
Free-Me: A Static Analysis for
Automatic Individual Object Reclamation

Samuel Z. Guyer Kathryn S. McKinley� Daniel Frampton
Tufts University The University of Texas at Austin Australian National University

sguyer@cs.tufts.edu mckinley@cs.utexas.edu daniel.frampton@anu.edu.au

Abstract
Garbage collection has proven benefits, including fewer memory-
related errors and reduced programmer effort. Garbage collection,
however, trades space for time. It reclaims memory only whenit
is invoked: invoking it more frequently reclaims memory quickly,
but incurs a significant cost; invoking it less frequently fills mem-
ory with dead objects. In contrast, explicit memory management
provides prompt low cost reclamation, but at the expense of pro-
grammer effort.

This work comes closer to the best of both worlds by adding
novel compiler and runtime support for compiler inserted frees to
a garbage-collected system. The compiler’sfree-meanalysis iden-
tifies when objects become unreachable and inserts calls to free.
It combines a lightweight pointer analysis with liveness informa-
tion that detects when short-lived objects die. Our approach differs
from stack and region allocation in two crucial ways. First,it frees
objects incrementally exactly when they become unreachable, in-
stead of based on program scope. Second, our system does not re-
quire allocation-site lifetime homogeneity, and thus frees objects
on some paths and not on others. It also handles common patterns:
it can free objects in loops and objects created by factory methods.

We evaluate free() variations forfree-list andbump-pointeral-
locators. Explicit freeing improves performance by promptly re-
claiming objects and reducing collection load. Compared tomark-
sweep alone, free-me cuts total time by 22% on average, collector
time by 50% to 70%, and allows programs to run in 17% less mem-
ory. This combination retains the software engineering benefits of
garbage collection while increasing space efficiency and improv-
ing performance, and thus is especially appealing for real-time and
space constrained systems.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Memory management (garbage
collection)� This work is supported by NSF ITR CCR-0085792, NSF CCR-0311829,
NSF CCR-0311829, NSF EIA-0303609, DARPA F33615-03-C-4106,
IBM, and Intel. Any opinions, findings and conclusions expressed herein
are the authors’ and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’06 June 11–14, 2006, Ottawa, Ontario, Canada.
Copyright c
 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

General Terms Languages, Performance, Experimentation, Al-
gorithms

Keywords Adaptive, Generational, Compiler-Assisted, Liveness,
Pointer Analysis, Locality, Mark-Sweep, Copying

1. Introduction
This work seeks to combine the software engineering benefitsof
automatic memory management (garbage collection) with thelow-
cost incremental reclamation of explicit memory management [6,
17, 29]. If programmers free objects immediately after their last
use, they can minimize the program’s memory footprint. Garbage
collection instead minimizes programmer effort at the expense of
increased memory requirements [23, 25, 33]. Garbage collectors
require extra memory, beyond what the application is using,be-
cause they only periodically reclaim memory, allowing deadob-
jects to accumulate. Collecting more frequently is expensive due to
the overhead of identifying dead objects. For example, a copying
collector traverses the roots (stacks, statics, registers), copying all
the reachable objects, which can be costly. Invoking the collector
less frequently amortizes this cost, and gives objects moretime to
die, making each collection more productive. Garbage collection
thus makes a space-time tradeoff that increases the memory foot-
print to reduce collection costs [7, 23, 25, 26, 33, 38].

We present new runtime and compiler support to obtain the best
of both approaches. We add an explicitfree(object)operation to
the garbage collector and afree-mecompiler analysis that automat-
ically inserts a call to free() at the point an object dies. Free-me
analysis combines simple, flow-insensitive pointer analysis with
flow-sensitive liveness information. An allocation site can produce
some objects that escape the method or loop, and free-me can still
free some of them. Since its scope is mostly local, it typically finds
very short-lived objects. Free-me includes an interprocedural com-
ponent that summarizes connectivity and identifiesfactory meth-
ods.1 A factory method returns one newly allocated object and has
no other side effects.

The underlying collection discipline dictates the implementa-
tion of free. We implement free for mark-sweep free-lists and for
copying contiguousbump-pointerallocation. Our free-list imple-
mentation segregates by size [7, 8]. Free returns memory to the
front of the appropriate free-list, as does explicit memorymanage-
ment. For bump-pointer allocation, we explore a version of free that
reclaims the object only when it is the last allocation. Thisversion
is fairly restrictive because the compiler must perfectly order (last-
in-first-out) frees. We also explore a more powerful versionof free
that tracks one unreclaimed region closest to the bump pointer. If a

1 Freeing long-lived objects would require a substantially more precise
interprocedural pointer and liveness analysis.

subsequent free brings it to the top, free reclaims it as well. Finally,
we show a version of free that simply reduces the required copy
reserve size by the number of free bytes.

Compared with region [12, 24, 32, 37] and stack [10, 13, 20, 39]
allocation, our approach differs in two key ways. First, region and
stack allocation require lifetimes to coincide with a particular pro-
gram scope, whereas our approach frees objects exactly whenthey
become unreachable. Second, region and stack allocation require
specialized allocation sites, forcing them to decide the fate of each
object at allocation time. In many systems, this limitationrequires
each allocation site to produce objects with the same lifetime char-
acteristics. Even if some objects become unreachable, these sys-
tems must wait until all objects become unreachable. Although
stack and region allocation reduce collector load and have the po-
tential to reduce the memory footprint, neither has delivered con-
sistent improvements over generational collectors.

We implement these techniques in Jikes RVM and MMTk,
a high performance Java-in-Java virtual machine and memory
management toolkit [1, 2, 7, 8]. For mark-sweep, our resultson
SPECjvm98, SPECjbb2000, and DaCapo [9, 35, 36] Java bench-
marks show that free reclaims on average 32% of all objects: on
three benchmarks, it reclaims less than 10%, but it reclaims50% or
more of the objects on four benchmarks. These frees translate di-
rectly into total and garbage collection performance improvements
in small and moderate sized heaps (up to a factor of 2), and do no
harm in large heaps.

Our technique was unable to improve over a state-of-the art
generational collector. Although free reclaims similar numbers of
objects as free in mark-sweep and these frees translate intomany
fewer nursery collections, the survival rate of each collection in-
creases. As the collection cost of the nursery is proportional to the
size of live objects, we see little reduction in overall collection cost.
We had hoped that by eliminating some short-lived objects from
the nursery we would increase the virtual size of the nurserygiv-
ing other objects more time to die, but this effect was not visible in
our results. Furthermore, mutator time degraded in some cases due
to the overhead of incrementallyunbumpingobjects. These results
combined with similar ones for stack allocation [10, 13, 20,39] in-
dicate that collecting short-lived objects seems best leftto a copy-
ing nursery.

Although generational collectors typically perform much bet-
ter than whole-heap mark-sweep collectors [7], non-movingcollec-
tors remain critical for certain applications. For example, embedded
systems use mark-sweep for space efficiency. Real-time collectors
are especially sensitive to garbage collection load [4]. For these
systems, we recommend compiler-inserted frees which yieldsub-
stantial improvements in memory efficiency and performance.

2. Motivating Example
Figure 1 shows an example that motivates the use of free-me anal-
ysis instead of escape analysis. The code in Figure 1(a) is inspired
by a method injavac. In this method, stream.readToken() is a fac-
tory method that produces a single new object and has no otherside
effects. The variableidName points to this newly allocated object.
The code only adds idName to the symbol table if it is not already
there. Since programs tend to use symbols repeatedly, many more
die than live. Since the surviving objects escape the method, it is
not safe to stack allocate them. Free-me compiler analysis detects
that stream.readToken() is a factory method and that the resulting
object is only stored in the symbol table on the true branch ofthe
conditional statement. It determines that the object can befreed on
the false branch, and it inserts a call to free(idName), as shown in
Figure 1(b). We use this running example throughout the paper.

