Free-Me: A Static Analysisfor
Automatic Individual Object Reclamation

Samuel Z. Guyer
Tufts University
sguyer@cs.tufts.edu

Abstract

Garbage collection has proven benefits, including fewer argm
related errors and reduced programmer effort. Garbageatilh,
however, trades space for time. It reclaims memory only wibhen
is invoked: invoking it more frequently reclaims memory ajdy,
but incurs a significant cost; invoking it less frequentl{sfihem-
ory with dead objects. In contrast, explicit memory managem
provides prompt low cost reclamation, but at the expense®f p
grammer effort.

This work comes closer to the best of both worlds by adding
novel compiler and runtime support for compiler insertezbfr to
a garbage-collected system. The compiléee-meanalysis iden-
tifies when objects become unreachable and inserts calle¢o f
It combines a lightweight pointer analysis with livenestoima-
tion that detects when short-lived objects die. Our apgratiffers
from stack and region allocation in two crucial ways. Fiitsfrees
objects incrementally exactly when they become unreaehai
stead of based on program scope. Second, our system does not r
quire allocation-site lifetime homogeneity, and thus $rebjects
on some paths and not on others. It also handles commonratter
it can free objects in loops and objects created by factomouss.

We evaluate free() variations féree-listandbump-pointeral-
locators. Explicit freeing improves performance by prompe-
claiming objects and reducing collection load. Comparechaok-
sweep alone, free-me cuts total time by 22% on average ctotle
time by 50% to 70%, and allows programs to run in 17% less mem-
ory. This combination retains the software engineeringefienof
garbage collection while increasing space efficiency angrom
ing performance, and thus is especially appealing for ties-and
space constrained systems.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors—Compilers, Memory management (garbage
collection)

* This work is supported by NSF ITR CCR-0085792, NSF CCR-02918
NSF CCR-0311829, NSF EIA-0303609, DARPA F33615-03-C-4106
IBM, and Intel. Any opinions, findings and conclusions exgsed herein
are the authors’ and do not necessarily reflect those of thessps.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear ttiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'0O6 June 11-14, 2006, Ottawa, Ontario, Canada.
Copyright(© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

Kathryn S. McKinley
The University of Texas at Austin
mckinley@cs.utexas.edu

Daniel Frampton
AustealiNational University
danrepfien@anu.edu.au

General Terms Languages, Performance, Experimentation, Al-
gorithms

Keywords Adaptive, Generational, Compiler-Assisted, Liveness,
Pointer Analysis, Locality, Mark-Sweep, Copying

1. Introduction

This work seeks to combine the software engineering berwfits
automatic memory management (garbage collection) withotlie
cost incremental reclamation of explicit memory manageni@n
17, 29]. If programmers free objects immediately after rthast
use, they can minimize the program’s memory footprint. G@geb
collection instead minimizes programmer effort at the exggeof
increased memory requirements [23, 25, 33]. Garbage totkec
require extra memory, beyond what the application is usig,
cause they only periodically reclaim memory, allowing dedd
jects to accumulate. Collecting more frequently is expendiie to
the overhead of identifying dead objects. For example, giogp
collector traverses the roots (stacks, statics, regjsteopying all
the reachable objects, which can be costly. Invoking théectr
less frequently amortizes this cost, and gives objects i to
die, making each collection more productive. Garbage ctitie
thus makes a space-time tradeoff that increases the memwairy f
print to reduce collection costs [7, 23, 25, 26, 33, 38].

We present new runtime and compiler support to obtain thie bes
of both approaches. We add an explitée(object)operation to
the garbage collector and@e-mecompiler analysis that automat-
ically inserts a call to free() at the point an object dieed=me
analysis combines simple, flow-insensitive pointer analygth
flow-sensitive liveness information. An allocation sitexgaoduce
some objects that escape the method or loop, and free-médiltan s
free some of them. Since its scope is mostly local, it typydahds
very short-lived objects. Free-me includes an interpracadcom-
ponent that summarizes connectivity and identifeegtory meth-
ods! A factory method returns one newly allocated object and has
no other side effects.

The underlying collection discipline dictates the implerze
tion of free. We implement free for mark-sweep free-listd for
copying contiguoubump-pointerallocation. Our free-list imple-
mentation segregates by size [7, 8]. Free returns memorleto t
front of the appropriate free-list, as does explicit memmignage-
ment. For bump-pointer allocation, we explore a versiomes that
reclaims the object only when it is the last allocation. TN@ssion
is fairly restrictive because the compiler must perfectiyes (last-
in-first-out) frees. We also explore a more powerful vergibfree
that tracks one unreclaimed region closest to the bump emiifia

1Freeing long-lived objects would require a substantiallprenprecise
interprocedural pointer and liveness analysis.

subsequent free brings it to the top, free reclaims it as. Waihlly,
we show a version of free that simply reduces the requireg cop
reserve size by the number of free bytes.

Compared with region [12, 24, 32, 37] and stack [10, 13, 2D, 39
allocation, our approach differs in two key ways. First,ioegand
stack allocation require lifetimes to coincide with a paustar pro-
gram scope, whereas our approach frees objects exactly tivbgn
become unreachable. Second, region and stack allocatipiiree
specialized allocation sites, forcing them to decide the ¢d each
object at allocation time. In many systems, this limitatiequires
each allocation site to produce objects with the samenifetthar-
acteristics. Even if some objects become unreachableg thes
tems must wait until all objects become unreachable. Alghou
stack and region allocation reduce collector load and Haeeo-
tential to reduce the memory footprint, neither has dedidecon-
sistent improvements over generational collectors.

We implement these techniques in Jikes RVM and MMTK,

a high performance Java-in-Java virtual machine and memory

management toolkit [1, 2, 7, 8]. For mark-sweep, our resoits

1 public void parse(lnputStreamstream {
2 while (...) {

3 String i dName = streamreadToken();

4 Identifier id = synbol Tabl e. | ookup(i dNarne)
5 if (id==null) {

6 id = new Identifier(idNane);

7 synbol Tabl e. add(i dNane, id);

8
9
0
1

}
conput eOn(id);

(a) Only addsidName to the symbol Table once.

public void parse(lnputStreamstrean) {
while (...) {
String i dName = streamreadToken();
Identifier id = synbol Tabl e. | ookup(i dNane)
if (id==null) {
id = new ldentifier(idNane);
synbol Tabl e. add(i dNane, id);
}
9 el se /1 idNane no |onger used:
10 free(idNanme); // -> free it imediately

© NN ®wWN R

SPECjvm98, SPECjbb2000, and DaCapo [9, 35, 36] Java bench-1* conmputen(id);

marks show that free reclaims on average 32% of all objects: o
three benchmarks, it reclaims less than 10%, but it recl&idfs or
more of the objects on four benchmarks. These frees trandiat
rectly into total and garbage collection performance improents

in small and moderate sized heaps (up to a factor of 2), anddo n

harm in large heaps.

Our technique was unable to improve over a state-of-the ar

generational collector. Although free reclaims similambers of
objects as free in mark-sweep and these frees translatenizby
fewer nursery collections, the survival rate of each cdibecin-
creases. As the collection cost of the nursery is propaatitmthe
size of live objects, we see little reduction in overall eation cost.
We had hoped that by eliminating some short-lived objeamfr
the nursery we would increase the virtual size of the nurgary
ing other objects more time to die, but this effect was nablésin
our results. Furthermore, mutator time degraded in somesaéise
to the overhead of incrementaliynbumpingobjects. These results
combined with similar ones for stack allocation [10, 13, 29) in-
dicate that collecting short-lived objects seems bestdedt copy-
ing nursery.

Although generational collectors typically perform muoki-b
ter than whole-heap mark-sweep collectors [7], non-moeiitgc-
tors remain critical for certain applications. For examplabedded
systems use mark-sweep for space efficiency. Real-timeatots
are especially sensitive to garbage collection load [4}. these
systems, we recommend compiler-inserted frees which ield
stantial improvements in memory efficiency and performance

2. Motivating Example

Figure 1 shows an example that motivates the use of free-ale an
ysis instead of escape analysis. The code in Figure 1(a3jsred
by a method irjavac. In this method, stream.readToken() is a fac-
tory method that produces a single new object and has nositter
effects. The variabledNane points to this newly allocated object.
The code only adds idName to the symbol table if it is not ayea
there. Since programs tend to use symbols repeatedly, mary m
die than live. Since the surviving objects escape the metitdsi
not safe to stack allocate them. Free-me compiler analyticts
that stream.readToken() is a factory method and that thétires
object is only stored in the symbol table on the true brancthef
conditional statement. It determines that the object cafind®el on
the false branch, and it inserts a call to free(idName), asshn
Figure 1(b). We use this running example throughout the pape

13 }
(b) Compiler inserts free on else branch.

