Prelude

- What memory technology is this?
 - Magnetic core
- My computer has 2GB of RAM, what kind of memory is that?
 - DRAM – dynamic RAM
 - What’s nice about DRAM?
 - 1 transistor, 1 capacitor – very high density
 - What’s bad about DRAM?
 - Capacitors leak – must be refreshed
- What other technologies are there?
 - SRAM – static RAM
 - Flash – NAND and NOR gates
 - MRAM – magnetic RAM

Dimensions:
- Density
- Power
- Speed
- Degradation

Memory hierarchy

- What is the compiler’s role in the memory hierarchy?
 - Virtual memory?
 - Main memory?
 - Heap layout
 - Prefetching
 - Level-1 and level-2 cache?
 - Many locality optimizations
 - Loop transforms, tiling, strip mining
 - Registers
 - Compiler has direct control

Register allocation

- What are registers?
- Memory
 - Very close to the processor – very fast to access
 - On many architectures, required by ISA
 - RISC – all computations use registers
 - Pentium – many instructions register + memory
- Part of the memory hierarchy
 - Top: close to CPU, fast, small
 - Bottom: far from CPU, slow, large
Using registers
- Machine code: register names are explicit
 - Represent data dependences
 - Renaming may occur inside the processor
- Alpha ISA: 32 integer, 32 floating point registers
- Alpha 21264: 80 integer, 72 floating point registers
- Why have more physical registers than ISA?
- How important is register allocation?
 - Widely recognized as the most important “optimization” performed by the compiler
 - An order of magnitude compared to poor or no register allocation
 - Most other optimizations: at most ~10% to 20%

Register allocation
- What is the problem?
 - Register allocation
 - Decide which values will be kept in registers
 - Register assignment
 - Select specific registers for each use
 - Constraints
 - Primary: limited number of registers
 - Different kinds of registers — integer vs floating point
 - Special-purpose registers — SP
 - Instruction requirements — x86 mul must use eax, adx
 - Some values cannot go in registers

Register allocation
- What values can go in registers?
- First, what does it mean to “allocate a variable in a register”
 - Most cases: variable becomes a register
 - All uses and defs replaced with the register
 - It has no storage on the stack
- What is the implication of that decision?
 - The compiler must be able to see all accesses
 - For example:
    ```c
    int x;
    int * p = &x;
    (*p) = 7;
    foo(p);
    ```
 - Might be able to handle (*p) = 7 case

Example
- Primary problems to be solved:
 - Usually more variables than registers
 - Can’t use the same register for two variables that are live at the same time
- Key insight:
 - We can cast this as a graph coloring problem
 - Nodes = program variables
 - Edges = connect variables that are live at the same time
 - “Interference graph” or “conflict graph”
 - Colors represent registers

Key idea: if we can color the graph with K colors, then we can allocate the variables to K registers

Example
- Graph is 2-colorable
  ```c
  R2 = R1 + 2
  R2 = R2 * R2
  R2 = R2 + 1
  return R2*R1
  ```
<table>
<thead>
<tr>
<th>Code</th>
<th>Live sets</th>
<th>Live ranges</th>
<th>Interference graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>b = a + 2</td>
<td>(a,b)</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>c = b * b</td>
<td>(a,c)</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b = c + 1</td>
<td>(a,b)</td>
<td>return b*a</td>
<td></td>
</tr>
</tbody>
</table>

= Register 1 (R1)
= Register 2 (R2)
Scope

- Simple formulation:
 - Within a basic block – called **local**
 - Live ranges are linear – just look at how they overlap
 - At basic block boundaries:
 - Load into registers on entry
 - Store to memory on exit

- More sophisticated:
 - Across the control-flow graph – called **global**
 - Consider live ranges as “webs” of dependences
 - **Key**: use the same graph coloring algorithm

Example

```
def y
  def x
  use y
  use x
  use x
```

Example

```
def y
  def x
  use y
  use x
  use x
```

Example

```
def y
  def x
  use y
  use x
  use x
```

Example

```
def y
  def x
  use y
  use x
  use x
```

Example

```
def y
  def x
  use y
  use x
  use x
```

Example

```
def y
  def x
  use y
  use x
  use x
```
Graph coloring

The big questions:

- Can we efficiently find a K-coloring of the graph?
- Can we efficiently find the optimal coloring of the graph (i.e., using the least number of colors)?
- What do we do when there aren’t enough colors (registers) to color the graph?