1 public void parse(InputStream stream) {
2 while (...) {
3 String idName = stream.readToken();
4 Identifier id = symbolTable.lookup(idName)
5 if (id == null) {
6 id = new Identifier(idName);
7 symbolTable.add(idName, id);
8 }
9 computeOn(id);

10 }
11 }

(a) Only adds idName to the symbolTable once.

1 public void parse(InputStream stream) {
2 while (...) {
3 String idName = stream.readToken();
4 Identifier id = symbolTable.lookup(idName)
5 if (id == null) {
6 id = new Identifier(idName);
7 symbolTable.add(idName, id);
8 }
9 else // idName no longer used:

10 free(idName); // -> free it immediately
11 computeOn(id);
12 }
13 }

(b) Compiler inserts free on else branch.

Figure 1. Example of conditional free fromjavac.

3. Free-me Compiler Analysis
This section describes ourfree-mecompiler phase which automati-
cally inserts calls tofree(). For each allocation site, it computes
the set of program points where a newly allocated object exists, but
is no longer reachable. It consists of four parts.

1. A flow-insensitive pointer analysis builds a connectivity graph
for the objects in each method. Each node represents a local
variable, a global variable, or a new object (one for each alloca-
tion site). Edges represent may points-to relationships.

2. A flow-sensitive liveness analysis sharpens the connectivity
graph. Used alone, the flow-insensitive pointer analysis can
only determineif objects are reachable – for example, which
objects escape and which do not. We add liveness information
about variables and points-to edges so that we can determine
exactlywhenobjects are reachable.

3. A free-me instrumentation pass selects program points and in-
serts calls to free(). Since the liveness analysis may identify
numerous potential places to free() an object, our heuristic
chooses the subset that (a) frees an object as soon as possible,
and (b) inserts as few calls to free() as possible.

4. An offline interprocedural pass that summarizes the may points-
to effects of each method and identifiesfactorymethods: meth-
ods that only return newly allocated objects. We perform this
pass first.

We apply free-me compilation in two passes. The first pass per-
forms only the pointer analysis to computemethod summariesof-
fline. We perform this first pass bottom-up on the call graph to
ensure that method summaries are available at all call sites. The
call graph is constructed on-the-fly as method calls are encoun-
tered. The second pass adds the liveness information and instru-
ments methods with calls to free(). We perform the second pass
only onhot methods (Section 5).

The analysis uses the Jikes RVM compiler internal represen-
tation (IR). The IR is a control-flow graph of basic blocks, where
each basic block contains a list of instructions. The instructions
correspond to Java operations, such asgetfield, putfield, array oper-
ations, and assignments. We perform our analysis when the IRis in

(entry)

while...

idName = stream.readToken()

id0 = symbolTable.lookup(idName)

if (id0 == null)

id1 = new Identifier(idName)

symbolTable.put(idName, id1)

computeOn(id2)

(exit)

id2 = Φ(id0,id1)

(0)

(1)

(2)

(3)

(4)

(7) (5)

(6)

(8)

(9)

(10)

Figure 2. Control-flow graph for the example.

SSA form [15], which provides flow sensitivity for local variables.
Figure 2 shows the IR for our example (Figure 1). Note that this
control-flow graph includes edges between each instruction, which
allows our algorithm to reason about liveness at a fine granularity.

3.1 Pointer Connectivity

Our pointer analysis is flow insensitive, field insensitive,and in-
clusion based, similar to Andersen’s pointer analysis [3].Our algo-
rithm is primarily intraprocedural: it only analyzes one method at a
time, and it only represents local objects in its heap model.It does,
however, use method summaries to provide interprocedural infor-
mation. At each call site the analysis consults the summary for the
callee, which describes: (1) its effects on the connectivity of the
objects passed into it, and (2) if it is a factory method. The analy-
sis treats a call to a factory method like an allocation site,since it
returns a new object that the caller is allowed to free.

idName id0id1 id2 symbolTable stream

Np0

Ni0

readToken new Identifier (global)

Figure 3. Connectivity graph for the running example: each node
represents a variable or object, and each edge represents a points-to
relationship.

The analysis builds a connectivity graph with nodes for each
allocation site, input parameters, and one node for all globals.
It also keeps track of the targets of all local variables. Figure 3
shows the connectivity graph for the running example. Variables
are represented by boxes at the top, and objects in the heap are
represented by ovals. The algorithm identifiesreadToken() as
a factory and creates an allocation node for it.

Table 1 presents the analysis data structures. Note that each pa-
rameter has an associated pair of nodes that represent the incoming
objects. The parameter nodesNP represent the immediate targets
of the parameters, while inner nodesNI represent any other objects
reachable from the parameter nodes. We assume no aliasing be-
tween parameters, which is safe for free-me analysis because reach-

S Set of statements
V Set of variables
vi Local variablei
pi 2V Formal parameteri
N Nodes in connectivity graph
NP �N Nodes for targets of parameters
NI �N Parameter “inner” nodes
NA �N Allocation nodes – one for eachnew()
NG 2 N Node for all globals (statics)
PtsTo: (V [N)! 2N Points-to function
PtsTo� : (V [N)! 2N Transitive closure of points-to

Table 1. Data Structures for Free-Me Analysis

ability from any parameter will prevent the analysis from freeing
an object. The points-to analysis starts by initializing the points-to
functions of parameters to reflect this structure:8i;PtsTo(pi) = fNPig Initialize parameter variables8i;PtsTo(NPi) = fNIi g Parameter nodes point to inner nodes8i;PtsTo(NIi) = fNIi g Inner nodes have a self-loop

The algorithm iterates over the instructions in the method and adds
edges to the graph until no new edges are added. The following
table describes how we update the points-to function at eachkind
of instruction. We treat array operations as field operations: astore
uses the same rule asputfield; aloaduses the same rule asgetfield.

assignment v1 = v2; PtsTo(v1)[= PtsTo(v2)
getstatic v = Cls.f; PtsTo(v)[= fNGg
putstatic Cls.f = v; PtsTo(NG)[= PtsTo(v)
putfield v1.f = v2; 8n2 PtsTo(v1)

PtsTo(n)[= PtsTo(v2)
getfield v1 = v2.f; PtsTo(v1)[= PtsTo� (v2)

The rules for assignment, getstatic, putstatic,and putfield are
straightforward: they transfer points-to edges from the right-hand
side to the left-hand side, as appropriate. The only unusualrule is
getfield: it adds all nodesreachablefrom the right-hand side to the
left-hand side. This conservative rule allows us to use verysimple
interprocedural summaries (see Section 3.2), yet has little effect on
accuracy because it does not drastically change the overallreacha-
bility of objects.

3.2 Procedure Summaries

Our analysis algorithm benefits significantly from information
about the callees of a method. During the first analysis pass we
compute simple method summaries that capture (1) whether ornot
the method qualifies as a factory method, and (2) how the method
connects objects passed to it. Each summary consist of a set of pairs
of parameter numbers. The pair(pi ; p j) indicates that the method
connects these two parameters, by some sequence of pointers, so
that argumentp j becomes reachable from argumentpi .

For example, line 7 in the code in Figure 1 calls the method
symbolTable.add(idName, id). Internally, this method
manages a complex data structure (a hash table). Our analysis,
however, only needs to know that this method attaches both the
idName andid objects to thesymbolTable. We summarize
this behavior using two pairs, (0,1) and (0,2), indicating that ar-
guments 1 and 2 become reachable from argument 0 (the receiver
argument). In our heap model, the algorithm adds direct pointers
from symbolTable to the two other objects. Figure 3 shows
these edges from the global node to thereadToken node and to
the new identifier node.

