3 | s_4 | s_5 | s_6 | s_7 | s_8 | s_9 | s_0 | s_1 \\
| s_3 | s_4 | s_5 | s_6 | s_7 | s_8 | s_9 | s_0 | s_1 | s_2 \\

Char ← next character
State ← s_0
while (Char ≠ EOF)
 State ← δ(State, Char)
 perform specified action
 Char ← next character
if (State is a final state)
 then report success
else report failure

Skeleton recognizer

Example

Adding actions

\[
\delta \\
| r | 0,1,2,3,4,5,6,7,8,9 | \text{All others} \\
| s_0 | s_1 | s_2 | s_3 | s_4 | s_5 | s_6 | s_7 | s_8 | s_9 \\
| s_1 | s_2 | s_3 | s_4 | s_5 | s_6 | s_7 | s_8 | s_9 | s_0 \\
| s_2 | s_3 | s_4 | s_5 | s_6 | s_7 | s_8 | s_9 | s_0 | s_1 \\
| s_3 | s_4 | s_5 | s_6 | s_7 | s_8 | s_9 | s_0 | s_1 | s_2 \\
| s_4 | s_5 | s_6 | s_7 | s_8 | s_9 | s_0 | s_1 | s_2 | s_3 \\
| s_5 | s_6 | s_7 | s_8 | s_9 | s_0 | s_1 | s_2 | s_3 | s_4 \\

Char ← next character
State ← s_0
while (Char ≠ EOF)
 State ← δ(State, Char)
 perform specified action
 Char ← next character
if (State is a final state)
 then report success
else report failure

Skeleton recognizer

What if we need a tighter specification?

• Digit Digit* allows arbitrary numbers
 • Accepts 00000
 • Accepts 99999
 • What if we want to limit it to 0 through 31?

• Write a tighter regular expression
 • Register → r (0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31)
 • Register → r (0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31)

• Produces a more complex DFA
 • Has more states
 • Same cost per transition
 • Same basic implementation

Tighter register specification

• The DFA for

\[
\text{Register} \rightarrow r \ (0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31)
\]
Tight register specification

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>0</th>
<th>0.1</th>
<th>2</th>
<th>3</th>
<th>4-9</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0)</td>
<td>(s_1)</td>
<td>(s_2)</td>
<td>(s_3)</td>
<td>(s_4)</td>
<td>(s_5)</td>
<td>(s_6)</td>
</tr>
<tr>
<td>(s_1)</td>
<td>(s_2)</td>
<td>(s_3)</td>
<td>(s_4)</td>
<td>(s_5)</td>
<td>(s_6)</td>
<td>(s_6)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(s_3)</td>
<td>(s_4)</td>
<td>(s_5)</td>
<td>(s_6)</td>
<td>(s_6)</td>
<td>(s_6)</td>
</tr>
<tr>
<td>(s_3)</td>
<td>(s_4)</td>
<td>(s_5)</td>
<td>(s_6)</td>
<td>(s_6)</td>
<td>(s_6)</td>
<td>(s_6)</td>
</tr>
<tr>
<td>(s_4)</td>
<td>(s_5)</td>
<td>(s_6)</td>
</tr>
<tr>
<td>(s_5)</td>
<td>(s_6)</td>
</tr>
<tr>
<td>(s_6)</td>
</tr>
</tbody>
</table>

Table encoding RE for the tighter register specification

REs and DFAs

- Key idea:
 - Every regular expression has an equivalent DFA that accepts only strings in the language

- Problem:
 - How do we construct the DFA for an arbitrary regular expression?
 - Not always easy

Example

- What is the RE for \(a(a|\varepsilon)b \)?
- Need \(\varepsilon \) moves
- Transition \(A \) to \(B \) without consuming input!

Another example

- Remember this DFA?
- We can simplify it as follows:

A different kind of automaton

- Accepts the same language
 - Actually, it’s easier to understand!

- What’s different about it?
 - Two different transitions on ‘0’
 - This is a non-deterministic finite automaton

DFAs and NFAs

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No \(\varepsilon \)-moves

- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have \(\varepsilon \)-moves
Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input

- NFAs can choose
 - Whether to make \(\epsilon \)-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

- An NFA can get into multiple states

Non-deterministic finite automata

- An NFA accepts a string \(x \) iff \(\exists \) a path through the transition graph from \(s_0 \) to a final state such that the edge labels spell \(x \)
 - (Transitions on \(\epsilon \) consume no input)

- To "run" the NFA, start in \(s_0 \) and \textit{guess} the right transition at each step
 - Always guess correctly
 - If some sequence of correct guesses accepts \(x \) then accept

Why do we care about NFAs?

- Simpler, smaller than DFAs

- More importantly:
 - Need them to support all RE capabilities
 - Systematic conversion from REs to NFAs
 - Need \(\epsilon \) transitions to connect RE parts

- Problem: how to implement NFAs?
 - How do we guess the right transition?
 - Multiple states: what about memory usage?

Relationship between NFAs and DFAs

- DFA is a special case of an NFA
 - DFA has no \(\epsilon \)-transitions
 - DFA’s transition function is single-valued
 - Same rules will work

- DFA can be simulated with an NFA (obvious)

- NFA can be simulated with a DFA (less obvious)
 - Simulate sets of possible states
 - Possible exponential blowup in the state space
 - Still, one state per character in the input stream

Automatic scanner construction

- To convert a specification into code:
 1. Write down the RE for the input language
 2. Build a big NFA
 3. Build the DFA that simulates the NFA
 4. Systematically shrink the DFA
 5. Turn it into code

- Scanner generators
 - Lex and Flex work along these lines
 - Algorithms are well-known and well-understood
 - Key issue is interface to parser (define all parts of speech)
 - You could build one in a weekend!
Automatic scanner construction

RE → NFA (Thompson’s construction)
- Build an NFA for each term
- Combine them with ϵ-moves

NFA → DFA (subset construction)
- Build the simulation

DFA → Minimal DFA
- Hopcroft’s algorithm

DFA → RE (Not part of the scanner construction)
- All pairs, all paths problem
- Take the union of all paths from s_0 to an accepting state

Next time...

- RE -to- NFA -to- DFA -to- scanner
- Algorithms (yikes!)
- Programming assignment 1