Figurel. Example of conditional free frojavac.

+ 3. Free-me Compiler Analysis

This section describes ofree-mecompiler phase which automati-
cally inserts calls td r ee() . For each allocation site, it computes
the set of program points where a newly allocated objectextisit

is no longer reachable. It consists of four parts.

1. A flow-insensitive pointer analysis builds a connecyiygtaph
for the objects in each method. Each node represents a local
variable, a global variable, or a new object (one for eaattal
tion site). Edges represent may points-to relationships.

2. A flow-sensitive liveness analysis sharpens the coniigcti
graph. Used alone, the flow-insensitive pointer analysis ca
only determinegf objects are reachable — for example, which
objects escape and which do not. We add liveness information
about variables and points-to edges so that we can determine
exactlywhenobjects are reachable.

3. A free-me instrumentation pass selects program poirdsran
serts calls to free(). Since the liveness analysis may iigent
numerous potential places to free() an object, our hearisti
chooses the subset that (a) frees an object as soon as ppssibl
and (b) inserts as few calls to free() as possible.

4. An offline interprocedural pass that summarizes the maygo
to effects of each method and identiffastory methods: meth-
ods that only return newly allocated objects. We perforrs thi
pass first.

We apply free-me compilation in two passes. The first pass per
forms only the pointer analysis to computeethod summariesf-
fline. We perform this first pass bottom-up on the call graph to
ensure that method summaries are available at all call. Sites
call graph is constructed on-the-fly as method calls are lemco
tered. The second pass adds the liveness information atrd-ins
ments methods with calls to free(). We perform the second pas
only onhot methods (Section 5).

The analysis uses the Jikes RVM compiler internal represen-
tation (IR). The IR is a control-flow graph of basic blocks,ext
each basic block contains a list of instructions. The irtdions
correspond to Java operations, suclyeifield, putfieldarray oper-
ations, and assignments. We perform our analysis when theitR

(entry)

(
4

0)
A

Em: o
A

Ny
[idNane = stream readToken() |

@,
[1d0 = synbol Tabl e. I ookup(i dName) |

(3)

(4)| idl = new Identifier(idNane) |
© |
[synbol Tabl e. put (i dName, idl) |
(6)
[[id2 = o(ido,id1) |
®)

Figure2. Control-flow graph for the example.

=

©)

SSA form [15], which provides flow sensitivity for local vables.
Figure 2 shows the IR for our example (Figure 1). Note that thi
control-flow graph includes edges between each instructibich
allows our algorithm to reason about liveness at a fine gaaityl

3.1 Pointer Connectivity

Our pointer analysis is flow insensitive, field insensitiaed in-
clusion based, similar to Andersen’s pointer analysisQRjr algo-
rithm is primarily intraprocedural: it only analyzes onethna at a
time, and it only represents local objects in its heap mdddbes,
however, use method summaries to provide interprocednfa-i
mation. At each call site the analysis consults the sumnaarthe
callee, which describes: (1) its effects on the connegtigit the
objects passed into it, and (2) if it is a factory method. Thaly
sis treats a call to a factory method like an allocation sitece it
returns a new object that the caller is allowed to free.

[ido] [synbol Tabl e] [stream

readToken new ldentifier

Figure 3. Connectivity graph for the running example: each node
represents a variable or object, and each edge represenites{o
relationship.

The analysis builds a connectivity graph with nodes for each
allocation site, input parameters, and one node for all gtob
It also keeps track of the targets of all local variables.uFég3
shows the connectivity graph for the running example. \deis

S Set of statements

\% Set of variables

Vi Local variable

pev Formal parameter

N Nodes in connectivity graph

Np CN Nodes for targets of parameters

Ny CN Parameter “inner” nodes

Na CN Allocation nodes — one for eaatew()
N €N Node for all globals (statics)

PtsTo: (VUN) — 2V
PtsTo: (VUN) — 2N

Points-to function
Transitive closure of points-to

Table 1. Data Structures for Free-Me Analysis

ability from any parameter will prevent the analysis from freeing
an object. The points-to analysis starts by initializing floints-to
functions of parameters to reflect this structure:

Vi,PtsTqpi) = {Npi} | Initialize parameter variables
Vi,PtsTqNpj) = {N;j} | Parameter nodes point to inner nodes
Vi,PtsTdN;j) = {Nj} | Inner nodes have a self-loop

The algorithm iterates over the instructions in the methutladds
edges to the graph until no new edges are added. The following
table describes how we update the points-to function at kaxch

of instruction. We treat array operations as field operatiastore
uses the same rule pstfield aload uses the same rule gstfield

assignment vl = v2; PtsTdvy)U = PtsTdvp)
getstatic v = ds.f; PtsTqv)U = {Ng}
putstatic Cs.f = v, PtsTANg)U = PtsTqv)
putfield vi. f = v2; vne PtsTqv,)
PtsTdn)U = PtsTdvp)
getfield vl = v2.f; PtsTqvy)U = PtsTox (vp)

The rules forassignment, getstatic, putstatiand putfield are
straightforward: they transfer points-to edges from tightrhand
side to the left-hand side, as appropriate. The only unusielis
getfield it adds all nodeseachablefrom the right-hand side to the
left-hand side. This conservative rule allows us to use ganple
interprocedural summaries (see Section 3.2), yet has diftect on
accuracy because it does not drastically change the oveeaha-
bility of objects.

3.2 Procedure Summaries

Our analysis algorithm benefits significantly from inforioat
about the callees of a method. During the first analysis pass w
compute simple method summaries that capture (1) whethsstor
the method qualifies as a factory method, and (2) how the rdetho
connects objects passed to it. Each summary consist of fz&t®
of parameter numbers. The pai, pj) indicates that the method
connects these two parameters, by some sequence of ppsuders
that argumenp; becomes reachable from argument

For example, line 7 in the code in Figure 1 calls the method
synbol Tabl e. add(i dName, id). Internally, this method

are represented by boxes at the top, and objects in the heap armanages a complex data structure (a hash table). Our asalysi

represented by ovals. The algorithm identifiesadToken() as
a factory and creates an allocation node for it.

Table 1 presents the analysis data structures. Note thiatpeac
rameter has an associated pair of nodes that representtimiing
objects. The parameter nodis represent the immediate targets
of the parameters, while inner nodesrepresent any other objects

however, only needs to know that this method attaches bath th
i dNare andi d objects to thesynbol Tabl e. We summarize
this behavior using two pairs, (0,1) and (0,2), indicatihgttar-
guments 1 and 2 become reachable from argument 0 (the receive
argument). In our heap model, the algorithm adds directtpmsn
from synbol Tabl e to the two other objects. Figure 3 shows

reachable from the parameter nodes. We assume no aliasing bethese edges from the global node to treadToken node and to

tween parameters, which is safe for free-me analysis becaash-

the new identifier node.

The following table shows how we compute each entry and
includes special entries for global pointers and returectsj The
notationxp; means applygetfieldto the argument first to obtain the
inner node. The last type of entry identifies factory methd@isr
analysis requires that a method retomly new objects in order to
qualify as a factory.

Npj € PtsTox (pi) = record entry(p;, p;)

Nij € PtsTox (pi) = record entry(p;,*pj)

Npj € PtsTox (Ng) = record entry(global, pj)
Npj € PtsTox (return) = record entry(return, p;)
PtsTqreturn) C Na = record method is a factory

When the analysis encounters a method call, it looks up thsiiple
targets (virtual calls may have more than one) and applieb ea
method summary to the actual arguments. It applies entfidseo
form (pi, pj) using the putfield operation, and entries of the form
(return, pj) by assigning the points-to set pf to the left-hand side
of the call site. For each factory method call site, it introels an
allocation node.