The following table shows how we compute each entry and
includes special entries for global pointers and return objects. The
notation�p j means applygetfieldto the argument first to obtain the
inner node. The last type of entry identifies factory methods. Our
analysis requires that a method returnonly new objects in order to
qualify as a factory.

Np j 2 PtsTo� (pi)) record entry(pi ; p j)
NI j 2 PtsTo� (pi)) record entry(pi ;�p j)
Np j 2 PtsTo� (NG)) record entry(global; p j)
Np j 2 PtsTo� (return)) record entry(return; p j)
PtsTo(return)� NA) record method is a factory

When the analysis encounters a method call, it looks up the possible
targets (virtual calls may have more than one) and applies each
method summary to the actual arguments. It applies entries of the
form (pi ; p j) using the putfield operation, and entries of the form(return; p j) by assigning the points-to set ofp j to the left-hand side
of the call site. For each factory method call site, it introduces an
allocation node.

This summary scheme has two significant implications. First, it
necessitates the getfield rule used during pointer analysisbecause
a single pointer link in the summary may represent many pointer
links in the callee, and therefore may represent multiple pointers
in the concrete heap . For example in Figure 3, the edge from the
global node to thenew Identifier() elides the internal struc-
ture of the symbol table. Our conservative getfield rule ensures that
none of the possible targets are missed. Second, since the sum-
maries refer only to the parameter positions, they effectively make
the pointer analysis context sensitive (i.e., it does not introduce un-
realizable paths.) The results of this pointer connectivity analysis,
however, are only suitable for testing overall reachability.

3.3 Object reachability and liveness

Liveness analysis is a crucial part of our system because it iden-
tifies whenobjects become unreachable, not just whether or not
they escape. In Figure 3, for example, both of the newly cre-
ated objects appear to escape because both are reachable from the
global node. Sharpening the flow-insensitive connectivitygraph
with flow-sensitive liveness information reveals that these point-
ers do not exist on all paths through the method, allowing us to free
the objects on some paths and not others.

Our algorithm for computing object reachability is based onthe
observation that an object is reachable only when the pointers to it
are live. If several variables point to an object, for example, then the
object will be reachable at any of the program points where those
variables are live. We apply this observation to our connectivity
graph as follows. We start by computing live sets for each variable
using traditional liveness analysis. We then propagate these live sets
from the variables to their targets: the reachability of a node is the
union of the live sets of the variables that point to it. We canthen
use the reachability of a node to infer the liveness of its outgoing
pointers, and propagate those live sets to their respectivetargets.
We continue this process until we have computed reachability for
all nodes.

We compute liveness and reachability as sets of edges in the
control-flow graph. The control-flow graph in Figure 2 motivates
this design: we want the analysis to determine thatidName is
freeable on edge 7 (the else branch). Traditional liveness analysis,
which uses sets of statements, cannot distinguish this edge. In order
to support fine-grained freeing, we use a representation in which
each instruction is a separate node in the CFG.

This formulation alone, however, is not sufficient to detectthe
free() opportunity in the example (Figure 2) because the global
variable symbolTable is live (conceptually) throughout the
method, implying thatidName is always reachable and can never

be freed. We can determine that it is dead, however, by considering
two extra facts. First,readToken() returns a new object every
time through the loop. ThereforeidName is the only pointer that
can refer to that object immediately following the call. Second,
the object returned fromreadToken() only becomes reachable
from the global variable after the call tosymbolTable.add().
We can conclude, therefore, that this pointer first exists onCFG
edge #6, continues through CFG edge #8 and the back-edge #9,
and ends at CFG edge #1 (right before the call toreadToken()).
The object is also reachable from the local variableidName on
CFG edges #2, #3, #4, and #5. Therefore it is unreachable on CFG
edge #7, which is exactly where we want to place the call to free().
Figure 4 shows the liveness and reachability computation for this
object.

idName

readToken

new Identifier

(global)
live = {2,3,4,5}

plive = {1,6,8,9}

plive = {1,5,6,8,9}

reach = {1,2,3,4,5,6,8,9}

Figure 4. Liveness: each set indicates the CFG edges for which
the variables and points-to edges are live. Objects represented by
the readToken node are reachable at the union of the CFG edgesof
the incoming pointers.

To incorporate these refinements into our analysis we introduce
a notion ofpotential livenessfor points-to edges, which restricts
the liveness of pointers stored in global variables and in the heap.
We define potential liveness as the set of program points where
a pointermight exist, according to the following rules: (1) such
a pointer can only exist after it is stored in the source object
(putfield or putstatic), and (2) such a pointer cannot exist before
the target object is allocated. We compute potential liveness for
each points-to edge starting at the pointer store that creates it and
visiting all CFG edges reachable in the method without goingpast
the allocation site of the target object. Notice that rule (2) is only
important in loops – in code without loops the pointer store can
never precede the allocation of the target. The data structures for
the analysis are initialized as follows:� plive(Ni ! Nj) : the potential liveness of a points-to edge

consists of all CFG edges reachable from the initial assignment,
but not extending past the allocation site of the target object Nj .� live(v) : liveness of variables is computed by traditional liveness
analysis.� reach(Ni);Ni =2 NA : parameter nodes and the global node are
reachable on all CFG edges in the method.� reach(Ni);Ni 2 NA : reachability of the allocation nodes – ini-
tially empty.

The algorithm computes liveness and reachability iteratively for
nodes and edges in the graph using two principles: (a) the reacha-
bility of a node is the union of the liveness of all incoming points-to
edges, and (b) the liveness of a points-to edge is the intersection of
the potential liveness of the edge with the reachability of the source
node. The second rule allows us to free data structures that consist
of multiple objects. It prevents the liveness of a points-toedge from
extending past the point that the source object becomes dead. Once
the source object is dead, the outgoing points-to edge is no longer
live, allowing the target object to become dead.

v = new Foo();

if (. . .)

if (. . .)

free(v);

free(v);

. . .

v = new Foo();
t0 = v;

if (. . .)

if (. . .)

free(t0);
t0 = null;

free(t0);
t0 = null;

. . .

Figure 5. Free-me instrumentation uses temporary variables to
allow free() on multiple paths through the same code.

Formally, the algorithm applies the following rules iteratively
over the connectivity graph until a fixpoint is reached:

reach(Ni) = S
live(v) 8v2V, Nj 2 PtsTo(v)S
live(Nj ! Ni) 8Nj , Ni 2 PtsTo(Nj)

live(Nj ! Ni) = plive(Nj !Ni)\ reach(Nj)
Figure 4 shows how this computation proceeds for the object
returned byreadToken, which has three incoming pointers:
(1) The pointer from the global node, created in the call to
symbolTable.add(), which is live on CFG edgesf1;6;8;9g,
(2) the pointer fromnew Identifier, created by the construc-
tor, which is live on CFG edgesf1;5;6;8;9g, and (3) the variable
idName, which is live on CFG edgesf2;3;4;5g. The union of
these live sets shows that thereadToken() object is reachable
on CFG edgesf1;2;3;4;5;6;8;9g, and therefore, the object is not
reachable on CFG edge 7, the else branch, and we can place a call
to free() there.

3.4 Free Placement

Finally, we compute the possible places to insert a call to free
for each allocation site. We start with all control-flow edges on
which a new object from the site exists (all edges after thenew),
and subtract all edges on which the object becomes reachable. The
result is often asetof possible program points because our liveness
analysis is so fine-grained. To avoid excessive calls to free() we first
select the earliest available program point, then iteratively eliminate
any other program points dominated by it.