Graph coloring

- The bad news: Graph coloring is NP-complete
- What does the optimal algorithm do?
 - Works on any graph
 - Tells us for certain if a graph is K-colorable
- Observations
 - We’ll never see the worst-case graph
 - We don’t necessarily need the perfect coloring
- Compute an approximation with heuristics
Spilling
- What if the graph is not K-colorable?
 - There aren’t enough registers to hold all variables
 - This happens a lot
- Pick a variable, spill it back to the stack
 - Value lives on the stack
 - We have to generate extra code to load and store it
- Need registers to hold value temporarily
 - Simple approach: keep a few registers around just for this purpose
 - Better approach:
 - Rewrite the code introducing a new temporary
 - Use the temporary to “load” and “store” the spilled variable
 - Rerun the liveness analysis and register allocation

Rewriting the code
- Example: \(\text{add } v1, v2 \)
- Suppose \(v2 \) is selected for spilling and assign to stack location \([SP+12]\)
- Add a new variable \(t23 \) just for this instruction:
 \[
 \begin{align*}
 \text{mov } & [SP+12], t23 \\
 \text{add } & v1, t23 \\
 \end{align*}
 \]
- Idea: \(t23 \) has a short live range and (hopefully) doesn’t interfere with other variables as much as \(v2 \)
- Rerun the whole algorithm

More spilling
- Problem:
 - This approach turns a single large live range into many small live ranges with many loads and stores
 - Can we do better?
- Live range splitting
 - Choose a point in the live range – insert a store followed by a load
 - Divides the live range into two (or more pieces)
 - Key: choose carefully to reduce the degree of nodes

Another improvement
- Register coalescing
 - We may be able to reduce the degree of vertices by merging live ranges that are connected only by a copy
 - Idea:
 - Find a register copy “\(tb = ta \)”
 - If \(t1 \) and \(t2 \) do not interfere, combine their live ranges
 - Example:
 \[
 \begin{align*}
 \text{add } t1, t2, ta \\
 \cdots \\
 \text{mov } & ta, tb \\
 \text{mov } & ta, tc \\
 \cdots \\
 \text{add } & tb, t3, t4 \\
 \text{add } & tc, t5, t6 \\
 \end{align*}
 \]

Graph coloring
- Assume you have \(K \) registers – looking for K-coloring
- Observation:
 - Any node with less than \(K \) neighbors \((\text{degree} < K)\) must be colorable
 - Why?
 - Pick the color not used by any neighbor
 - There must be one!
- This is the basis for Chaitin’s algorithm \((\text{Chaitin, 1981}) \)

Chaitin’s algorithm
- Idea:
 - Pick any vertex \(n \) with fewer than \(k \) neighbors
 - This is a k-colorable vertex
 - Remove that vertex from the interference graph
 - Also: remove incident edges
 - Key: this may result in some other nodes now having fewer than \(k \) neighbors
 - If we get stuck, spill the variable whose node has more that \(k \) neighbors, and continue
Chaitin’s Algorithm

1. While ∃ vertices with < k neighbors in G_k:
 - Pick any vertex n such that n° < k and put it on the stack
 - Remove that vertex and all edges incident to it from G_k
 - This will lower the degree of n’s neighbors

2. If G_k is non-empty (all vertices have k or more neighbors) then:
 - Pick a vertex n (using some heuristic) and spill the live range associated with n
 - Remove vertex n from G_k, along with all edges incident to it and put it on the stack
 - If this causes some vertex in G_k to have fewer than k neighbors, then go to step 1, otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor
Chaitin’s Algorithm in Practice

3 Registers

Colors:
1: 🔵
2: 🔷
3: 🔵

Stack

Chaitin’s Algorithm in Practice

3 Registers

Colors:
1: 🔵
2: 🔷
3: 🔵

Stack

Chaitin’s Algorithm in Practice

3 Registers

Colors:
1: 🔵
2: 🔷
3: 🔵

Stack

Chaitin’s Algorithm in Practice

3 Registers

Colors:
1: 🔵
2: 🔷
3: 🔵

Stack

Chaitin’s Algorithm in Practice

3 Registers

Colors:
1: 🔵
2: 🔷
3: 🔵

Stack

Improvements

Optimistic Coloring (Briggs, Cooper, Kennedy, and Torczon)
- Instead of stopping at the end when all vertices have at least k neighbors, put each on the stack according to some priority
- When you pop them off they may still color!

2 Registers:
Improvements

Optimistic Coloring (Briggs, Cooper, Kennedy, and Torczon)
- Instead of stopping at the end when all vertices have at least k neighbors, put each on the stack according to some priority
 - When you pop them off, they may still color!