This summary scheme has two significant implications. First
necessitates the getfield rule used during pointer andbgsiause
a single pointer link in the summary may represent many point
links in the callee, and therefore may represent multiplietpes
in the concrete heap . For example in Figure 3, the edge frem th
global node to theew | denti fi er () elides the internal struc-
ture of the symbol table. Our conservative getfield rule ezsthat
none of the possible targets are missed. Second, since tine su
maries refer only to the parameter positions, they effetimake
the pointer analysis context sensitive (i.e., it does nibduce un-
realizable paths.) The results of this pointer connegtiaitalysis,
however, are only suitable for testing overall reachapbilit

3.3 Object reachability and liveness

Liveness analysis is a crucial part of our system becauskeit-i
tifies whenobjects become unreachable, not just whether or not
they escape. In Figure 3, for example, both of the newly cre-
ated objects appear to escape because both are reachabliéro
global node. Sharpening the flow-insensitive connectigitsph
with flow-sensitive liveness information reveals that the®int-
ers do not exist on all paths through the method, allowing disse
the objects on some paths and not others.

Our algorithm for computing object reachability is basedtosn
observation that an object is reachable only when the psinteit
are live. If several variables point to an object, for exaanpien the
object will be reachable at any of the program points wheosdh
variables are live. We apply this observation to our coriniggt
graph as follows. We start by computing live sets for eachatste
using traditional liveness analysis. We then propagateethiee sets
from the variables to their targets: the reachability of dencs the
union of the live sets of the variables that point to it. We tizen
use the reachability of a node to infer the liveness of itgoig
pointers, and propagate those live sets to their respettigets.
We continue this process until we have computed reachabilit
all nodes.

be freed. We can determine that it is dead, however, by cerisigl
two extra facts. Firstt eadToken() returns a new object every
time through the loop. TherefoiedNane is the only pointer that
can refer to that object immediately following the call. Sed,
the object returned fromeadToken() only becomes reachable
from the global variable after the call sy mbol Tabl e. add() .
We can conclude, therefore, that this pointer first existsCéit
edge #6, continues through CFG edge #8 and the back-edge #9,
and ends at CFG edge #1 (right before the callaadToken()).
The object is also reachable from the local variabtiNane on
CFG edges #2, #3, #4, and #5. Therefore it is unreachable éh CF
edge #7, which is exactly where we want to place the call &(fre
Figure 4 shows the liveness and reachability computationhis
object.

new Identifier

live = {2,3,4,5}

plive ¥ {1,5,6,8,9}

plive = {1,6,8,9}

readToken

reach = {1,2,3,4,5,6,8,9}

Figure 4. Liveness: each set indicates the CFG edges for which
the variables and points-to edges are live. Objects repreddy

the readToken node are reachable at the union of the CFG efiges
the incoming pointers.

To incorporate these refinements into our analysis we intred
a notion ofpotential livenesgor points-to edges, which restricts
the liveness of pointers stored in global variables and énhtbap.
We define potential liveness as the set of program points evher
a pointermight exist, according to the following rules: (1) such
a pointer can only exist after it is stored in the source dbjec
(putfield or putstatic), and (2) such a pointer cannot exésoie
the target object is allocated. We compute potential ligsnier
each points-to edge starting at the pointer store thatesettind
visiting all CFG edges reachable in the method without ggiast
the allocation site of the target object. Notice that rulgig2only
important in loops — in code without loops the pointer stoae c
never precede the allocation of the target. The data stesfior
the analysis are initialized as follows:

e plive(N; — Nj) : the potential liveness of a points-to edge
consists of all CFG edges reachable from the initial assemm
but not extending past the allocation site of the targetaiije.

e live(v) : liveness of variables is computed by traditional liveness
analysis.

e reach(N;),N; ¢ Na : parameter nodes and the global node are
reachable on all CFG edges in the method.

e reach(N;),N; € Ny : reachability of the allocation nodes — ini-
tially empty.

We compute liveness and reachability as sets of edges in theThe algorithm computes liveness and reachability iteghtidor

control-flow graph. The control-flow graph in Figure 2 motes
this design: we want the analysis to determine thdNane is

freeable on edge 7 (the else branch). Traditional livenealysis,

which uses sets of statements, cannot distinguish this éugeder
to support fine-grained freeing, we use a representationhichw
each instruction is a separate node in the CFG.

This formulation alone, however, is not sufficient to detibet
free() opportunity in the example (Figure 2) because thdaijlo
variable synbol Tabl e is live (conceptually) throughout the
method, implying that dNane is always reachable and can never

nodes and edges in the graph using two principles: (a) ttehaea
bility of a node is the union of the liveness of all incomingris-to
edges, and (b) the liveness of a points-to edge is the imtitraeof
the potential liveness of the edge with the reachabilithefsource
node. The second rule allows us to free data structures onaist
of multiple objects. It prevents the liveness of a pointedge from
extending past the point that the source object becomes Oeae
the source object is dead, the outgoing points-to edge ismger
live, allowing the target object to become dead.

v = new Foo();
t0 = v;

free(tO0);
to nul | ;
-)

A /

it (.

free(t0);
t0 = null;

Figure 5. Free-me instrumentation uses temporary variables to
allow free() on multiple paths through the same code.

Formally, the algorithm applies the following rules itévaty
over the connectivity graph until a fixpoint is reached:

reach(Nj) = U live(v) W eV, Nj € PtsTqv)
U live(Nj — Ni) WN;j, N; € PtsTaN;)
live(Nj — Nj) = plive(N; — Nj)nreachN;)

Figure 4 shows how this computation proceeds for the object
returned byr eadToken, which has three incoming pointers:
(1) The pointer from the global node, created in the call to
synbol Tabl e. add(), which is live on CFG edge§l, 6,8, 9},

(2) the pointer frormew | denti fi er, created by the construc-
tor, which is live on CFG edge#l, 5,6,8,9}, and (3) the variable

i dNanme, which is live on CFG edge$2,3,4,5}. The union of
these live sets shows that theadToken() object is reachable
on CFG edgeg1,2,3,4,5,6,8,9}, and therefore, the object is not

3.5 Analysisdesign tradeoffs

Our free-me analysis represents one point in the desigrespacs
section discusses some of our design tradeoffs and aitersain
particular, a central limitation of free-me is that it canlyofree
objects for which there is an explicit pointer in the codeisTh
choice, however, allows us to use a local model of the heap in
our analysis, and it allows us to use a simple implementation
deallocation.

In principle, explicit deallocation can completely re@ayarbage
collection. With this ideal in mind we inspected our benchksa
to determine which objects free-me is missing and how we tnigh
extend the system to improve its coverage. We find that pgshin
free-me further would require a significantly more complex a
expensive analysis, and a more costly run-time system.

Large data structures. Free-me is not effective on large, long-
lived data structures constructed by multiple methodsefthing
the analysis to find these opportunities would require sgoeastly
changes. First, we need a global model of the heap in ordexto ¢
ture the connectivity of these structures. Second, we reeexténd
our notion of liveness to handle multiple methods. This ysial
would need to be both interprocedural and flow sensitive, mnd
able to operate over much larger connectivity graphs. Finak
might need to make the heap model context sensitive, sinte co
monly used methods (such as class libraries) produce shjétith
are dead in some contexts and not in others.

Freeing large data structures also requires significamgdsa
to the run-time system. In particular, the free() implenagioh
would need to trace through the data structure to free eadts of
components. This capability not only adds complexity, dsadun-
time overhead, which we find is already a serious concern ieven
our current implementation of free().

Container internals. Free-me also misses internal components
of container classes. For example, whenVeet or class resizes
its internal array, the old array is immediately garbage.with

reachable on CFG edge 7, the else branch, and we can plade a calarge data structures, this case requires more powerfuysisa

to free() there.

3.4 FreePlacement

Finally, we compute the possible places to insert a call ¢ fr
for each allocation site. We start with all control-flow edgen
which a new object from the site exists (all edges afterrtaw)),

and subtract all edges on which the object becomes reacfidige
result is often &etof possible program points because our liveness
analysis is so fine-grained. To avoid excessive calls t¢)mee first
select the earliest available program point, then itegdtigliminate
any other program points dominated by it.

As with manual memory management, we do not want to call
free() more than once on a single object. To simplify our ysial
we sidestep this error. We instrument each allocation sigave a
copy of the newly allocated object in a temporary. Calls ey
take this temporary as an argument and immediately set itilto n
Subsequent calls to free() recognize the null value as adpase
and simply return. Figure 5 shows an example of this instrume
tation. One significant benefit of this approach is that ivadl our
system to handle multiple paths through the same set of frabd$.