As with manual memory management, we do not want to call
free() more than once on a single object. To simplify our analysis,
we sidestep this error. We instrument each allocation site to save a
copy of the newly allocated object in a temporary. Calls to free()
take this temporary as an argument and immediately set it to null.
Subsequent calls to free() recognize the null value as a special case
and simply return. Figure 5 shows an example of this instrumen-
tation. One significant benefit of this approach is that it allows our
system to handle multiple paths through the same set of free() calls.

In addition, the use of temporaries prevents the system from
accidentally freeing the wrong object when a pointer value changes
between the allocation site and the free site. The followingexample
shows how the use of temporaries avoids this error:

v = new Object(); v = new Object()
v = x.f; t0 = v;
free(v); // Wrong! v = x.f;

free(t0); // OK

3.5 Analysis design tradeoffs

Our free-me analysis represents one point in the design space. This
section discusses some of our design tradeoffs and alternatives. In
particular, a central limitation of free-me is that it can only free
objects for which there is an explicit pointer in the code. This
choice, however, allows us to use a local model of the heap in
our analysis, and it allows us to use a simple implementationof
deallocation.

In principle, explicit deallocation can completely replace garbage
collection. With this ideal in mind we inspected our benchmarks
to determine which objects free-me is missing and how we might
extend the system to improve its coverage. We find that pushing
free-me further would require a significantly more complex and
expensive analysis, and a more costly run-time system.

Large data structures. Free-me is not effective on large, long-
lived data structures constructed by multiple methods. Extending
the analysis to find these opportunities would require several costly
changes. First, we need a global model of the heap in order to cap-
ture the connectivity of these structures. Second, we need to extend
our notion of liveness to handle multiple methods. This analysis
would need to be both interprocedural and flow sensitive, andbe
able to operate over much larger connectivity graphs. Finally, we
might need to make the heap model context sensitive, since com-
monly used methods (such as class libraries) produce objects which
are dead in some contexts and not in others.

Freeing large data structures also requires significant changes
to the run-time system. In particular, the free() implementation
would need to trace through the data structure to free each ofits
components. This capability not only adds complexity, it adds run-
time overhead, which we find is already a serious concern evenin
our current implementation of free().

Container internals. Free-me also misses internal components
of container classes. For example, when theVector class resizes
its internal array, the old array is immediately garbage. Aswith
large data structures, this case requires more powerful analysis.
Unless the array never escapes theVector class, we need to per-
form interprocedural, whole-program pointer and livenessanalysis
to free it. Even then, the analysis might be insufficient. Inxalan, for
example, the arrays that are dead are themselves stored in arrays,
so determining that no aliases exist between them is extremely dif-
ficult.

Factory variability. Free-me also misses objects returned by
methods thatmostly behave like factories, but not always. The
String methodsubstring() is an example. In most cases,
substring() returns a new String object, but it includes an
optimization that simply returns the input string if it equals the
search string. In this special case, which is only determined at
run-time, the return value is not a new string and might not be
dead in the caller. This pattern occurs frequently in the standard
libraries. For example, one implementation ofHashmap.get()
usually returns a new iterator, but will return a global NULLob-
ject in certain circumstances. It is not clear how any analysis could
automatically determine the conditions under which the output of
substring() or get() can be freed.

4. Runtime Support for Free-Me
This section describes the free() implementations for current allo-
cation disciplines: free-list and bump-pointer allocation. Figure 6
shows four implementations of free(obj). The free() interface takes
two arguments: a reference to the object to delete, and the size of
the object in bytes. The size information is precomputed by the
compiler and provided as a constant, when possible. There are
cases, such as arrays, where size information is not known stati-
cally. In these cases, the system computes the size of the object at

1 final int free(ObjectReference obj)
2 throws InlinePragma {
3 int sizeClass = getSizeClass(obj);
4 Memory.zero(obj, bytesInSizeClass(sizeClass));
5 // -- Push object on front of free list
6 setNext(obj, freeList[sizeClass]);
7 freeList[sizeClass] = obj;
8 }

(a) Free-List Free

1 final int free(ObjectReference obj, int size)
2 throws InlinePragma {
3 Address end = obj + size;
4 Memory.zero(start, size);
5 // -- Is object at the end of bump pointer?
6 if (end >= bumpPointer.cursor)
7 // -- Unbump the bump pointer
8 bumpPointer.cursor = obj;
9 }

(b) Unbump: Bump-Pointer Free of Top

1 final int free(ObjectReference obj, int size)
2 throws InlinePragma {
3 Address end = obj + size;
4 Memory.zero(start, size);
5 if (end >= bumpPointer.cursor) {
6 bumpPointer.cursor = obj;
7 // -- Did we expose region?
8 if (unbumpEnd >= bumpPointer.cursor) {
9 // -- Unbump again

10 bumpPointer.cursor = unbumpStart;
11 unbumpStart = 0;
12 unbumpEnd = 0;
13 }
14 } else { // -- Or, remember this object
15 unbumpStart = obj;
16 unbumpEnd = end;
17 }
18 }

(c) Unbump Region: Bump-Pointer Free with Top Region

1 final int free(ObjectReference obj, int size)
2 throws InlinePragma {
3 copyReserve = copyReserve - size;
4 }

(d) Unreserve: reduce the copy reserve

Figure 6. Selected based on the collector at build-time.

run-time by querying its type information. We found that dynami-
cally querying object size can be a significant overhead.

We simplify these code listings as follows. First, we elide the
differences between objects and addresses, and adjustments point-
ers to account for object headers and alignment. Second, theim-
plementation includes null pointer tests that prevent double frees
(see Section 3.4). Third, the implementation includes a test that en-
sures the input object is in the proper allocation space. We ignore
calls to free on objects that are in the immortal space or the boot
image space. The implementations also include an inline pragma
notifying the optimizing compiler to inline these short sequences.

4.1 Free for a Lazy Free-List

This section explains free() for the MMTk lazy free-list forits
mark-sweep collector [7, 8]. This implementation is suitable for
mark-sweep-compact, reference counting and any other collector
that uses a free-list allocator, with or without size-classblocks.
In addition, it is suitable for a more aggressive compiler analysis
that can free long and short-lived objects [34], and for systems that
cannot move some objects, e.g., with C# and pinning.

MMTk organizes memory intok size-segregatedfree-listsusing
blocks of contiguous memory for same-size objects. Each free-list
is unique to a size class. The free-listcollector traces and marks
live objects using bit maps associated with each block. Tracing

is thus proportional to the number of live objects. It then places
all the partially free blocks on a list. The free-listallocator puts
a new object into the first free cell of the smallest size classthat
accommodates the object. If the size-class free-list is exhausted,
the allocator creates a new free-list from one of the partially filled
blocks or an empty block. Reclamation is thus incremental and
proportional to allocation. Although MMTk creates free-lists a
block at a time, it does not depend on that feature.

Free() simply links objects to the front of the appropriate size
class free-list as shown in Figure 6(a) lines 6 and 7. A subsequent
allocation of the same size object will thus reuse it.

4.2 Free for a Bump-Pointer Allocator

A bump-pointer allocator is typically coupled with a copying or
compacting collector. We assume a copying collector and an allo-
cator that uses a contiguous block of memory, allocating objects in
program order by bumping a pointer until it exhausts the block. We
add to this discipline two versions of free():unbumpandunbump
region. Unbump can only free the most recently allocated object,
whereas unbump region can free deeper into the recently allocated
objects. Any subsequent allocation can reuse this memory, not just
same size objects. We also present a variation calledunreservethat
simply reduces the copy reserve by the size of the object, rather
than immediately reusing the memory.

Unbump. Figure 6(b) shows pseudocode for the simplest im-
plementation of free(obj) in a bump-pointer allocator. If the given
object was the last allocation by the bump pointer, free moves the
bump pointer back to the start of the object. A subsequent alloca-
tion will reuse this memory and move the bump pointer forward
again. Notice that there is no way to reuse memory further back
behind the bump pointer. In these cases, free simply returns.

