
1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1

gEFM: An Algorithm for Computing Elementary
Flux Modes Using Graph Traversal

Ehsan Ullah, Member, IEEE, Shuchin Aeron, Member, IEEE, and Soha Hassoun, Senior Member, IEEE

Abstract—Computational methods to engineer cellular metabolism promise to play a critical role in producing pharmaceutical, repairing
defective genes, destroying cancer cells, and generating biofuels. Elementary Flux Mode (EFM) analysis is one such powerful technique
that has elucidated cell growth and regulation, predicted product yield, and analyzed network robustness. EFM analysis however is a
computationally daunting task because it requires the enumeration of all independent and stoichiometrically balanced pathways within
a cellular network.
We present in this paper an EFM enumeration algorithm, termed graphical EFM or gEFM. The algorithm is based on graph traversal, an
approach previously assumed unsuitable for enumerating EFMs. The approach is derived from a pathway synthesis method proposed
by Mavrovouniotis et al. The algorithm is described and proved correct. We apply gEFM to several networks and report runtimes in
comparison with other EFM computation tools. We show how gEFM benefits from network compression. Like other EFM computational
techniques, gEFM is sensitive to constraint ordering; however, we are able to demonstrate that knowledge of the underlying network
structure leads to better constraint ordering. gEFM is shown competitive with state-of-the-art EFM computational techniques for several
networks, but less so for networks with a larger number of EFMs.

Index Terms—pathway analysis, network analysis, graph algorithms, metabolic networks, biochemical networks, elementary flux
modes, elementary modes, flux modes, EFMs

F

1 INTRODUCTION

The continued success of designing many industrially
relevant micro-organisms [1] and developing synthetic
biology applications [2] requires efficient computational
tools for modeling, analysis, and design optimization
[3]. One particular powerful computational technique for
analyzing cellular metabolism is Elementary Flux Mode
(EFM) analysis. A “flux mode” represents a steady-
state flux pattern where the proportions of fluxes are
fixed while their absolute magnitudes are indetermi-
nate [4]. EFM analysis decomposes a metabolic network
into routes that have three properties: thermodynamic
feasibility, quasi steady-state operation and independence of
other pathways [4]. Thermodynamic feasibility imposes
that each irreversible reaction proceeds to have a non-
negative flux (turnover) rate. Quasi steady-state opera-
tion ensures that metabolites internal to the network are
neither accumulated nor depleted. Mutual independence
of other pathways, together with the other two proper-
ties, guarantees that the EFM decomposition is unique.
Several applications have benefited from EFM analysis.
Example applications include validation of metabolic
model construction [5], analyzing and understanding

• E. Ullah is with the Department of Computer Science, Tufts University,
Medford, MA, 02421. E-mail: ehsan.ullah@tufts.edu.

• S. Aeron is with the Department of Electrical and Computer Engineering
at Tufts University, Medford, MA 02421. E-mail: shuchin@ece.tufts.edu.

• S. Hassoun is with the Department of Computer Science, Tufts University,
Medford, MA, 02421. E-mail: soha.hassoun@tufts.edu.

metabolic network including robustness and cellular
regulation [6], [7], [8], [9], [10], analyzing competitive mi-
crobial strategies [11], increasing product yield [12], [13],
and assessing plant fitness and agricultural productivity
[14].

Computing EFMs has been shown equivalent to com-
puting the extreme rays of a convex pointed cone [15].
More precisely, once each reversible reaction is split
into a forward and a reverse reaction, the steady-state
operation and irreversibility constraints define a pointed
convex cone that lies in the positive quadrant of the
space defined by the network reactions. Any steady-
state flux vector for the network lies within this convex
cone and can be expressed as a non-negative linear
combination of the extreme rays (edges) of the cone.
Algorithms for computing the generating vectors of a
convex polyhedral cone can be utilized to compute
the elementary modes. To compute EFMs, Schuster and
Hilgetag [4] applied one such algorithm [16] where rows
of the transposed stoichiometric matrix augmented by
the identity matrix are combined pairwise to generate
the elementary modes. This method was later elabo-
rated by adding a dependency test criterion to elim-
inate redundant modes [17]. The earlier Schuster and
Hilgetag approach [4] is referred to as the ‘Canonical
Basis’ approach [15]. Wagner [18] and Urbanczik and
Wagner [19] proposed to first derive the basis vectors
of the null space of all steady-state conditions, and then
calculate the elementary modes by linearly combining
the basis vectors. This algorithm is referred to as the
“Null Space” approach, and provides significant speed
up over the Canonical Basis approach [19]. Gagneur



