COMP 181

Lecture 7
More parsing

September 26, 2006

Prelude
- What is this structure?
 Ryugyong Hotel, North Korea
- Facts
 - 105 floors, 1083 ft
 - 3000 rooms, 3.9 million sq. ft.
 - Started in 1987, halted 1992
 - DPRK: it doesn’t exist

Where are we
- Last time: Top-down parsing
 - Non-termination – eliminating left recursion
 - Using FIRST and FOLLOW sets
 - The LL(1) property
 - Recursive descent parsers
- Today:
 - Building FIRST and FOLLOW sets
 - Generating top-down parsers
 - Start bottom-up parsing

Top-down parsing
- Build parse tree top down

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A → αζβ</td>
</tr>
</tbody>
</table>

Is “CD”? Consider all possible strings derivable from “CD”.
What is the set of tokens that can appear at start?

| t5 ∈ FIRST(C D) | t5 ∈ FOLLOW(B) |

Left factoring
- Problem
 - What if my grammar is not LL(1)?
 - May be able to fix it, with transformations
- Example:

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A → αζβ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A → αζβ</td>
</tr>
</tbody>
</table>
Left factoring

- Graphically

```
# Production rule
1  A → a α1
2  a → A α2
3  α → A α3
```

Expression example

```
# Production rule
1  factor → identifier
2  ( identifier ) expr
3  identifier ( expr )
```

After left factoring:

```
# Production rule
1  factor → identifier post
2  post → ( expr )
3  ( expr )
```

In this form, it has LL(1) property

Left factoring

- Graphically

```
factor

---
No basis for choice

---
Next word determines choice
```

Question

Using left factoring and left recursion elimination, can we turn an arbitrary CFG to a form where it meets the LL(1) condition?

Answer

Given a CFG that does not meet LL(1) condition, it is undecidable whether or not an LL(1) grammar exists.

Example

\[
\{a^n b^n | n \geq 1\} \cup \{a^n b^{2n} | n \geq 1\}
\]

has no LL(1) grammar

Limits of LL(1)

- No LL(1) grammar for this language:

\[
\{a^n b^n | n \geq 1\} \cup \{a^n b^{2n} | n \geq 1\}
\] has no LL(1) grammar

```
# Production rule
1  G → a A b
2  a → A b
3  B → a A
4  A → G
5  b
6  a
```

Problem: need an unbounded number of a characters before you can determine whether you are in the A group or the B group

Recursive descent parsing

- Massage grammar to have LL(1) condition
 - Remove left recursion
 - Left factor, where possible
 - Build FIRST (and FOLLOW) sets
 - Define a procedure for each non-terminal
 - Implement a case for each right-hand side
 - Call procedures as needed for non-terminals
 - Add extra code, as needed
 - Can we automate this process?
FIRST and FOLLOW sets

FIRST(α)
For some $α \in (T \cup NT)^*$, define $FIRST(α)$ as the set of tokens that appear as the first symbol in some string that derives from $α$.
That is, $x \in FIRST(α)$ iff $α \Rightarrow x \gamma$, for some $γ$.

FOLLOW(A)
For some $A \in NT$, define $FOLLOW(A)$ as the set of symbols that can occur immediately after A in a valid sentence.

$FOLLOW(G) = \{EOF\}$, where G is the start symbol.

Computing FIRST sets

Idea:
Use FIRST sets of the right side of production

Cases:
- $FIRST(A → B) = FIRST(B_1)$
- What does $FIRST(B_1)$ mean?
- Union of $FIRST(B_1 \rightarrow γ)$ for all $γ$
- What if $ε$ in $FIRST(B_1)$?
 - $FIRST(A → B) = \{ε\}$
 - Why +=?
 - leave $\{ε\}$ for later

Algorithm

- For one production: $p = A → β$
 - if ($β$ is a terminal t)
 - $FIRST(p) = \{t\}$
 - else if ($β = ε$)
 - $FIRST(p) = \{ε\}$
 - else
 - Given $β = B_1 B_2 B_3 ... B_k$
 - $i = 0$
 - do {
 - $i = i + 1$
 - $FIRST(p) = FIRST(p) + \{ε\}$
 } while ($ε$ in $FIRST(B_i)$ & $i < k$)
 - if ($ε$ in $FIRST(B_i)$ & $i = k$) $FIRST(p) += \{ε\}$

Solution

- Start with $FIRST(B)$ empty
- Compute $FIRST(A)$ using empty $FIRST(B)$
- Now go back and compute $FIRST(B)$
- What if it’s no longer empty?
- Then we recompute $FIRST(A)$
- What if new $FIRST(A)$ is different from old $FIRST(A)$?
- Then we recompute $FIRST(B)$ again...