Unbump Region. The above implementation forces the com-
piler to issue the frees in last-in-first-out order. To simplify the com-
piler analysis, we also investigate a free() that keeps track of a free,
but unreclaimed contiguous region closest to the cursor. This free()
can always reclaim the top three objects in any order, and mayre-
claim more. The implementation delimits an unreclaimed region
with two pointers,unbumpStart andunbumpEnd, as shown in
Figure 6(c). Ifobj is the top object free() retreatscursor to the start
of obj, the most common case. If the new top object is also free,
free() retreats thecursor further and returns. Figure 7 shows an ex-
ample of this case, where unreclaimed memory is shaded.

Our implementation is slightly more sophisticated than theFig-
ure 6(c). It remembers the unreclaimed region closest to thecurrent
bump pointer (rather than the most recently freed object), which is
the most likely to be reclaimed later. It also coalesces freeobjects
that are adjacent to the current region. Figure 8 shows this case.

Figures 7 and 8 show a limitation of this implementation. Some
older free memory goes unreclaimed even though it may eventually
reach the top. We investigated weaving a free-list through all free
regions, but it did not reclaim significantly more memory, and it
is expensive. A free on short-lived objects matches the bestbehav-
ior of the bump pointer. This structure is a high performancedesign
point because it forms the underpinnings for generational collectors
in use in the current best performing systems with garbage collec-
tion (e.g., IBM JDK version 1.4.1, and Sun’s HotSpot 1.4.2).

Unreserve. As we show in Section 6, free() with a bump pointer
does not deliver a performance improvement because, in part, the
overhead of manipulating the bump pointer and free regions out-
weighs space efficiency. We therefore investigated an even simpler
version of free() that instead reduces the size of the copy reserve
for the copying collector, as shown in Figure 6(d). Since poten-
tially all objects could survive a collection, every copying collector
must keep in reserve, memory equal to the size collection region.

unbumpHead

unbumpHead

cursor

null

(a) Before free(obj) of top object

cursor

(b) After free(obj) of top object

obj

Figure 7. Unbump Freeing of Top Object

unbumpHead

unbumpHead

cursor

(b) After free(obj) of interior object

cursor

(a) Before free(obj) of interior object

obj

Figure 8. Unbump Region Freeing an Interior Object

Instead of retreating the bump pointer, unreserve simply reduces
the reserve space, postponing garbage collection.

5. Methodology
We add free-me compiler analysis and free() runtime supportto
version 2.4.3 of Jikes RVM and MMTk. Jikes RVM is a high per-
formance VM written in Java with an aggressive adaptive just-in-
time optimizing compiler [1, 2, 27]. We use configurations that pre-
compile libraries and the optimizing compiler itself (theFull build-
time configuration), and turn off assertion checking. To measure
applications in a deterministic setting, we usereplay methodology
with pre-compilation. Replay builds and uses an advice file that
selects the hot methods and their optimization level. It eliminates
non-determinism due to the adaptive optimizing compiler and fo-
cuses on the application itself. (Eeckhout et al. show that including
the optimizing compiler in timing runs on short running programs
obscures the application behavior [16].)

We use replay together with pre-compilation in three steps.(1)
During construction of the Jikes RVM boot image, we analyze and
instrument large portions of the Java standard class libraries. For
some benchmarks calls to free() in the class libraries contribute
significantly to performance improvements. (2) Offline, we pre-
compute method summaries for all methods in the benchmark,
store them in a file, and retrieve them during free-me compilation.
The summaries mark factories and compute pointer connectivity,
as described in Section 3.2. This analysis pass does not modify the
benchmark code. (3) Immediately before running the benchmark,
we pre-compile the hot methods using full free-me compilation.

This compilation pass instruments the methods with calls tofree(),
as described in Section 3.

The cost of free-me compilation is significant – it almost dou-
bles the time spent in the optimizing compiler. Several factors mit-
igate this expense. First, free-me compilation is only applied to hot
methods, which are a very small fraction of all methods. Second,
this cost would be quickly recouped in long-running applications.
Third, we have not spent much time optimizing the implementation
of the analysis.

The use of precomputed method summaries raises two issues
with respect to Java and the Java execution model. First, dynamic
class loading may invalidate precomputed summaries, possibly ren-
dering some free-me decisions incorrect. Second, while thecost of
computing summaries is not extreme (on average, just a few sec-
onds per benchmark), it is too high to perform in a just-in-time
setting for these benchmarks. For long-running server applications,
high compilation costs can be amortized over long executiontimes
(days or weeks). Embedded and real-time applications may not use
dynamic class loading and may already use ahead-of-time compi-
lation, and are thus likely to benefit from the space efficiency of
free-me.

The runtime system is implemented using MMTk – a compos-
able Java memory management toolkit that implements a variety
of high performance collectors that reuse shared components [8].
MMTk manages large objects (8K or bigger) separately in a non-
copy space, and puts the compiler and a few other system pieces in
the boot image, an immortal space. We experiment with MMTk’s
mark-sweep full heap collector, and a generational collector with
an unbounded copying nursery and a mark-sweep older space. Pre-
vious work [7] shows these collectors perform well.

We report results on SPECjvm98 [35], pseudojbb, a fixed work-
load version of SPECjbb2000 [36] and the DaCapo [9] bench-
marks. We measure results on a 2.0 GHz Intel Pentium M (755)
with a 32 KB L1 data cache, a 32 KB L1 instruction cache, a 2
MB L2 cache, 533 MHz front-side bus, and 2 GB of main memory,
running Linux 2.6.12.

6. Experimental Results
This section first presents statistics about the effectiveness of free-
me compiler analysis, and then presents the total time, garbage
collection time, and mutator time improvements obtained with
compile-time inserted frees.

6.1 Effectiveness of Free-Me Analysis

Table 2 presents allocation and free statistics for our free-me com-
piler analysis. We gather statistics in special instrumented (non-
timed) runs with the mark-sweep collector. On average, the free-me
analysis frees 32% of all objects and up to 80% in our benchmarks
(theFreecolumns). The last two columns (labeledStack-like) show
a version of our analysis modified to detect only those cases that
could be stack allocated, i.e., if we restrict our analysis to inserting
frees for allocations in the same method, and restrict the free in-
strumentation to the end of the method. This eliminates the benefit
of our factory method detection, and conditional freeing. These re-
strictions reduce the average effectiveness from 32% to 21%, with
several benchmarks showing dramatic reductions.

Comparing theFreecolumns with the unconditional (Uncond)
columns shows the influence of free acting on some paths and
not others. ForUncond, we modify the free-me analysis to prove
objects are dead on all paths – as required for stack allocation. On
average, this restriction finds 7% less than if we allow free on some
paths and not others. Conditional freeing makes quite a difference
to several of the more complex benchmarks: bytes freed is reduced
by half or more forjavac, jack, antlr, bloat, andpmd.

alloc Free Uncond. Stack-like
MB MB % MB % MB %

SPEC
compress 105 0 0% 0 0.0% 0 0.0%

jess 263 16 6% 16 6% 16 6%
raytrace 91 73 81% 72 80% 72 80%

db 74 45 61% 45 61% 45 61%
javac 183 24 13% 15 9% 15 9%
mtrt 98 73 75% 73 75% 73 74%
jack 271 163 60% 127 47% 103 38%

pseudojbb 180 34 19% 16 9% 6 3%
DaCapo

antlr 1544 673 44% 335 22% 146 10%
bloat 716 222 31% 46 7% 35 5%

fop 103 30 30% 24 24% 21 20%
hsqldb 515 57 11% 34 7% 28 6%
jython 348 75 22% 67 20% 3 1%

pmd 822 278 34% 140 17% 56 7%
ps 523 22 4% 18 4% 14 3%

xalan 8195 1607 20% 1584 20% 1566 19%
Average 32% 25% 21%

Potential
javac-inl 188 51 27% 25 14% 25 14%

xalan-mod 8195 7290 89% 7267 89% 7249 88%
db-mod 74 65 88% 65 88% 65 87%

Table 2. Compile-time Free Decisions:alloc: Total allocation,
Free: Free Amount,Uncond.: Unconditional free amount if frees
must correspond to allocations, andStack-like: Free amount with-
out factory methods or conditional frees

The last three rows in the table show further potential of our
approach on three benchmarks. Unfortunately, the Jikes RVMin-
liner does not inlinesymbolTable.lookupin the javac benchmark,
which is why we only free 13%. If we force the compiler to inline
this method, free-me finds 27% (javac-inl). An enhanced analysis
could automatically detect this case.

