Prelude

- What controversial list appeared this week in Atlantic Monthly?
 - 100 most influential Americans
- What profession is overwhelmingly represented?
 - Politicians – presidents, court justices
- What about scientists?
 - Thomas Edison (#9)
 - Eli Whitney (#27)
 - Albert Einstein (#32)
 - Jonas Salk (#34)
 - Robert Oppenheimer (#48)
 - James Watson (#68)
- What about computer scientists?
 - Does Bill Gates (#54) count?
 - Number 1?
 - Abraham Lincoln
 - (Then Washington and Jefferson)
 - Who’s missing?
 - J F K

Dataflow analysis

- Dataflow analysis
 - A common framework for such analysis
 - Computes information at each program point
 - Conservative: characterizes all possible program behaviors
- Methodology
 - Describe the information (e.g., live variable sets) using a structure called a lattice
 - Build a system of equations based on:
 - How each statement affects information
 - How information flows between basic blocks

Dataflow Analysis

- Dataflow analysis
 - Solving the system of equations
 - Iteratively computes maximal fixed point (MFP)
- Terminates because transfer functions are monotonic and lattice has finite height
- Other possible solutions: FP, MOP, IDEAL
 - FP is any fixed point
 - MOP is meet-over-all-paths
 - IDEAL is “perfect” information

Kinds of solutions

- All are safe solutions, but some are more precise:
 \[
 \text{FP} \subseteq \text{MFP} \subseteq \text{MOP} \subseteq \text{IDEAL}
 \]
- Bad news: MOP and IDEAL are intractable
 - But, MFP = MOP if transfer functions are distributive
- Compilers use dataflow analysis and MFP
Dataflow Analysis Instances

- Apply dataflow framework to several analysis problems:
 - Live variable analysis
 - Available expressions
 - Reaching definitions
 - Constant folding
- Discuss:
 - Implementation issues
 - Classification of dataflow analyses

Problem 1: Live Variables

- Compute live variables at each program point
- Live variable = variable whose value may be used later, in some execution of the program
- Dataflow information: sets of live variables
- Example: variables \(\{x,z\} \) may be live at program point \(p \)
- Is a backward analysis
- Let \(V \) = set of all variables in the program
- Lattice \((L, \subseteq) \), where:
 - \(L = 2^V \) (power set of \(V \)), i.e. set of all subsets of \(V \)
 - Partial order \(\subseteq \)
- \(S_1 \subseteq S_2 \) iff \(S_1 \supseteq S_2 \)

LV: The Lattice

- Consider set of variables \(V = \{x,y,z\} \)
- Smaller sets of live variables = more precise analysis
- All variables may be live = least precise
- Partial order: \(\subseteq \)
- Set \(V \) is finite implies lattice has finite height
- Meet operator: \(\cup \)
- (set union: out\(B \) is union of in\(B' \), for all \(B' \in \text{succ}(B) \))
- Top element: \(\emptyset \)

LV: Dataflow Equations

- Equations:
 \[
 \text{in}(B) = F_B(\text{out}(B)), \quad \text{for all } B \]
 \[
 \text{out}(B) = \bigcup \{ \text{in}(B') | B' \in \text{succ}(B) \}, \quad \text{for all } B \]
 \[
 \text{out}(B_e) = X_0
 \]
- Meaning of union meet operator:
 "A variable is live at the end of a basic block \(B \) if it is live at the beginning of one of its successor blocks"

LV: Transfer Functions

- Define transfer functions for instructions
- General form of transfer functions:
 \[
 F_I(X) = (X - \text{def}[I]) \cup \text{use}[I]
 \]
 where:
 - \(\text{def}[I] = \) set of variables defined (written) by \(I \)
 - \(\text{use}[I] = \) set of variables used (read) by \(I \)
- Meaning of transfer functions:
 "Variables live before instruction \(I \) include: 1) variables live after \(I \), not written by \(I \), and 2) variables used by \(I \)"

LV: Transfer Functions

- Define def/use for each type of instruction
- General form of transfer functions:
 \[
 F_I(X) = (X - \text{def}[I]) \cup \text{use}[I]
 \]
 where:
 - \(\text{def}[I] = \) set of variables defined (written) by \(I \)
 - \(\text{use}[I] = \) set of variables used (read) by \(I \)
- Meaning of transfer functions:
 "Variables live before instruction \(I \) include: 1) variables live after \(I \), not written by \(I \), and 2) variables used by \(I \)"
- Transfer functions \(F_I(X) = (X - \text{def}[I]) \cup \text{use}[I] \)
- For each \(F_I \), def[I] and use[I] are constants: they don't depend on input information \(X \)
LV: Transfer Functions