When do we stop?
- When no more changes occur – called convergence
- $FIRST(A)$ and $FIRST(B)$ both satisfy equations
 - This is another fixpoint algorithm

Using fixpoints:

- $forall p \ FIRST(p) = {}$
- while ($FIRST sets are changing$)
 - pick a random p
 - compute $FIRST(p)$
- Can we be smarter?
 - Yes, visit in special order
 - Reverse post-order depth first search
 - Visiting all children (all right-hand sides) before visiting the left-hand side, whenever possible
Computing FOLLOW Sets

Example

FOLLOW

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>goal -> expr</td>
</tr>
<tr>
<td>2</td>
<td>expr -> term expr2</td>
</tr>
<tr>
<td>3</td>
<td>expr2 -> + term expr2</td>
</tr>
<tr>
<td>4</td>
<td>+ term expr2</td>
</tr>
<tr>
<td>5</td>
<td>e</td>
</tr>
<tr>
<td>6</td>
<td>term -> factor term2</td>
</tr>
<tr>
<td>7</td>
<td>term2 -> * factor term2</td>
</tr>
<tr>
<td>8</td>
<td>/ factor term2</td>
</tr>
<tr>
<td>9</td>
<td>e</td>
</tr>
<tr>
<td>10</td>
<td>factor -> number</td>
</tr>
<tr>
<td>11</td>
<td>identifier</td>
</tr>
</tbody>
</table>

Computing FOLLOW sets

- Idea: Push FOLLOW sets down, use FIRST where needed
- Cases: \(A \rightarrow B_1 B_2 B_3 B_4 \ldots B_k\)
 - What is \(\text{FOLLOW}(B_i)\)?
 - \(\text{FOLLOW}(B_i) = \text{FIRST}(B_{i+1})\)
 - What about \(\text{FOLLOW}(B_{k-1})\)?
 - \(\text{FOLLOW}(B_{k-1}) = \text{FOLLOW}(A)\)
 - What if \(e \in \text{FOLLOW}(B_i)\)?
 - \(\Rightarrow \text{FOLLOW}(B_{i-1}) \cup \text{FOLLOW}(A)\) extends to \(k-2\), etc.

Generating a top-down parser

- Two pieces:
 - Select the right RHS
 - Satisfy each part
- First piece:
 - \(\text{FIRST}()\) for each rule
 - Mapping:
 - \(NT \rightarrow \Sigma \rightarrow \text{rule#}\)
 - Look familiar?

\(\text{FIRST}(\{\}) = \{ +, -, EOF \}\)
\(\text{FIRST}(\{+, -, \}) = \{+, -, EOF\}\)
\(\text{FIRST}(\{\}) = \{+, -, EOF\}\)
\(\text{FIRST}(\{\}) = \{+, -, EOF\}\)
Generating a top-down parser

- Second piece
 - Keep track of progress
 - Like a depth-first search
 - Use a stack

- Idea:
 - Push Goal on stack
 - Pop stack:
 - Match terminal symbol, or
 - Apply NT mapping, push RHS on stack

Table-driven approach

- Encode mapping in a table
- Row for each non-terminal
- Column for each terminal symbol
- Table[NT, symbol] = rule#
 if symbol ∈ FIRST+(NT -> rhs(#))

 Parsing

- Where are we?
 - Top-down parsers
 - LL(1) property
 - Automatic, table-driven parsers
- Next: bottom-up parsers
- Why?
 - More powerful
 - Widely used – yacc, bison, JavaCUP

Next time

- Bottom up parsing

Left factoring

- Algorithm:
 \[A \in NT, \]
 find the longest prefix \(\alpha \) that occurs in two
 or more right-hand sides of \(A \)
 if \(\alpha \neq \varepsilon \) then replace all of the \(A \) productions,
 \[A \rightarrow a \beta_1 | a \beta_2 | \ldots | a \beta_n | \gamma, \]
 with
 \[A \rightarrow \alpha Z | \gamma, \]
 \[Z \rightarrow \beta_1 | \beta_2 | \ldots | \beta_n, \]
 where \(Z \) is a new element of NT
 Repeat until no common prefixes remain

Code

- push the start symbol, \(\sigma \), onto Stack
- top ← top of Stack
- loop forever
 - if top = EOF and token = EOF then break & report success
 - if top is a terminal then
 - if top matches token then
 pop Stack // recognized top
 token ← next_token()
 - else // top is a non-terminal
 if TABLE[top, token] is A
 pop Stack // get rid of A
 push Bk, Bk-1, ..., B1 // in that order
 else // top is a non-terminal
 if TABLE[top, token] is A = B1B2...Bk
 push Bk, Bk-1, ..., B1 // in that order
 top ← top of Stack
 - Missing else’s for error conditions