For the two modified benchmarks,db -mod andxalan -mod,
we manually added three frees in key routines that grow array-
based containers. For example, theArrayList container in-
creases the size of its array to accommodate new elements. Its
add() method allocates a new, larger array and copies the ele-
ments from the old array. The old array is immediately garbage. We
believe a more powerful compiler analysis could detect and exploit
such opportunities. Note that even with more powerful analysis,
stack and region allocation are unlikely to ever handle these cases.
Container expansion is an unpredictable event that does notcoin-
cide with any particular program scope, precluding stack alloca-
tion. Furthermore, at least one of the arrays is always live,making
region allocation extremely inefficient or impossible. Note that we
do not include these three versions in any further experiments.

6.2 Free-me in a Mark-Sweep Collector

This section presents the effect of free on GC time, mutator time,
and overall execution time in a pure mark-sweep collector, where
explicit free helps reduce GC costs significantly. Space limitations
prohibit including results for all 16 programs, and thus we present
the geometric mean and results for select substantial benchmarks
with representative (but not the best!) improvements. We show the
geometric mean over all benchmarks with free-me in Figure 9,and
bloat, xalan, and javac in Figures 10, 11 and 12, respectively.
These figures plot time on the y-axis relative to the best timeon the
left and time in seconds on the right. The x-axis plots relative heap

sizes that vary from the smallest in which the collectors execute to
three times that minimum on the bottom, and MB on the top.

Figure 9 shows that on average, free improves total performance
by an average of 50% in small heaps, 10% in moderate heaps, and
5% in large heaps. In addition, by examining the smallest heap size
for each collector, we see free-me reduces by 25% the smallest heap
size in which the benchmarks can execute on average. We see these
benefits for almost all benchmarks, with the improvements roughly
proportional to the amount of memory explicitly freed.

Specifically, free-me improvesraytrace, db, mtrt, jack, javac,
pseudojbb, antlr, bloat, fop, hsqldb, jython, pmd, andxalan as
expected from examining the data from Table 2. Free-me attains
these improvements for the most part by reducing garbage col-
lection time, as illustrated in part (b) of each figure. Free-me also
provides improved mutator time, as shown in part (c) of each fig-
ure, despite the overhead of calling free(). With free-me the allo-
cator reuses dead objects right away, rather than waiting for the
garbage collector to reclaim them. This features helps performance
in two ways. First, it improves temporal locality by immediately
reusing recently freed memory. Second, it populates the free-list
which reduces allocator work. With free-me, the allocator allocates
fewer new size-class blocks, and creates fewer free-lists during lazy
sweeping to satisfy allocation requests.

Figure 10, and Figure 11 showbloat andxalan, and are typ-
ical of programs for which free-me works well. Free-me explic-
itly deallocates 31% of the memory allocated inbloat and 20% of
the memory inxalan. In larger heaps, these numbers translate into
modest improvements in GC time, since collection is less frequent.
When collection is more frequent in small heaps, free-me yields
more significant improvements by reducing memory pressure and
delaying collection. Mutator time also improves significantly for
both benchmarks. Forbloat, the improvement is probably due to
reduced allocator work: free-me improves more in smaller heaps,
which puts more pressure on the lazy sweeping mechanism. For
xalan, improvements are probably due to improved temporal lo-
cality, since it improves consistently across heap sizes.

Figure 12 showsjavac, a program for which free-me provides
only modest improvements. Free-me cannot deallocate a significant
amount of memory injavac, limiting the improvement in GC time.
However, free-me still improves mutator time by rapidly recycling
a commonly used object size.

These results demonstrate that free-me improves performance
and reduces the memory requirements over a wide variety of bench-
marks in a mark-sweep collector. For some benchmarks the im-
provements are dramatic, while in others they are more modest.
However, in no case does free-me degrade performance by any no-
ticeable amount.

6.3 Free-Me in a Generational Collector

In a generational copying nursery and a mark-sweep older space,
we find that the nursery reclaims dead objects cheaply and quickly
enough that explicit deallocation provides a benefit only for those
programs where a large fraction of objects can be explicitlyfreed.
We believe that this effect brings into question any technique that
targets short-lived objects, such as stack allocation.

Figure 13 shows the geometric mean of overall time, collec-
tion time, and mutator time for two variations of free(): “unbump
top” which frees the last object allocated, and “unreserve”which
reduces the size of the copy reserve. We do not show the results for
unbump region which performs strictly worse than unbump top.

Figures 14 and 15 show representative performance graphs.
For javac, free-me has practically no effect on GC time. It does,
however, produce an improvement in mutator time, probably for
the same reason it does in the mark-sweep collector. Forbloat,
on the other hand, free-me does result in a modest improvement

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3 3.5

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

mark-sweep
free-me mark-sweep

(a) Total Time

 2

 4

 6

 8

 10

 12

 1 1.5 2 2.5 3 3.5

N
or

m
al

iz
ed

 G
C

 T
im

e

Heap size relative to minimum heap size

mark-sweep
free-me mark-sweep

(b) GC Time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 1.5 2 2.5 3 3.5

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

Heap size relative to minimum heap size

mark-sweep
free-me mark-sweep

(c) Mutator Time

Figure 9. Geometric means over all benchmarks with and without free-me in a mark-sweep collector

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3 3.5

 8

 10

 12

 14

 16

 18

 20

 22

40 60 80 100 120

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(a) bloat Total Time

 2

 4

 6

 8

 10

 12

 1 1.5 2 2.5 3 3.5

 2

 4

 6

 8

 10

 12

 14

40 60 80 100 120

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(b) bloat GC Time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 1.5 2 2.5 3 3.5

 6.5

 7

 7.5

 8

 8.5

40 60 80 100 120

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(c) bloat Mutator Time

Figure 10. bloat with and without free-me in a mark-sweep collector

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3 3.5

 80

 100

 120

 140

 160

 180

 200

100 150 200 250 300

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(a) xalan Total Time

 2

 4

 6

 8

 10

 12

 1 1.5 2 2.5 3 3.5

 10

 20

 30

 40

 50

 60

 70

 80

 90
100 150 200 250 300

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(b) xalan GC Time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 1.5 2 2.5 3 3.5

 60

 65

 70

 75

 80

100 150 200 250 300

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(c) xalan Mutator Time

Figure 11. xalan with and without free-me in a mark-sweep collector

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3 3.5
 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

20 30 40 50 60 70 80

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(a) javac Total Time

 2

 4

 6

 8

 10

 12

 1 1.5 2 2.5 3 3.5

 1

 2

 3

 4

 5

 6

 7

 8

 9

20 30 40 50 60 70 80

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(b) javac GC Time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 1.5 2 2.5 3 3.5