In addition, the use of temporaries prevents the system from
accidentally freeing the wrong object when a pointer vahenges
between the allocation site and the free site. The follovexample
shows how the use of temporaries avoids this error:

v = new Object(); v = new Object()

v = x.f; t0 = v;

free(v); [// Wong! v = x.f;
free(t0); // K

Unless the array never escapeseet or class, we need to per-
form interprocedural, whole-program pointer and liverasalysis
to free it. Even then, the analysis might be insufficienkatan, for
example, the arrays that are dead are themselves storecays,ar
so determining that no aliases exist between them is extyetife
ficult.

Factory variability. Free-me also misses objects returned by
methods thatmostly behave like factories, but not always. The
String methodsubstring() is an example. In most cases,
substring() returns a new String object, but it includes an
optimization that simply returns the input string if it edmahe
search string. In this special case, which is only deterchiae
run-time, the return value is not a new string and might not be
dead in the caller. This pattern occurs frequently in thedszed
libraries. For example, one implementationHgfs hmap. get ()
usually returns a new iterator, but will return a global NUbb-
ject in certain circumstances. It is not clear how any ansigsuld
automatically determine the conditions under which thewouof
substring() orget () can be freed.

4. Runtime Support for Free-Me

This section describes the free() implementations forenirallo-
cation disciplines: free-list and bump-pointer allocati¢igure 6
shows four implementations of fresj). The free() interface takes
two arguments: a reference to the object to delete, and zleeo$i
the object in bytes. The size information is precomputedHhsy t
compiler and provided as a constant, when possible. There ar
cases, such as arrays, where size information is not knostin st
cally. In these cases, the system computes the size of tketatij

1 final int free(ObjectReference obj)
2 throws InlinePragm {
3 int sizeC ass = getSized ass(obj);
4 Menory. zero(obj, byteslnSized ass(sized ass));
5 /'l -- Push object on front of free Iist
6 set Next (obj, freelList[sized ass]);
7 freeList[sized ass] = obj;
8 }
(a) FreeList Free

final int free(ojectReference obj,
throws InlinePragma {

Address end = obj + size;
Menory. zero(start, size);
/1 -- Is object at the end of bunp pointer?
if (end >= bunpPointer. cursor)

/1 -- Unbunp the bunp pointer

bunpPoi nt er. cursor = obj;

int size)

© ® N O UA®WwN R

(b) Unbump: Bump-Poainter Freeof Top

final int free(ojectReference obj,
throws InlinePragma {
Address end = obj + size;
Menory. zero(start, size);
if (end >= bunpPointer.cursor) {
bunpPoi nter. cursor = obj;
/Il -- Did we expose region?
i f (unbunmpEnd >= bunpPoi nter.cursor) {
/1 -- Unbunp again
bunpPoi nt er. cursor = unbunpStart;
unbumpStart = 0;
unbunmpEnd = 0;

int size)

© N ON®WN R

T
w N Pk O ©

}

} else { /] -- O, renmenber this object
unbunpStart = obj;
unbumpEnd = end;

RN
~N o o b

}

-
©
-

(c) Unbump Region: Bump-Poainter Freewith Top Region

final int free(OojectReference obj,
throws InlinePragma ({
copyReserve = copyReserve -

int size)

si ze;

2w N R

(d) Unreserve: reduce the copy reserve

Figure 6. Selected based on the collector at build-time.

run-time by querying its type information. We found that eymi-
cally querying object size can be a significant overhead.

We simplify these code listings as follows. First, we elite t
differences between objects and addresses, and adjustp@@nt-
ers to account for object headers and alignment. Secondmthe
plementation includes null pointer tests that prevent tofilees
(see Section 3.4). Third, the implementation includes tthes en-
sures the input object is in the proper allocation space.dgiere
calls to free on objects that are in the immortal space or ta b
image space. The implementations also include an inlingnpaa
notifying the optimizing compiler to inline these short seqces.

4.1 Freefor alLazy Free-List

This section explains free() for the MMTKk lazy free-list fas
mark-sweep collector [7, 8]. This implementation is suitafor
mark-sweep-compact, reference counting and any othezatofl
that uses a free-list allocator, with or without size-cléascks.
In addition, it is suitable for a more aggressive compilealgsis
that can free long and short-lived objects [34], and forexyst that
cannot move some objects, e.g., with C# and pinning.

MMTk organizes memory int& size-segregateftee-listsusing
blocks of contiguous memory for same-size objects. Eachifst
is unique to a size class. The free-lgstllector traces and marks
live objects using bit maps associated with each block. ifigac

is thus proportional to the number of live objects. It theaggls
all the partially free blocks on a list. The free-lislocator puts
a new object into the first free cell of the smallest size cthas
accommodates the object. If the size-class free-list isasted,
the allocator creates a new free-list from one of the paytfdled
blocks or an empty block. Reclamation is thus incremental an
proportional to allocation. Although MMTKk creates frestd a
block at a time, it does not depend on that feature.

Free() simply links objects to the front of the appropriates
class free-list as shown in Figure 6(a) lines 6 and 7. A sulmeset
allocation of the same size object will thus reuse it.

4.2 Freefor a Bump-Pointer Allocator

A bump-pointer allocator is typically coupled with a copyior
compacting collector. We assume a copying collector andlan a
cator that uses a contiguous block of memory, allocatingaibjin
program order by bumping a pointer until it exhausts the told\de
add to this discipline two versions of free(nbumpand unbump
region Unbump can only free the most recently allocated object,
whereas unbump region can free deeper into the recentiyaddid
objects. Any subsequent allocation can reuse this memotyust
same size objects. We also present a variation calegservahat
simply reduces the copy reserve by the size of the objedterat
than immediately reusing the memory.

Unbump. Figure 6(b) shows pseudocode for the simplest im-
plementation of freej) in a bump-pointer allocator. If the given
object was the last allocation by the bump pointer, free radhie
bump pointer back to the start of the object. A subsequeatal
tion will reuse this memory and move the bump pointer forward
again. Notice that there is no way to reuse memory furthek bac
behind the bump pointer. In these cases, free simply returns

Unbump Region. The above implementation forces the com-
piler to issue the frees in last-in-first-out order. To siifythe com-
piler analysis, we also investigate a free() that keepktoda free,
but unreclaimed contiguous region closest to the cursas fiée()
can always reclaim the top three objects in any order, andreray
claim more. The implementation delimits an unreclaimedareg
with two pointersunbunpSt art andunbunpEnd, as shown in
Figure 6(c). Ifobj is the top object free() retreatsirsorto the start
of obj, the most common case. If the new top object is also free,
free() retreats theursor further and returns. Figure 7 shows an ex-
ample of this case, where unreclaimed memory is shaded.

Our implementation is slightly more sophisticated thanRige
ure 6(c). It remembers the unreclaimed region closest touhent
bump pointer (rather than the most recently freed objedi)chvis
the most likely to be reclaimed later. It also coalesces dtgects
that are adjacent to the current region. Figure 8 shows #sis.c

Figures 7 and 8 show a limitation of this implementation. 8om
older free memory goes unreclaimed even though it may eatinitu
reach the top. We investigated weaving a free-list throubfree
regions, but it did not reclaim significantly more memorydan
is expensive. A free on short-lived objects matches the lmsv-
ior of the bump pointer. This structure is a high performathesign
point because it forms the underpinnings for generatiooléctors
in use in the current best performing systems with garbatieczo
tion (e.g., IBM JDK version 1.4.1, and Sun’s HotSpot 1.4.2).

Unreserve. As we show in Section 6, free() with a bump pointer
does not deliver a performance improvement because, intpart
overhead of manipulating the bump pointer and free regiarts o
weighs space efficiency. We therefore investigated an evepler
version of free() that instead reduces the size of the copgrve
for the copying collector, as shown in Figure 6(d). Sinceepet
tially all objects could survive a collection, every copyicollector
must keep in reserve, memory equal to the size collectioiomeg

unbumpHead

|

cursor

obj
(a) Before free(obj) of top object

unbumpHead —— null

cursor

(b) After free(obj) of top object

Figure7. Unbump Freeing of Top Object

L unbumpHead

obj cursor
(a) Before free(obj) of interior object

i unbumpHead

cursor

(b) After free(obj) of interior object

Figure8. Unbump Region Freeing an Interior Object

Instead of retreating the bump pointer, unreserve simpiyces
the reserve space, postponing garbage collection.