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

and Klamt [15] showed that the two approaches, the
Canonical Basis and the Null Space, are variants of
the double-description method, used to enumerate the
extreme rays of a convex cone (see [20], [21], [22], [23]
for a description of this method). The two most widely
used EFM tools, Metatool [24] and EFMTool [25], are
based on the Null-Space approach.

We revisit in this paper the Canonical Basis approach
as described by [17], but from a graph-traversal perspec-
tive. The basic underlying idea is from the works of
Mavrovouniotis et al. on the synthesis of metabolic path-
ways from a given substrate(s) to a given product(s) [26],
[27], [28]. Conceptually, the Mavrovouniotis approach
iteratively incorporates the set of stoichiometric con-
straints associated with each metabolite, and transforms
an initial set of reactions (one-step pathways) into a final
set of pathways that satisfy all the constraints. Schuster
et al. [17] argued that row elimination within the Canon-
ical Basis approach is equivalent to the Mavrovouniotis
approach; however, it was suggested that using matrix
formalism instead of graph theory is more elegant when
tackling structural analysis of metabolic networks.

We present in this paper an algorithm, gEFM, that
relies on graph traversal to compute the EFMs. The
algorithm combines the Mavrovouniotis pathway syn-
thesis approach [26] with the dependency test identified
by Schuster and Hilgetag [17]. An earlier version of
gEFM was presented [29] without a correctness proof nor
the implementation details, and the preliminary results
differ significantly from the ones presented in this paper.
The runtimes reported here are different from those
reported earlier [29] for two reasons. First, gEFM was up-
dated with the rank condition mentioned in section 2.4.1.
Second, here we utilize a faster computing platform with
larger memory (2.3GHz AMD Opteron 6176 CPU with a
512KB for the conference paper vs. 2.83GHz Intel Xeon
E5440 CPU with a 12MB cache). The main contribution
of this paper is showing that graph-based approaches
are viable for computing Elementary Flux Modes. Nat-
urally, this contribution extends to enumerating rays of
a convex cone. Because it retains the network structure,
gEFM is accessible and intuitive. Our results show that
the runtime of gEFM compares well or exceeds that of
comparable tools, namely Metatool [24] and EFMTool
[25], for a number of networks. We also examine the
impact of network compression and constraint ordering,
and show that there is a preferable constraint ordering
based on the analysis of the underlying network struc-
ture that benefits gEFM.

2 METHODS

2.1 Definitions
Before presenting the details of the gEFM algorithm,
we provide some definitions to clarify the exposition.
Boldface capital letters denote matrices. Boldface lower
case letters denote column vectors. The ith entry of a
vector, p, is referred to using the notation, p[i].

Definition 1. An m× n stoichiometric matrix S represents
the structure of a biochemical network, where m is the number
of metabolites internal to the network and n is the number of
reactions.

The network reactions include exchange reactions that
connect the network to a set of external metabolites not
captured in the stoichiometric matrix. The i, j-th entry
of the matrix S, denoted by Sij , is negative (positive)
if metabolite mi is a reactant (product) participating in
reaction rj . A zero entry Sij indicates that metabolite
mi does not participate in reaction rj . Each reversible
reaction is split into a forward reaction and a reverse
reaction. The pair will be referred to as an irreversible
reaction pair, or an irreversible pair.

Metabolites in the network are classified as either
external or internal [30]. Internal metabolites do not
accumulate when the network is operating under steady-
state conditions; however, external metabolites, some-
times referred to as pool metabolites or sources/sinks,
can accumulate. The next definition formalizes metabo-
lite production/consumption under steady-state condi-
tions.

Definition 2. A biochemical network is at steady state if the
net production rate equals the net consumption rate for each
metabolites internal to the network.