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

20 30 40 50 60 70 80

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(c) javac Mutator Time

Figure 12. javac with and without free-me in a mark-sweep collector

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1 1.5 2 2.5 3 3.5

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

genms
unbump top genms

unreserve genms

(a) Total Time

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5

N
or

m
al

iz
ed

 G
C

 T
im

e

Heap size relative to minimum heap size

genms
unbump top genms

unreserve genms

(b) GC Time

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1 1.5 2 2.5 3 3.5

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

Heap size relative to minimum heap size

genms
unbump top genms

unreserve genms

(c) Mutator Time

Figure 13. Geometric means over all benchmarks with and without free-me in a generational collector

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1 1.5 2 2.5 3 3.5
 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

40 60 80 100 120

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

genms
unbump top genms

unreserve genms

(a) bloat Total Time

 1

 2

 3

 4

 5

 6

 1 1.5 2 2.5 3 3.5

 2

 3

 4

 5

 6

 7

 8

40 60 80 100 120

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

genms
unbump top genms

unreserve genms

(b) bloat GC Time

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1 1.5 2 2.5 3 3.5

 5.9

 6

 6.1

 6.2

 6.3

 6.4

 6.5

 6.6

 6.7

40 60 80 100 120

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

genms
unbump top genms

unreserve genms

(c) bloat Mutator Time

Figure 14. bloat with and without free-me in a generational collector

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1 1.5 2 2.5 3 3.5

 3.8

 4

 4.2

 4.4

 4.6

 4.8

20 30 40 50 60 70 80

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

genms
unbump top genms

unreserve genms

(a) javac Total Time

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6
20 30 40 50 60 70 80

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

genms
unbump top genms

unreserve genms

(b) javac GC Time

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1 1.5 2 2.5 3 3.5

 3.35

 3.4

 3.45

 3.5

 3.55

 3.6

 3.65

20 30 40 50 60 70 80

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

genms
unbump top genms

unreserve genms

(c) javac Mutator Time

Figure 15. javac with and without free-me in a generational collector

in GC time in smaller heaps. This benefit is offset by a loss in
performance for the mutator. This loss is due to the overheadof
free(); in particular, the cost of querying objects and computing
their sizes. This result suggests that any system for individual object
reclamation needs to be careful to keep the cost of free() low.
Even if we discount the mutator overhead, as stack allocation might
achieve, the gains are modest.

For almost all benchmarks free-me has the intended effect of
significantly reducing the number of nursery collections. For ex-
ample, it reduces nursery collections from 16 to 4 ondb in the
smallest heap size. Unfortunately, this reduction has practically no
effect on collection time because it does not significantly reduce the
number of objects that survive nursery collections. Since the bulk
of a copying collector’s work is proportional to nurserysurvivors,
free-me hardly affects collection time at all.

While free-me is not an improvement in this setting, it does al-
low the mark-sweep collector to perform more competitivelywith
the generation collector. Comparing the graphs forbloat in Fig-
ures 10 and 14, the two collectors perform similarly in largeheaps.
In tight heaps, however, mark-sweep suffers considerably.With
free-me, though, mark-sweep moves closer to the performance of
the generational collector.

7. Related Work
This section overviews the related work on compile-time object
reuse (also known as object scalar replacement) and lifetime anal-
ysis, and compiler analysis for stack and region allocation.

7.1 Compile-Time Free and Reuse Analysis

Shaham et al. [34] is closest to our work. They identify the last
useof an object and free it to eliminate the need forany garbage

collection. They also null any pointers to it (since the object may
still be reachable). Their analysis is very precise and expensive
since it seeks to prove liveness for heap variables across the entire
program, and thus they demonstrate it only on toy programs. Our
approach is simpler and cheaper since it limits its scope.

Other work automates object merging (hash consing, object
reuse, and object scalar replacement) [5, 21, 27, 28, 30]. These ap-
proaches attain reuse only for same size objects with lifetime ho-
mogeneity. Lee and Yi’s analysis inserts frees only for immediate
reuse, i.e., before an allocation of the same size [30]. Gheorghioiu
et al. [21] find allocation sites for which only one object instance is
ever live, finding many fewer dynamic objects than our approach.
Our free implementations do not require call-site lifetimehomo-
geneity. Our bump-pointer free is not restricted to same size objects
and thus reuses the same memory for different sized objects.

Marinov and O’Callahan profile to findobject equivalencein
which their contents are the same, but their lifetimes are dis-
joint [31]. For SPECjvm98 and two Java server programs, they
report memory savings of 2% to 50% if all equivalent objects could
be merged. Their results provide motivation for our work, but we
use the compiler to realize these savings and are not restricted to
equivalent content or sized objects.

Inoue et al. [26] explore the limits of lifetime predictability for
allocation sites. They find that many objects have zero lifetimes,
and our free-me analysis finds a similar number of objects to free.
Our technique differs from lifetime analysis because it detects
exactly which update kills an object, rather than its lifetime.

7.2 Stack Allocation

Prior work explores using pointerescape analysisto detect al-
location sites that produce objects whose lifetimes correspond to
method scope and allocate them on the stack [10, 13, 20, 39]. Dy-
namic stack allocation changes the allocator [13, 14, 39], and static
stack allocation adjusts the stack frame [20]. The static approach
cannot stack allocate allocations in loops. The dynamic approach
can grow the stack without bound. Both implementations assume
that stack frame lifetimes are relatively small, and thus the system
will normally reclaim this memory faster than the collector. Our
free scheme guarantees prompt reclamation since it need notwait
for the method return and can free objects in loops and from allo-
cation sites where some objects escape.

Whaley and Rinard [39] provide the most precise escape anal-
ysis [10, 13, 20], but no implementation of stack allocation. They
measure the amount of memory classified as stack allocatableand
report a higher percentages compared to Choi et al. or Blanchet
on similar programs [10, 13], e.g., 25% forjavac. Choi et al. de-
scribe a flow-sensitive and insensitive escape analysis that allocates
from 2% to 65% on the stack. However, they state: “Performance
gains come mainly from synchronization elimination ratherthan
from stack allocation.” Choi et al. point out the potentially uncon-
strained stack growth did not occur in practice. Blanchet’ssystem
dynamically stack allocates between 13 and 95% of memory, 13%
for javac. Blanchet reports a mark-sweep free-list collector on one
heap size. He finds excellent collection time reductions andmuta-
tor locality benefits from contiguous stack allocation. We find more
substantial improvements in small to moderate heap sizes.

Gay and Steensgaard [20] and Blanchet [10] provide faster less
precise analysis than other escape analyses [13, 39]. Theirstatic
stack allocation mechanism increases the stack frame size by up to
24KB, but usually by 1KB or less. They speedup a copying nursery
generational collector on one heap size by 11% onjack, but on
average, performance benefits are limited [18, 20]. Stack allocation
has less overhead than our free with a copying nursery, but does not
deliver consistent improvements. Copying nurseries reclaim short-
lived dead objects very efficiently.

Our compiler analysis is simpler and less precise than prior
work. It should thus be more amenable to use in a just-in-timecom-
piler, although we have not yet performance tuned it. Prior evalu-
ations of stack allocation have only ever used one collectorand
one heap size. We evaluate compile-time inserted free in several
garbage collectors with a variety of heap sizes which exposes the
space time tradeoffs inherent in garbage collection.

7.3 Region Allocation

Region allocation either manages all of memory based on allocation-
site lifetime scoping [12, 19, 32, 37] or adds regions as a spe-
cial purpose component management [6, 22, 24]. Regions provide
programmability benefits for real-time systems and offer safety
features such as thread isolation in server applications, but these
features come without the software engineering advantagesof
garbage collection. Potential advantages include improved mem-
ory efficiency, but prior work has not consistently demonstrated
this improvement. For example, Hicks et al. [24] show space effi-
ciency improvements in Cyclone over garbage collection alone, but
Cherem and Rugina [11] actually increase the memory footprint in
Java programs by up to 101%. These mixed results have their roots
in requiring a program point when all objects from a specific allo-
cation site are dead, rather than our approach that decouples object
allocation from its free.