- Define def/use for each type of instruction
 - if I is \(x = y \) \(\text{OP} \) \(z \): \(\text{use}[I] = \{y, z\} \), \(\text{def}[I] = \{x\} \)
 - if I is \(x = \text{OP} \) \(y \): \(\text{use}[I] = \{y\} \), \(\text{def}[I] = \{x\} \)
 - if I is \(x = y \): \(\text{use}[I] = \{y\} \), \(\text{def}[I] = \{x\} \)
 - if I is \(x = \text{addr} \) \(y \): \(\text{use}[I] = \{} \), \(\text{def}[I] = \{x\} \)
 - if I is \(\text{if} (x) \): \(\text{use}[I] = \{x\} \), \(\text{def}[I] = \{} \)
 - if I is \(\text{return} \) \(x \): \(\text{use}[I] = \{x\} \), \(\text{def}[I] = \{} \)
 - if I is \(x = f(y_1, \ldots, y_n) \): \(\text{use}[I] = \{y_1, \ldots, y_n\} \), \(\text{def}[I] = \{x\} \)

- Transfer functions \(F_I(X) = (X - \text{def}[I]) \cup \text{use}[I] \)

- For each \(F_I \), \(\text{def}[I] \) and \(\text{use}[I] \) are constants: they don’t depend on input information \(X \)

LV: Monotonicity

- Are transfer functions \(F_I(X) = (X - \text{def}[I]) \cup \text{use}[I] \) monotonic?
 - Because \(\text{def}[I] \) is constant, \(X - \text{def}[I] \) is monotonic: \(X_1 \supseteq X_2 \) implies \(X_1 - \text{def}[I] \supseteq X_2 - \text{def}[I] \)
 - Because \(\text{use}[I] \) is constant, \(Y \cup \text{use}[I] \) is monotonic: \(Y_1 \supseteq Y_2 \) implies \(Y_1 \cup \text{use}[I] \supseteq Y_2 \cup \text{use}[I] \)

- Put pieces together: \(F_I(X) \) is monotonic
 - \(X_1 \supseteq X_2 \) implies \((X_1 - \text{def}[I]) \cup \text{use}[I] \supseteq (X_2 - \text{def}[I]) \cup \text{use}[I] \)

LV: Distributivity

- Are transfer functions \(F_I(X) = (X - \text{def}[I]) \cup \text{use}[I] \) distributive?
 - Since \(\text{def}[I] \) is constant: \(X - \text{def}[I] \) is distributive:
 \((X_1 \cup X_2) - \text{def}[I] = (X_1 - \text{def}[I]) \cup (X_2 - \text{def}[I]) \)
 because: \((a \cup b) - c = (a - c) \cup (b - c) \)
 - Since \(\text{use}[I] \) is constant: \(Y \cup \text{use}[I] \) is distributive:
 \((Y_1 \cup Y_2) \cup \text{use}[I] = (Y_1 \cup \text{use}[I]) \cup (Y_2 \cup \text{use}[I]) \)
 because: \((a \cup b) \cup c = (a \cup c) \cup (b \cup c) \)

- Put pieces together: \(F_I(X) \) is distributive
 - \(F_I(X_1 \cup X_2) = F_I(X_1) \cup F_I(X_2) \)

Live Variables: Summary

- Lattice: \((2^V, \supseteq)\): has finite height
 - Meet is set union, top is empty set
 - Is a backward dataflow analysis
 - Dataflow equations:
 \(\text{in}[B] = F_B(\text{out}[B]), \text{for all } B \)
 \(\text{out}[B] = \bigcup \{ \text{in}[B'] | B' \in \text{succ}(B) \}, \text{for all } B \)
 - Transfer functions: \(F_I(X) = (X - \text{def}[I]) \cup \text{use}[I] \)
 - are monotonic and distributive
 - Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution

Problem 2: Available Expressions

- Available expression = a previously evaluated expression that would have the same value if re-evaluated at the current point
- Dataflow information: sets of available expressions
- Example: \(\text{exprs} \{x+y, y-z\} \) are available at point \(p \)
- Let \(E \) = set of all available expressions in the program
- Lattice \((L, \subseteq) \), where:
 - \(L = 2^E \) (power set of \(E \), i.e. set of all subsets of \(E \))
 - Partial order \(\subseteq \) is set inclusion: \(\subseteq \)
 - \(S_1 \subseteq S_2 \iff S_1 \subseteq S_2 \)

AE: The Lattice

- Consider set of expressions = \{x*z, x+y, y-z\}
- Denote \(e = x*z, f = x+y, g = y-z \)
- Larger sets of available variables = more precise analysis
- No available expressions = least precise
 - Partial order: \(\subseteq \)
 - Set \(E \) is finite implies lattice has finite height
 - Meet operator: \(\cap \)
 - (set intersection)
 - Top element: \{e,f,g\}
 - (set of all expressions)
AE: Dataflow Equations

- Equations:
 \[\text{out}[I] = \mathcal{F}_B(\text{in}[I]), \text{ for all } B \]
 \[\text{in}[B] = \cap \{ \text{out}[B'] | B' \in \text{pred}(B) \}, \text{ for all } B \]
 \[\text{in}[B_0] = X_0 \]

- Meaning of intersection meet operator:
 "An expression is available at entry of block B if it is available at exit of all predecessor nodes"

AE: Transfer Functions

- Define transfer functions for instructions
- General form of transfer functions:
 \[F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \]
 where:
 \[\text{kill}[I] = \text{expressions "killed" by } I \]
 \[\text{gen}[I] = \text{new expressions "generated" by } I \]

- Note: this kind of transfer function is typical for many dataflow analyses!