A network can be represented using a hypergraph,
G, where S represents the incidence matrix for G. G is
specified by a set of vertices and a set of edges. A vertex
corresponds to a metabolite, and an edge corresponds to
a reaction. An edge in the graph may be a hyperedge
(e.g. reaction R1 in Fig. 1), with potentially multiple
sources and multiple sinks. A path, or pathway, in the
network is defined as a connected sequence of reactions
such that products of a reaction are reactants of the next
reaction(s) in the sequence. Assuming e number of exter-
nal metabolites, the number of vertices in G equals m+e,
and the number of edges equals n. The terms network,
graph, and hypergraph are used interchangeably, and so
are the terms reaction, edge, and hyperedge.

An example metabolic network representing a subsec-
tion of the TCA cycle and where reactions are assumed
irreversible operating in one direction is illustrated in
Fig. 1(a). The network is assumed to have external
metabolites PYR, PEP, ACoA, CoASH, and CO2, thus the
”ext” subscript in Fig. 1(a), while all others are treated
as internals. Fig. 1(b) shows the equivalent stoichiometric
matrix.

A pathway can be represented in two possible ways.
One representation uses a vector of reaction coefficients,
p ∈ Rn. Each coefficient represents the reaction relative
turnover rate. A pathway can also be represented using
a vector of binary values, b ∈ {0, 1}n, indicating reac-
tion participation or lack thereof, along with a vector
of metabolite coefficients, c ∈ Rm, representing the net
metabolite balance. A positive c[i] coefficient indicates a
net production of metabolite i; a negative value indicates



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 3

OAA

ICIT

SUCC

FUM

MAL

AKG

PEPextPYRext

R1

R10

R7

R6

R4

R3

R2

R9

R5

CO2ext CO2ext

ACoAext

CoASHextACoAextCoASHext

R8

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

OAA -1 0 0 0 0 0 1 0 0 1

ICIT 1 -1 0 0 0 0 0 -1 0 0

AKG 0 1 -1 0 0 0 0 0 0 0

SUCC 0 0 1 -1 1 0 0 1 0 0

FUM 0 0 0 1 -1 -1 0 0 0 0

MAL 0 0 0 0 0 1 -1 1 -1 0

(a)

(b)

Fig. 1. Example network. (a) Network Graph. (b) Stoichiometric matrix.

a net consumption. A zero value indicates a balance
between production and consumption, and the relevant
metabolite is referred to as a balanced metabolite. The
values of b are derived from the reaction coefficients as
follows:

b[i] =

{
1 if p[i] > 0
0 otherwise (1)

For example, a pathway involving R10, R1, R8, R4,
R6, and R9 in Fig. 1(a) operating at steady-state has
zero metabolite coefficients for the pertinent internal
metabolites, and can be represented as:

p =
[
1 0 0 1 0 1 0 1 2 1

]T
b =

[
1 0 0 1 0 1 0 1 1 1

]T
Metabolite and reaction coefficients are related as fol-
lows:

c = Sp (2)

In the gEFM algorithm, the metabolite coefficients values
are used to identify pathways that produce or consume
a particular metabolite. Reaction coefficients needed to
specify the EFMs are computed from the binary coeffi-
cients.

Definition 3. A balanced pathway p induces a steady-state
condition on a network S iff

Sp = 0 (3)

Therefore, all internal metabolite coefficients along a
balanced pathway must be zero.

Definition 4. A pathway is decomposable or dependent if it
can be represented as a non-negative linear combination of
other pathways.

A pathway p1 will be dependent on pathway p2 if
it can be expressed as non-negative linear combination

of p2 and other pathway(s). The independence of two
pathways can be readily derived from their binary rep-
resentation using bitwise and operation [23] [15].

Lemma 1. Given two pathways p and p′, with binary
representations b and b′ respectively, p′ is dependent on p
iff:

bAND b′ = b (4)

For example, the independence of pathway pa con-
sisting of R1, R2, R3, R4, R6, and R7 and pathway pb

consisting of R1, R2, R3, R4, R6, R7, R8, and R9 in
Figure 1(a) can be verified by comparing their binary
representation using Lemma 1. Here, the active reactions
in pa are a subset of the active reactions in pb, making
pb dependent on pa, and pa independent of pb.