2 Registers:

![Graph](image)

2-colorable

Chaitin-Briggs Algorithm

1. While \exists vertices with $< k$ neighbors in G_I
 - Pick any vertex n such that $n^\circ < k$ and put it on the stack
 - Remove that vertex and all edges incident to it from G_I

2. If G_I is non-empty (all vertices have k or more neighbors) then:
 - Pick a vertex n (using some heuristic condition), push n on the stack and remove n from G_I, along with all edges incident to it
 - If this causes some vertex in G_I to have fewer than k neighbors, then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor
 - If some vertex cannot be colored, then pick an uncolored vertex to spill, spill it, and restart at step 1

Chaitin Allocator

1. Build SSA, build live ranges, rename
2. Build the interference graph
3. Fold unneeded copies $LR_x \rightarrow LR_y$ and $< LR_x, LR_y> \notin GI$ ⇒ combine LR_x & LR_y
4. Estimate cost for spilling each live range
5. Remove nodes from the graph
6. While stack is non-empty, pop n, insert n into G_I, & try to color it
7. Spill uncolored definitions & uses

Picking a spill candidate

- Critical heuristic – spilling can be expensive
- Goal: minimize the performance impact
 - Spilled variable must be stored at each def, loaded at each use
 - Higher degree nodes interfere with more variables
 - Chaitin: minimize spill cost \(\div \) current degree
- Many subtle variations
 - Live range splitting
 - More sophisticated spill cost estimation
 - Impact on rest of the coloring problem
 - Interaction with other optimizations – scheduling, copy propagation
Allocation constraints

- How do we deal with architectural constraints?
 - Register types (floating point versus integer)
 - Reserved registers – the stack pointer
 - Instruction-level constraints
 - Instruction requirements – x86 mul must use eax, edx
- We can encode constraints in the graph
 - Precolored nodes (for required registers)
 - Additional nodes and edges for constraints
 - Example: explicit nodes for physical registers

A different approach

- What if graph coloring approach is still too expensive?
 - Example: in a just-in-time compiler
 - Compilation time is critical
 - Compiler needs to be simple and fast
 - Interference graph has worst-case quadratic size
- Alternative: Linear scan register allocation
 - Make one pass over the list of variables
 - Spill variables with longest lifetimes – those that would tie up a register for the longest time

Linear scan

- First: Compute live intervals
 - Linearize the IR – usually just a list of tuples/instructions
 - A live interval for a variable is a range \([i, j]\)
 - The variable is not live before instruction \(i\)
 - The variable is not live after instruction \(j\)
- Idea: overlapping live intervals imply interference
 - Given \(R\) registers and \(N\) overlapping intervals
 - \(R\) intervals allocated to registers
 - \(N-R\) intervals spilled to the stack
 - What does this imply about the linearization?
- Key: choosing the right intervals to spill

Algorithm

- Sort live intervals
 - In order of increasing start points
 - Quickly find the next new interval
 - Maintain a sorted list of active intervals
 - In order of increasing end points
 - Quickly find expired intervals
 - At each step, update active as follows
 - Add the next interval from the sorted list
 - Remove any expired intervals (those whose end points are earlier than the start point of the new interval)
- Extra restriction:
 - Never allow active to have more than \(R\) elements
- Spill scenario:
 - active has \(R\) elements, new interval doesn’t cause any existing intervals to expire
- Heuristic:
 - Spill the interval that ends last (furthest away from the current position)
 - Has optimal behavior for straight-line code
 - Appears to work well even in linearized code

Example (2 registers)

- Step 1: active = \(\{a\}\)
- Step 2: active = \(\{a, b\}\)
- Step 3: active = \(\{a, b, c\}\) spill c active = \(\{a, b\}\)
- Step 4: a and b expire, active = \(\{d\}\)
- Step 5: active = \(\{d, e\}\)
Linear scan
- Register allocation
 - Each new interval added to active gets the next register
 - Registers freed as intervals are removed
- Resulting code: within 10% of graph coloring
- Compilation time: 2 – 3 times faster than graph coloring
- Architectural considerations
 - How sensitive is architecture to register allocation?
 - Many registers (Alpha, PowerPC): use linear scan
 - Few registers (x86): use graph coloring

Static single assignment
- What is the effect of SSA form on liveness?
- What does SSA do?
 - Breaks a single variable into multiple instances
 - Instances represent distinct, non-overlapping uses
- Effect:
 - Breaks up live ranges – often improves register allocation

Next time
- More on optimization
- A new homework
- Hopefully, new programming assignment