5. Methodology

We add free-me compiler analysis and free() runtime supimort
version 2.4.3 of Jikes RVM and MMTk. Jikes RVM is a high per-
formance VM written in Java with an aggressive adaptive-ijst
time optimizing compiler [1, 2, 27]. We use configurationattpre-
compile libraries and the optimizing compiler itself (thell build-
time configuration), and turn off assertion checking. To suea
applications in a deterministic setting, we usplay methodology
with pre-compilation. Replay builds and uses an advice ff t
selects the hot methods and their optimization level. miglates
non-determinism due to the adaptive optimizing compiled fo
cuses on the application itself. (Eeckhout et al. show tiauding
the optimizing compiler in timing runs on short running praxgs
obscures the application behavior [16].)

We use replay together with pre-compilation in three stéps.
During construction of the Jikes RVM boot image, we analyzé a
instrument large portions of the Java standard class idsaFor
some benchmarks calls to free() in the class libraries g
significantly to performance improvements. (2) Offline, we-p
compute method summaries for all methods in the benchmark,
store them in a file, and retrieve them during free-me cortipila
The summaries mark factories and compute pointer coniitggtiv
as described in Section 3.2. This analysis pass does nofyribdi
benchmark code. (3) Immediately before running the benckima
we pre-compile the hot methods using full free-me compitati

This compilation pass instruments the methods with calfestey),
as described in Section 3.

The cost of free-me compilation is significant — it almost-dou
bles the time spent in the optimizing compiler. Severaldectnit-
igate this expense. First, free-me compilation is only iggito hot
methods, which are a very small fraction of all methods. 8dco
this cost would be quickly recouped in long-running applmas.
Third, we have not spent much time optimizing the implemioia
of the analysis.

The use of precomputed method summaries raises two issues
with respect to Java and the Java execution model. Firsgrdiyn
class loading may invalidate precomputed summaries, lplgssin-
dering some free-me decisions incorrect. Second, whiledkeof
computing summaries is not extreme (on average, just a few se
onds per benchmark), it is too high to perform in a just-mei
setting for these benchmarks. For long-running serveriegifsns,
high compilation costs can be amortized over long execttimas
(days or weeks). Embedded and real-time applications meysso
dynamic class loading and may already use ahead-of-timgieom
lation, and are thus likely to benefit from the space effigjeofc
free-me.

The runtime system is implemented using MMTk — a compos-
able Java memory management toolkit that implements atyarie
of high performance collectors that reuse shared compsri8ht
MMTk manages large objects (8K or bigger) separately in & non
copy space, and puts the compiler and a few other systemsgiece
the boot image, an immortal space. We experiment with MMTK'’s
mark-sweep full heap collector, and a generational caleaith
an unbounded copying nursery and a mark-sweep older spaee. P
vious work [7] shows these collectors perform well.

We report results on SPECjvm98 [35], pseudojbb, a fixed work-
load version of SPECjbb2000 [36] and the DaCapo [9] bench-
marks. We measure results on a 2.0 GHz Intel Pentium M (755)
with a 32 KB L1 data cache, a 32 KB L1 instruction cache, a 2
MB L2 cache, 533 MHz front-side bus, and 2 GB of main memory,
running Linux 2.6.12.

6. Experimental Results

This section first presents statistics about the effectissrof free-
me compiler analysis, and then presents the total time,agarb
collection time, and mutator time improvements obtainedhwi
compile-time inserted frees.

6.1 Effectivenessof Free-MeAnalysis

Table 2 presents allocation and free statistics for ourfneecom-
piler analysis. We gather statistics in special instrumér(inon-
timed) runs with the mark-sweep collector. On average,réefne
analysis frees 32% of all objects and up to 80% in our bencknar
(theFreecolumns). The last two columns (label8thck-likg show

a version of our analysis modified to detect only those casas t
could be stack allocated, i.e., if we restrict our analysimserting
frees for allocations in the same method, and restrict the iin-
strumentation to the end of the method. This eliminates émefit
of our factory method detection, and conditional freeinige3e re-
strictions reduce the average effectiveness from 32% to, 2ifh
several benchmarks showing dramatic reductions.

Comparing theree columns with the unconditionalpncond
columns shows the influence of free acting on some paths and
not others. Fotdncond we modify the free-me analysis to prove
objects are dead on all paths — as required for stack altotafin
average, this restriction finds 7% less than if we allow fresame
paths and not others. Conditional freeing makes quite areiffce
to several of the more complex benchmarks: bytes freed iscest
by half or more fojavac, jack, antlr, bloat, andpmd.

alloc Free Uncond. Stack-like
MB MB | % MB | % MB | %
SPEC
compress 105 0 0% 0 | 0.0% 0 | 0.0%

jess 263 16 | 6% 16 6% 16 6%

raytrace 91 73 | 81% 72| 80%| 72| 80%

dby 74 45 | 61% 45| 61%| 45| 61%

javag 183 24 | 13% 15 9%| 15 9%

mtrt| 98 73 | 75% 73| 75%| 73| 74%

jack| 271 | 163 | 60%| 127 | 47%| 103 | 38%)

pseudojbly 180 34 | 19% 16 9% 6 3%
DaCapo

antlr] 1544 | 673 | 44%|] 335 | 22%| 146 | 10%

bloatf 716 | 222 | 31% 46 7%| 35 5%

fop| 103 30 | 30% 24 | 24%| 21| 20%

hsqdd 515| 57| 11%| 34| 7%| 28| 6%
jython| 348 | 75| 22%|| 67| 20% 3| 1%
pmd 822 | 278 34%| 140 | 17%| 56| 7%

ps| 523 22| 4% 18 4%| 14 3%

xalan 8195 | 1607 | 20%|| 1584 | 20%| 1566 | 19%

Average 32% 25% 21%
Potential

javac-inl| 188 51 | 27% 25| 14%| 25| 14%

xalan-mod 8195 | 7290 | 89%|| 7267 | 89%| 7249 | 88%

db-moj 74 65 | 88% 65| 88%| 65| 87%

Table 2. Compile-time Free Decisionsalloc: Total allocation,
Free Free Amount,Uncond: Unconditional free amount if frees
must correspond to allocations, aBthck-like Free amount with-
out factory methods or conditional frees

The last three rows in the table show further potential of our

approach on three benchmarks. Unfortunately, the Jikes R\/M
liner does not inlinesymbolTable.lookupn the javac benchmark,
which is why we only free 13%. If we force the compiler to irdin
this method, free-me finds 27%ayac-inl). An enhanced analysis
could automatically detect this case.

For the two modified benchmarksgb - nod andxalan - nod,

sizes that vary from the smallest in which the collectorcateto
three times that minimum on the bottom, and MB on the top.

Figure 9 shows that on average, free improves total perfocma
by an average of 50% in small heaps, 10% in moderate heaps, and
5% in large heaps. In addition, by examining the smallesp ls&éze
for each collector, we see free-me reduces by 25% the sriadlap
size in which the benchmarks can execute on average. Weesae th
benefits for almost all benchmarks, with the improvementsginty
proportional to the amount of memory explicitly freed.

Specifically, free-me improvemytrace, db, mtrt, jack, javac,
pseudojbb, antlr, bloat, fop, hsgldb, jython, pmd, andxalan as
expected from examining the data from Table 2. Free-menattai
these improvements for the most part by reducing garbage col
lection time, as illustrated in part (b) of each figure. Free-also
provides improved mutator time, as shown in part (c) of eagh fi
ure, despite the overhead of calling free(). With free-ne aho-
cator reuses dead objects right away, rather than waitinghfo
garbage collector to reclaim them. This features helpopednce
in two ways. First, it improves temporal locality by immeiky
reusing recently freed memory. Second, it populates the-Ifse
which reduces allocator work. With free-me, the allocatlwcates
fewer new size-class blocks, and creates fewer free-listagllazy
sweeping to satisfy allocation requests.