8. Conclusions
This paper presents a new analysis for identifying short-lived ob-
jects and inserting explicit memory deallocation at the points where
the objects die. Our analysis properly identifies a large fraction of
short-lived objects for our Java programs, which results inrapid,
incremental reclamation of memory. For mark-sweep collectors,
explicitly freeing objects yields substantial performance improve-
ments from 50% to 200%. However, our experiments show that
generational collectors are extremely effective at reclaiming short-
lived objects. We believe it is unlikely that any technique can beat
the performance of copying generational collection on short-lived
objects. However for real-time systems and memory constrained
embedded systems, free-me offers a way to combine the software
engineering benefits of garbage collection with the memory and
performance benefits of incremental collection.

Acknowledgments
We would like to thank Steve Blackburn for getting us started, the
entire Jikes RVM research team for making their system publicly
available, and Mike Bond and Gene Novark for their suggestions.

References
[1] B. Alpern et al. Implementing Jalapeño in Java. InACM

Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 314–324, Denver, CO, Nov. 1999.

[2] B. Alpern et al. The Jalapeño virtual machine.IBM Systems Journal,
39(1):211–238, February 2000.

[3] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994.

[4] D. F. Bacon, P. Cheng, D. Grove, and M. T. Vechev. Syncopation:
Generational real-time garbage collector in the metronome. In ACM
Languages, Compilers, and Tools for Embedded Systems, pages 183–
192, Chicago, IL, June 2005.

[5] J. M. Barth. Shifting garbage collection overhead to compile time.
Communications of the ACM, 20(7):513–518, July 1977.

[6] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering
custom memory allocation. InACM Conference on Object-Oriented

Programming Systems, Languages, and Applications, pages 1–12,
Seattle, WA, Nov. 2002.

[7] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:
The performance impact of garbage collection. InACM SIGMETRICS
Conference on Measurement & Modeling Computer Systems, pages
25–36, NY, NY, June 2004.

[8] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water? High
performance garbage collection in Java with JMTk. InInternational
Conference on Software Engineering, pages 137–146, Scotland, UK,
May 2004.

[9] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, S. Z. Guyer,
A. Hosking, M. Jump, J. E. B. Moss, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java benchmarking development and analysis. Technical Report TR-
CS-06-01, Deptartment of Computer Science, Austrailian National
University, Mar. 2006. http://ali-www.cs.umass.edu/DaCapo/-
Benchmarks.

[10] B. Blanchet. Escape analysis for Java: Theory and practice. ACM
Transactions on Programming Languages and Systems, 25(6):713–
775, Nov. 2003.

[11] S. Cherem and R. Rugina. Region analysis and transformation
for Java programs. InACM International Symposium on Memory
Management, pages 85–96, Vancouver, BC, 2004.

[12] W. Chin, F. Craciun, S. Qin, and M. Rinard. Region inference for
object-oriented language. InACM Conference on Programming
Languages Design and Implementation, pages 243–354, Washington,
DC, June 2004.

[13] J. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.Midkiff.
Stack allocation and synchronization optimizations for Java using
escape analysis.ACM Transactions on Programming Languages and
Systems, 25(6):876–910, Nov. 2003.

[14] C. Click. Stack allocation, Jan. 2005. Personal Communication.

[15] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck.
Efficiently computing static single assignment form and thecontrol
dependence graph.ACM Transactions on Programming Languages
and Systems, 13(4):451–490, Oct. 1991.

[16] L. Eeckhout, A. Georges, and K. D. Bosschere. How Java programs
interact with virtual machines at the microarchitectural level. InACM
Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 244–358, Anaheim, CA, Oct. 2003.

[17] Y. Feng and E. D. Berger. A locality-improving dynamic memory
allocator. InACM Conference on Memory System Performance, pages
1–12, Chicago, IL, June 2005.

[18] R. P. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steensgaard, and
D. Tarditi. Marmot: An optimizing compiler for Java.Software—
Practice and Experience, 30(3):199–232, 2000.

[19] D. Gay and A. Aiken. Language support for regions. InACM
Conference on Programming Languages Design and Implementation,
pages 70–80, Snowbird, UT, 2001.

[20] D. Gay and B. Steensgaard. Fast escape analysis and stack allocation
for object-based programs. InInternational Conference on Compiler
Construction, pages 82–93, Berlin, Germany, 2000.

[21] O. Gheorghioiu, A. Salcianu, and M. Rinard. Interprocedural
compatibility analysis for static object preallocation. In ACM
Symposium on the Principles of Programming Languages, pages
273–284, New Orleans, LA, Jan. 2003.

[22] N. Hallenberg, M. Elsman, and M. Tofte. Combining region inference
and garbage collection. InACM Conference on Programming
Languages Design and Implementation, pages 141–152, Berlin,
Germany, June 2002.

[23] M. Hertz and E. Berger. Quantifying the performance of garbage
collection vs. explicit memory mananagement. InACM Conference
on Object-Oriented Programming Systems, Languages, and Applica-
tions, San Diego, CA, Oct. 2005.

[24] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience with
safe manual memory-management in Cyclone. InACM International
Symposium on Memory Management, pages 73–84, Vancouver, BC,
2004.

[25] M. Hirzel, A. Diwan, and J. Henkel. On the usefulness of type and
liveness accuracy for garbage collection and leak detection. ACM
Transactions on Programming Languages and Systems, 24(6):593–
624, Nov. 2002.

[26] H. Inoue, D. Stefanović, and S. Forrest. Object lifetime prediction in
Java. Technical Report TR-CS-2003-28, University of New Mexico,
May 2003.

[27] Jikes RVM. IBM, 2005. http://jikesrvm.sourceforge.net.

[28] S. B. Jones and D. Le Métayer. Compile-time garbage collection by
sharing analysis. InACM Inteornational Conference on Functional
Programming Languages and Computer Architecture, pages 54–74,
Nov. 1989.

[29] D. Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html,
1997.

[30] O. Lee and K. Yi. Experiments on the effectiveness of an automatic
insertion of memory reuses into XSML-like programs. InACM
International Symposium on Memory Management, pages 97–108,
Vancouver, BC, 2004.

[31] D. Marinov and R. O’Callahan. Object equality profiling. In ACM
Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 313–325, Anahiem, CA, Oct. 2003.

[32] F. Qian and L. Hendren. An adaptive, region-based allocator for Java.
In ACM International Symposium on Memory Management, Berlin,
Germany, June 2002.

[33] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profiling for space-
efficient Java. InACM Conference on Programming Languages
Design and Implementation, pages 104–133, Snowbird, UT, 2001.

[34] R. Shaham, E. Yahav, E. K. Kolodner, and M. Sagiv. Establishing
local temporal heap safety properties with application to compile-
time memory management. InStatic Analysis Symposium, pages
483–503, San Diego, CA, June 2003.

[35] Standard Performance Evaluation Corporation.SPECjvm98 Docu-
mentation, release 1.03 edition, March 1999.

[36] Standard Performance Evaluation Corporation.SPECjbb2000 (Java
Business Benchmark) Documentation, release 1.01 edition, 2001.

[37] M. Tofte and J. Talpin. Region-based memory management.
Information and Computation, 1997.

[38] D. M. Ungar. Generation scavenging: A non-disruptive high perfor-
mance storage reclamation algorithm. InACM Software Engineering
Symposium on Practical Software Development Environments, pages
157–167, April 1984.

[39] J. Whaley and M. Rinard. Compositional pointer and escape
analysis for Java programs. InACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 187–206,
Nov. 1999.