- Meaning of transfer functions: "Expressions available after instruction I include: 1) expressions available before I, not killed by I, and 2) expressions generated by I"

Available Expressions

- Lattice: \((2E, \subseteq)\); has finite height
- Is a forward dataflow analysis
- Dataflow equations:
 \[\text{out}[I] = \mathcal{F}_B(\text{in}[I]), \text{ for all } B \]
 \[\text{in}[B] = \cap \{ \text{out}[B'] | B' \in \text{pred}(B) \}, \text{ for all } B \]
 \[\text{in}[B_0] = X_0 \]

- Transfer functions: \(F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I]\)

- are monotonic and distributive

- Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution

Problem 3: Reaching Definitions

- Compute reaching definitions for each program point
- \text{Reaching definition} = \text{definition of a variable whose assigned value may be observed at current program point in some execution of the program}

- Dataflow information: sets of reaching definitions

- Example: definitions \(\{d_2, d_7\}\) may reach program point \(p\)

- Is a forward analysis

- Let \(D = \text{set of all definitions (assignments) in the program}\)

- Lattice \((D, \subseteq)\), where:
 - \(L = 2^D\) (power set of D)
 - Partial order \(\subseteq\) is set inclusion: \(\subseteq\)

- \(S_1 \subseteq S_2 \iff S_1 \supseteq S_2\)
RD: The Lattice
- Consider set of expressions = \{d1, d2, d3\}
 where d1: x = y, d2: x=x+1, d3: z=y-x
- Smaller sets of reaching definitions = more precise analysis
- All definitions may reach current point = least precise
- Partial order: \(\supseteq \)
- Set D is finite implies lattice has finite height
- Meet operator: \(\cup \) (set union)
- Top element: \(\emptyset \) (empty set)

RD: Dataflow Equations
- Equations:
 \[
 \text{out}[B] = F_B(\text{in}[B]), \text{for all } B
 \]
 \[
 \text{in}[B] = \cup \{ \text{out}[B'] | B' \in \text{pred}(B) \}, \text{for all } B
 \]
 \[
 \text{in}[B_0] = X_0
 \]
- Meaning of intersection meet operator:
 “A definition reaches the entry of block B if it reaches the exit of at least one of its predecessor nodes”

RD: Transfer Functions
- Define transfer functions for instructions
- General form of transfer functions:
 \[
 F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I]
 \]
 where:
 \[
 \text{kill}[I] = \text{definitions "killed" by } I
 \]
 \[
 \text{gen}[I] = \text{definitions "generated" by } I
 \]
- Meaning of transfer functions: “Reaching definitions after instruction I include: 1) reaching definitions before I, not killed by I, and 2) reaching definitions generated by I”

RD: Transfer Functions
- Define kill/gen for each type of instruction
- If I is a definition d:
 \[
 \text{gen}[I] = \{d\}
 \]
 \[
 \text{kill}[I] = \{d' | d' defines x\}
 \]
- If I is not a definition:
 \[
 \text{gen}[I] = \emptyset
 \]
 \[
 \text{kill}[I] = \emptyset
 \]
- Transfer functions \(F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \)
- They are monotonic and distributive
 - For each \(F_I \), \text{kill}[I] and \text{gen}[I] are constants: they don’t depend on input information X

Reaching Definitions
- Lattice: \((2^D, \supseteq)\); has finite height
- Meet is set union, top element is \(\emptyset \)
- Is a forward dataflow analysis
- Dataflow equations:
 \[
 \text{out}[B] = F_B(\text{in}[B]), \text{for all } B
 \]
 \[
 \text{in}[B] = \cup \{ \text{out}[B'] | B' \in \text{pred}(B) \}, \text{for all } B
 \]
 \[
 \text{in}[B_0] = X_0
 \]
- Transfer functions:\(F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \)
 - are monotonic and distributive
- Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution

Implementation
- Lattices in these analyses = power sets
- Information in these analyses = subsets of a set
- How to implement subsets?
- Set implementation
 - Data structure with as many elements as the subset has
 - Usually list implementation
- Bitvectors:
 - Use a bit for each element in the overall set
 - Bit for element x is: 1 if x is in subset, 0 otherwise
 - Example: S = \{a,b,c\}, use 3 bits
 - Subset \(\{a,c\} \) is 101, subset \(\{b\} \) is 010, etc.
Implementation Tradeoffs

- **Pros and cons of bitvectors:**
 - Efficient implementation of set union/intersection:
 - Set union is bitwise “or” of bitvectors
 - Set intersection is bitwise “and” of bitvectors
 - **Drawback:** inefficient for subsets with few elements
- **Pros and cons of list implementation:**
 - Efficient for sparse representation
 - **Drawback:** inefficient for set union or intersection
- In general, bitvectors work well if the size of the (original) set is linear in the program size

Next time…

- Only three more lectures!
- **Topics:**
 - Memory management
 - Linking and loading
 - Compiling functional languages
 - More optimizations (loops)