Figure 10, and Figure 11 shobloat andxalan, and are typ-
ical of programs for which free-me works well. Free-me expli
itly deallocates 31% of the memory allocatedbioat and 20% of
the memory irxalan. In larger heaps, these numbers translate into
modest improvements in GC time, since collection is lesgueat.
When collection is more frequent in small heaps, free-médygie
more significant improvements by reducing memory pressuade a
delaying collection. Mutator time also improves signifidarfor
both benchmarks. Fdsloat, the improvement is probably due to
reduced allocator work: free-me improves more in smallepke
which puts more pressure on the lazy sweeping mechanism. For
xalan, improvements are probably due to improved temporal lo-
cality, since it improves consistently across heap sizes.

Figure 12 showsgavac, a program for which free-me provides
only modest improvements. Free-me cannot deallocate #disagrt
amount of memory ifavac, limiting the improvement in GC time.
However, free-me still improves mutator time by rapidlyyeng

we manually added three frees in key routines that grow array acommonly used object size.

based containers. For example, tAer ayLi st container in-

These results demonstrate that free-me improves perfaenan

creases the size of its array to accommodate new elemesits. It and reduces the memory requirements over a wide varietynutbe
add() method allocates a new, larger array and copies the ele- marks in a mark-sweep collector. For some benchmarks the im-

ments from the old array. The old array is immediately gagb&ige
believe a more powerful compiler analysis could detect ampbé
such opportunities. Note that even with more powerful asialy
stack and region allocation are unlikely to ever handledltases.
Container expansion is an unpredictable event that doesaiot
cide with any particular program scope, precluding staticat
tion. Furthermore, at least one of the arrays is always Iaking
region allocation extremely inefficient or impossible. Bl¢that we
do not include these three versions in any further experisnen

6.2 Freeemein a Mark-Sweep Collector

This section presents the effect of free on GC time, mutatoe,t
and overall execution time in a pure mark-sweep collectbene
explicit free helps reduce GC costs significantly. Spacéditions
prohibit including results for all 16 programs, and thus wesent
the geometric mean and results for select substantial beartis
with representative (but not the best!) improvements. Vidsvste
geometric mean over all benchmarks with free-me in Figuamn§,

bloat, xalan, andjavac in Figures 10, 11 and 12, respectively.

These figures plot time on the y-axis relative to the best bmthe
left and time in seconds on the right. The x-axis plots redglieap

provements are dramatic, while in others they are more ntodes
However, in no case does free-me degrade performance byoany n
ticeable amount.

6.3 Free-Mein a Generational Collector

In a generational copying nursery and a mark-sweep oldaespa
we find that the nursery reclaims dead objects cheaply aruklgui
enough that explicit deallocation provides a benefit onlytfimse
programs where a large fraction of objects can be expliéidgd.
We believe that this effect brings into question any techeithat
targets short-lived objects, such as stack allocation.
Figure 13 shows the geometric mean of overall time, collec-
tion time, and mutator time for two variations of free(): hump
top” which frees the last object allocated, and “unresemwhfch
reduces the size of the copy reserve. We do not show thesdsult
unbump region which performs strictly worse than unbump top
Figures 14 and 15 show representative performance graphs.
For javac, free-me has practically no effect on GC time. It does,
however, produce an improvement in mutator time, probabty f
the same reason it does in the mark-sweep collector.bfeat,
on the other hand, free-me does result in a modest improvemen

Heap size relative to minimum heap size

(a) javac Total Time

Heap size relative to minimum heap size

(b) javac GC Time

Heap size relative to minimum heap size

(c) javac Mutator Time

3 12 14
mark-sweep ---©-- mark-sweep ---O--- mark-sweep ---©--
free-me mark-sweep —o— free-me mark-sweep —e— 135 free-me mark-sweep —@—
* 10
25 o} ® 13
' @ £
2 E s 5 125
= 8 s
o
g 2 2 6 2 12
T L] 3
E K| N 115
2 £ T
z S 4 13
15 z <] 11
z
1.05
2
Q-0-6-.g..o...
1 99 1
L L L L ! L L L L ! L L L h L
1 15 2 25 3 35 1 15 2 25 3 35 1 15 2 25 3 35
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) Total Time (b) GC Time (c) Mutator Time
Figure9. Geometric means over all benchmarks with and without fredéma mark-sweep collector
Heap size (MB) Heap size (MB) Heap size (MB)
40 60 80 100 120 40 60 80 100 120 40 60 80 100 120
3 T T T T T 12 T T T T T 14 T T T T
o} mark-sweep ---@-- - 22 o) mark-sweep ---O--- mark-sweep ---©--
H free-me mark-sweep —e— i free-me mark-sweep —e— 14 1.35 | free-me mark-sweep —e—
4 20 10 0] 4 85
25 [o 112 e 13
o - 18 £ = =
g _F 8 03 5 125 18 8
= 2 e
3 2 18 8 e 2 12 g
& 2 % s 18 £ 2 7 175 £
E 114 E 2 F 3B .
£ E B o & 115 2
2 12 £ 1% o = 3
15 2 4 E 11 7 =
10 14 z
P 1.05
] o 42 465
1 8 1
L L L L ! L L L L ! L L L L !
1 15 2 25 3 35 1 15 2 25 3 35 1 15 2 25 3 35
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) bloat Total Time (b) bloat GC Time (c) bloat Mutator Time
Figure 10. bloat with and without free-me in a mark-sweep collector
Heap size (MB) Heap size (MB) Heap size (MB)
100 150 200 250 300 100 150 200 250 300 100 150 200 250 300
3 T T T T T 7 200 12 T T T T T 3 % 14 T T T T T
mark-sweep ---O--- mark-sweep ---0--- mark-sweep ---Q---
free-me mark-sweep —e— free-me mark-sweep —e— | o 135 b free-me mark-sweep —e—
1 180 10 180
25 ° 4 70 E 1.3
o - 160 £ = =
E k8 460 T 5 125 s 9
[g 9 & g ©
3 2 que & 9 Q 450 o 2 12 £
S @ @ 6 v £ =
] g = E 3 {70 5
£ o) 1120 £ & 14 o & 115 2
2 S £ - g
15 4 100 s 4 30 E 11 =
s 1 es
- 20
4 80 2 105
. -1 10 1 60
L L L h L L L L L L
1 15 2 25 3 35 1 15 2 25 3 35 1 15 2 25 3 35
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) xalan Total Time (b) xalan GC Time (c) xalan Mutator Time
Figure11. xalan with and without free-me in a mark-sweep collector
Heap size (MB) Heap size (MB) Heap size (MB)
20 30 40 50 60 70 80 20 40 50 60 70 80 20 30 40 50 60 70 80
3 T T T T T T 12 T T T T 14 T T T T T T
i mark-sweep ---O-- - 13 mark-sweep ---©-- 4 9 mark-sweep ---O---
free-me mark-sweep —e— | free-me mark-sweep —e— 135 b free-me mark-sweep —— | , o
4 1 : X
10 8
@
25 41 © i g 13 146
© £ = 5
£ 1 10 F 8 16 T 5 125 &
F 79 i Jas 2
3 2 9 & 9 152 2 12 i £
= @ @ 6 E 3 Ogd 442
g 48 E £ L} . 5
£ g 414 o N 115 ¥ 5
2 o g ¢ {14 3
z 4 5 @
15 7 s 4 SE E 11 o =
16 z \ ©o.q. 4 38
12 1.05 - 2
15 2 “’\o-o\‘_'“\“ ©-0-0--0
1 Py 41 1 PP) 1 36
L L L h i 4 L L L L 1 L L L h L
1 15 2 25 3 35 1 15 2 25 3 35 1 15 2 25 3 35

Figure 12. javac with and without free-me in a mark-sweep collector

genms O~ genms ---O-- genms O
unbump top genms —e— unbump top genms —e— unbump top genms —e—
L unreserve genms ---a--- L unreserve genms ---a--- unreserve genms ---a---
1.25 35 108
@
) £
o 12 g 3 IS
£ = 5 1.06
= 4 9 5
2 3
g 115 o 25 2
: g 3
£ A £ g 104
I 3 E 2 5
) S
S z 5]
\&é\ 2 1
1.05 . 15
1 1 1
L L L L ! L L L L ! L L L L L
1 15 2 25 3 35 1 15 2 25 3 35 1 15 2 25 3 35
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) Total Time (b) GC Time (c) Mutator Time

Figure 13. Geometric means over all benchmarks with and without fredma generational collector

Heap size (MB) Heap size (MB) Heap size (MB)
60 80 100 120 40 60 80 100 120 40 60 80 100 120
16 T T T T 6 T T T T T T T T T T
genms ---©--- q 12 genms ---O--- 114 | genms ---O--
unbump top genms —e— unbump top genms —e— 7| 8 unbump top genms —e— - 6.7
15 F unreserve genms ---a--- 4 115 unreserve genms ---a--- unreserve genms ---a---
5 E ° 112 < 6.6
411 ° E
g 105 £ 165 5 6% 3
£ 4 10 B &
= T o 4 8 2 . */ 164 9
° 13 110 & © s s 5 108 P 2
S 3 3 1°E 2 et 163 %
g 195 E 2 3 o & Los / * \o\.’ g
5 12 £ 148 % g 0 162 E
* 1° 2 E 104 g o0 o =
4 15 q 6.
11 4 85 2 3 s
1.02 46
48 . 42
N . 4 3
Bl - ; | : 2 75 Bl — ; | h ? g ; | | | 59
1 15 2 25 3 35 1 15 2 25 3 35 1 15 2 25 3 35
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) bloat Total Time (b) bloat GC Time (c) bloat Mutator Time
Figure 14. bloat with and without free-me in a generational collector
Heap size (MB) Heap size (MB) Heap size (MB)
20 30 40 50 60 70 80 20 30 40 50 60 70 80 20 30 40 50 60 70 80
13 T T T T T 4T T T T T T ™3 16 Ll T T T T T T
genms ---O--- genms ---0--- genms ---O---
unbump top genms —e— | 4.8 unbump top genms —e— unbump top genms —e— | 4 .
1.25 |- unreserve genms ---A--- 35 unreserve genms ---&--- o 7 4 108 unreserve genms ---A--- :
1 46 ® 3 2 136
) 12 3 £ 3 =l = B
£ s b] 225 0 &
3 ‘fi 144 ¢ 8 & 5 - 1385 3
B 115 P2 e 2 25 41 o 2 £
I « ° s B g =
] 2 g X P Lo\ F B 104 135 &
E : 142 F ¢ R o XN s
5 11 ‘. E 2 08 0 5 s
z ¢ 3 o9 5 {345 3
S
14 888 — b4 1.02
1.05 15 B, %
o4 N 0.6 134
o
4 38 =
ol — ; | ; n Bl - ; | ; n 04 g - ; ; . . 335
1 15 2 25 3 35 1 15 2 25 3 35 1 15 2 25 3 35
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) javac Total Time (b) javac GC Time (c) javac Mutator Time

Figure 15. javac with and without free-me in a generational collector

in GC time in smaller heaps. This benefit is offset by a loss in While free-me is not an improvement in this setting, it doles a
performance for the mutator. This loss is due to the overtofad low the mark-sweep collector to perform more competitivelth

free(); in particular, the cost of querying objects and catiny the generation collector. Comparing the graphstimat in Fig-
their sizes. This result suggests that any system for iddaliobject ures 10 and 14, the two collectors perform similarly in langaps.
reclamation needs to be careful to keep the cost of free() low In tight heaps, however, mark-sweep suffers consideradith
Even if we discount the mutator overhead, as stack allatatight free-me, though, mark-sweep moves closer to the perforenahc
achieve, the gains are modest. the generational collector.

For almost all benchmarks free-me has the intended effect of
significantly reducing the number of nursery collectioner Ex- 7. Rdated Work

ample, it reduces nursery collections from 16 to 4dimin the

smallest heap size. Unfortunately, this reduction hastjoaty no

effect on collection time because it does not significaretjuce the
number of objects that survive nursery collections. Simeekulk
of a copying collector’s work is proportional to nursesyrvivors

free-me hardly affects collection time at all.

This section overviews the related work on compile-timeeobj
reuse (also known as object scalar replacement) and |idedinal-
ysis, and compiler analysis for stack and region allocation

7.1 Compile-TimeFreeand Reuse Analysis

Shaham et al. [34] is closest to our work. They identify th&t la
useof an object and free it to eliminate the need émy garbage

collection. They also null any pointers to it (since the abjmay
still be reachable). Their analysis is very precise and espe
since it seeks to prove liveness for heap variables acresaritire
program, and thus they demonstrate it only on toy programs. O
approach is simpler and cheaper since it limits its scope.

Other work automates object merging (hash consing, object
reuse, and object scalar replacement) [5, 21, 27, 28, 3@kd hp-
proaches attain reuse only for same size objects withritetho-
mogeneity. Lee and Yi's analysis inserts frees only for irdiate
reuse, i.e., before an allocation of the same size [30]. Gféaiu
et al. [21] find allocation sites for which only one objecttarsce is
ever live, finding many fewer dynamic objects than our apghoa
Our free implementations do not require call-site lifetihmmo-
geneity. Our bump-pointer free is not restricted to same aiigects
and thus reuses the same memory for different sized objects.

Marinov and O’Callahan profile to findbject equivalencén
which their contents are the same, but their lifetimes age di
joint [31]. For SPECjvm98 and two Java server programs, they
report memory savings of 2% to 50% if all equivalent objects!d
be merged. Their results provide motivation for our work (e
use the compiler to realize these savings and are not testric
equivalent content or sized objects.

Inoue et al. [26] explore the limits of lifetime predictabjlfor
allocation sites. They find that many objects have zeraoitiifes,
and our free-me analysis finds a similar number of objectse®. f
Our technique differs from lifetime analysis because itedet
exactly which update kills an object, rather than its lifedi

7.2 Stack Allocation

Prior work explores using pointegscape analysiso detect al-
location sites that produce objects whose lifetimes cpoed to
method scope and allocate them on the stack [10, 13, 20, $9]. D
namic stack allocation changes the allocator [13, 14, 38],static
stack allocation adjusts the stack frame [20]. The statr@gch
cannot stack allocate allocations in loops. The dynamiccgih
can grow the stack without bound. Both implementations rassu
that stack frame lifetimes are relatively small, and thiesgiistem
will normally reclaim this memory faster than the collect@ur
free scheme guarantees prompt reclamation since it needaibot
for the method return and can free objects in loops and frdoa al
cation sites where some objects escape.

Whaley and Rinard [39] provide the most precise escape anal-
ysis [10, 13, 20], but no implementation of stack allocatidhey
measure the amount of memory classified as stack allocaable
report a higher percentages compared to Choi et al. or B&nch
on similar programs [10, 13], e.g., 25% fiavac. Choi et al. de-
scribe a flow-sensitive and insensitive escape analydisitbaates
from 2% to 65% on the stack. However, they state: “Perforraanc
gains come mainly from synchronization elimination ratttean
from stack allocation.” Choi et al. point out the potengalincon-
strained stack growth did not occur in practice. Blanchgfstem
dynamically stack allocates between 13 and 95% of memofg 13
for javac. Blanchet reports a mark-sweep free-list collector on one
heap size. He finds excellent collection time reductionsranth-
tor locality benefits from contiguous stack allocation. Welfinore
substantial improvements in small to moderate heap sizes.

Gay and Steensgaard [20] and Blanchet [10] provide fasser le
precise analysis than other escape analyses [13, 39]. Static
stack allocation mechanism increases the stack frame giap to
24KB, but usually by 1KB or less. They speedup a copying myrse
generational collector on one heap size by 11%jamk, but on
average, performance benefits are limited [18, 20]. Stdokation
has less overhead than our free with a copying nursery, las dot
deliver consistent improvements. Copying nurseries iecthort-
lived dead objects very efficiently.

Our compiler analysis is simpler and less precise than prior
work. It should thus be more amenable to use in a just-in-tiome-
piler, although we have not yet performance tuned it. Priaie
ations of stack allocation have only ever used one colleatat
one heap size. We evaluate compile-time inserted free iarakev
garbage collectors with a variety of heap sizes which exptise
space time tradeoffs inherent in garbage collection.

7.3 Region Allocation

Region allocation either manages all of memory based onatlitan-
site lifetime scoping [12, 19, 32, 37] or adds regions as a spe
cial purpose component management [6, 22, 24]. Regionsdaov
programmability benefits for real-time systems and offdetya
features such as thread isolation in server applicatiomsthese
features come without the software engineering advantages
garbage collection. Potential advantages include impmtouem-
ory efficiency, but prior work has not consistently demoeststd
this improvement. For example, Hicks et al. [24] show spdfie e
ciency improvements in Cyclone over garbage collectionglbut
Cherem and Rugina [11] actually increase the memory fautpri
Java programs by up to 101%. These mixed results have tlogg ro
in requiring a program point when all objects from a specific-a
cation site are dead, rather than our approach that decoapject
allocation from its free.

8. Conclusions

This paper presents a new analysis for identifying sheetliob-
jects and inserting explicit memory deallocation at thenpmoivhere
the objects die. Our analysis properly identifies a largetioa of
short-lived objects for our Java programs, which resulteajid,
incremental reclamation of memory. For mark-sweep cadlect
explicitly freeing objects yields substantial performanmprove-
ments from 50% to 200%. However, our experiments show that
generational collectors are extremely effective at reaiiag short-
lived objects. We believe it is unlikely that any technique deat
the performance of copying generational collection on tslived
objects. However for real-time systems and memory comsdhi
embedded systems, free-me offers a way to combine the seftwa
engineering benefits of garbage collection with the memaony a
performance benefits of incremental collection.

Acknowledgments

We would like to thank Steve Blackburn for getting us startee
entire Jikes RVM research team for making their system plybli
available, and Mike Bond and Gene Novark for their suggastio

References

[1] B. Alpern et al. Implementing Jalapefio in Java. ACM
Conference on Object-Oriented Programming Systems, laayeg)
and Applicationspages 314-324, Denver, CO, Nov. 1999.

[2] B. Alpern et al. The Jalapefio virtual machinBM Systems Journal
39(1):211-238, February 2000.

[3] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language PhD thesis, DIKU, University of
Copenhagen, May 1994.

[4] D. F. Bacon, P. Cheng, D. Grove, and M. T. Vechev. Syndopat
Generational real-time garbage collector in the metronomé&CM
Languages, Compilers, and Tools for Embedded Systesmes 183—
192, Chicago, IL, June 2005.

[5] J. M. Barth. Shifting garbage collection overhead to pdetime.
Communications of the ACN20(7):513-518, July 1977.

[6] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsiderin
custom memory allocation. IACM Conference on Object-Oriented

Programming Systems, Languages, and Applicatipages 1-12,
Seattle, WA, Nov. 2002.

S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths andlitges:
The performance impact of garbage collectionA@M SIGMETRICS
Conference on Measurement & Modeling Computer Systpages
25-36, NY, NY, June 2004.

S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and watéligh
performance garbage collection in Java with IMTkIrternational
Conference on Software Engineerimgges 137-146, Scotland, UK,
May 2004.

S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, S. Z. Guyer,

A. Hosking, M. Jump, J. E. B. Moss, D. Stefanovi¢, T. VanDeon

D. von Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java benchmarking development and analysis. TechnicarRER-
CS-06-01, Deptartment of Computer Science, Austrailiatiodal
University, Mar. 2006. http://ali-www.cs.umass.edu/Ra06/-
Benchmarks.

[7

—

8

—_

[9

—

[10] B. Blanchet. Escape analysis for Java: Theory and igacACM
Transactions on Programming Languages and Systes($):713—
775, Nov. 2003.

[11] S. Cherem and R. Rugina. Region analysis and transt@ma
for Java programs. IACM International Symposium on Memory
Managementpages 85-96, Vancouver, BC, 2004.

[12] W. Chin, F. Craciun, S. Qin, and M. Rinard. Region infeze for
object-oriented language. WCM Conference on Programming
Languages Design and Implementatipages 243-354, Washington,
DC, June 2004.

[13] J. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and $lidkiff.
Stack allocation and synchronization optimizations foraJasing
escape analysifACM Transactions on Programming Languages and
Systems25(6):876—910, Nov. 2003.

[14] C. Click. Stack allocation, Jan. 2005. Personal Comigation.

[15] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadec
Efficiently computing static single assignment form and d¢batrol
dependence graplACM Transactions on Programming Languages
and Systemsd3(4):451-490, Oct. 1991.

[16] L. Eeckhout, A. Georges, and K. D. Bosschere. How Jasgnams
interact with virtual machines at the microarchitectussidl. INACM
Conference on Object-Oriented Programming Systems, Lagyeg)
and Applicationspages 244-358, Anaheim, CA, Oct. 2003.

[17] Y. Feng and E. D. Berger. A locality-improving dynamiemory
allocator. INACM Conference on Memory System Performapages
1-12, Chicago, IL, June 2005.

[18] R. P. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steensgaaadd
D. Tarditi. Marmot: An optimizing compiler for JavaSoftware—
Practice and Experience30(3):199-232, 2000.

[19] D. Gay and A. Aiken. Language support for regions. AGM
Conference on Programming Languages Design and Implerti@mta
pages 70-80, Snowbird, UT, 2001.

[20] D. Gay and B. Steensgaard. Fast escape analysis akdbfizmation
for object-based programs. International Conference on Compiler
Construction pages 82-93, Berlin, Germany, 2000.

[21] O. Gheorghioiu, A. Salcianu, and M. Rinard. Interpreel
compatibility analysis for static object preallocationn ACM
Symposium on the Principles of Programming Languageges
273-284, New Orleans, LA, Jan. 2003.

[22] N. Hallenberg, M. Elsman, and M. Tofte. Combining regioference
and garbage collection. IACM Conference on Programming
Languages Design and Implementatiqgrgages 141-152, Berlin,
Germany, June 2002.

[23] M. Hertz and E. Berger. Quantifying the performance aft@ge
collection vs. explicit memory mananagement.AG@M Conference
on Object-Oriented Programming Systems, Languages, apticap
tions San Diego, CA, Oct. 2005.

[24] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Expede with
safe manual memory-management in CycloneA@M International
Symposium on Memory Managemepdges 73-84, Vancouver, BC,
2004.

[25] M. Hirzel, A. Diwan, and J. Henkel. On the usefulnessygfet and
liveness accuracy for garbage collection and leak detecthCM
Transactions on Programming Languages and Syst@®):593—
624, Nov. 2002.

[26] H. Inoue, D. Stefanovit, and S. Forrest. Object lifeti prediction in
Java. Technical Report TR-CS-2003-28, University of Newkide,
May 2003.

[27] Jikes RVM. IBM, 2005. http://jikesrvm.sourceforgetn

[28] S. B. Jones and D. Le Métayer. Compile-time garbagkectibn by
sharing analysis. IACM Inteornational Conference on Functional
Programming Languages and Computer Architectyr@ges 5474,
Nov. 1989.

[29] D. Lea. A memory allocator. http://gee.cs.oswego/éidatmi/malloc.html,
1997.

[30] O. Lee and K. Yi. Experiments on the effectiveness of aiomatic
insertion of memory reuses into XSML-like programs. AGM
International Symposium on Memory Managemeaiges 97-108,
Vancouver, BC, 2004.

[31] D. Marinov and R. O’Callahan. Object equality profilingn ACM
Conference on Object-Oriented Programming Systems, laayeg)
and Applicationspages 313-325, Anahiem, CA, Oct. 2003.

[32] F. Qian and L. Hendren. An adaptive, region-based attarcfor Java.
In ACM International Symposium on Memory ManagemBetlin,
Germany, June 2002.

[33] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profilingdpace-
efficient Java. INPACM Conference on Programming Languages
Design and Implementatippages 104—-133, Snowbird, UT, 2001.

[34] R. Shaham, E. Yahav, E. K. Kolodner, and M. Sagiv. Esshbig
local temporal heap safety properties with applicationdmpile-
time memory management. Btatic Analysis Symposiuymages
483-503, San Diego, CA, June 2003.

[35] Standard Performance Evaluation Corporati@PECjvm98 Docu-
mentation release 1.03 edition, March 1999.

[36] Standard Performance Evaluation CorporatiSRECjbb2000 (Java
Business Benchmark) Documentatiogiease 1.01 edition, 2001.

[37] M. Tofte and J. Talpin. Region-based memory management
Information and Computatiqrii997.

[38] D. M. Ungar. Generation scavenging: A non-disruptivghhperfor-
mance storage reclamation algorithm.A6M Software Engineering
Symposium on Practical Software Development Environmpages
157-167, April 1984.

[39] J. Whaley and M. Rinard. Compositional pointer and psca
analysis for Java programs. ACM Conference on Object-Oriented
Programming Systems, Languages, and Applicatipages 187206,
Nov. 1999.