An elementary flux mode, or flux mode, or elementary
mode is a steady-state flux pattern in which flux pro-
portions are fixed while their absolute magnitudes are
indeterminate [31]. A formal definition of a flux mode is
provided below.

Definition 5. Given an m×n stoichiometric matrix, S, three
conditions must be met to label a pathway p an elementary
flux mode:

C1: The network reactions proceed in a direction
dictated by thermodynamic feasibility. Each reaction
coefficient in p must be non-negative.

C2: The network is in quasi steady-state condition
with no accumulation of internal metabolites in the
network. Mathematically,

Sp = 0

C3: Each elementary mode must be independent
from any other elementary mode in the network.

A vector p is thus an EFM if and only if p is thermody-
namically feasible, satisfies quasi-steady state conditions,



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 4

OAA

ICIT

SUCC

FUM

MAL

AKG

PEPextPYRext

R1

R10

R7

R6

R4

R3

R2

R9

R5

CO2ext CO2ext

ACoAext

CoASHextACoAextCoASHext

R8

EFM1

OAA

ICIT

SUCC

FUM

MAL

AKG

PEPextPYRext

R1

R10

R7

R6

R4

R3

R2

R9

R5

CO2ext CO2ext

ACoAext

CoASHextACoAextCoASHext

R8

EFM2

OAA

ICIT

SUCC

FUM

MAL

AKG

PEPextPYRext

R1

R10

R7

R6

R4

R3

R2

R9

R5

CO2ext CO2ext

ACoAext

CoASHextACoAextCoASHext

R8

EFM3

OAA

ICIT

SUCC

FUM

MAL

AKG

PEPextPYRext

R1

R10

R7

R6

R4

R3

R2

R9

R5

CO2ext CO2ext

ACoAext

CoASHextACoAextCoASHext

R8

EFM4

OAA

ICIT

SUCC

FUM

MAL

AKG

PEPextPYRext

R1

R10

R7

R6

R4

R3

R2

R9

R5

CO2ext CO2ext

ACoAext

CoASHextACoAextCoASHext

R8

EFM5

Fig. 2. EFMs of the network in Fig. 1(a).

and there is no other non-null flux vector (up to a
scaling) that satisfies both C1 and C2 and involves a
proper subset of the reactions participating in p.

The elementary flux modes for the example in Fig. 1
are:

EFM1 =
[
1 1 1 1 0 1 1 0 0 0

]T
EFM2 =

[
1 1 1 1 0 1 0 0 1 1

]T
EFM3 =

[
1 0 0 1 0 1 1 1 1 0

]T
EFM4 =

[
1 0 0 1 0 1 0 1 2 1

]T
EFM5 =

[
0 0 0 1 1 0 0 0 0 0

]T
Each pathway listed above is an EFM because all reaction
directions are consistent with thermodynamic feasibility
as specified in the original network. Additionally, each
pathway is balanced, where each metabolite can be
produced and consumed without net accumulation spec-
ified by the mass-balance constraints in S. Finally, each
of the EFMs is independent of all others, as specified by
the test in Lemma 1.

The benefit of the EFM decomposition is that any
steady-state flux distribution in the network can be
represented as a non-negative linear combination of
EFMs. For example, a flux distribution of p =[
3 1 1 3 0 3 3 2 2 0

]T can be written as the
linear combination of EFM1 and EFM3, weighted by 1
and 2, respectively.

2.2 The gEFM Algorithm
The gEFM algorithm is an iterative algorithm that pro-
cesses one internal metabolite at a time to construct

partially balanced pathways. Each partially balanced
pathway, referred to as a partial pathway, is balanced
with respect to processed metabolites, but not necessarily
balanced with respect to unprocessed internal metabo-
lites. The pseudo code of the algorithm is presented in
Algorithm 1. Initially, gEFM treats each reaction in the
network as a partial pathway (line 1). When a metabolite
v is selected (line 3) and processed (lines 4-9), new partial
pathways are constructed by combining each partial
pathway in inputs that produces v with each partial
pathway in outputs that consumes v, and generating a
set of candidate pathways (line 7). Partial pathways pro-
ducing or consuming v are removed from allPathways

and the remaining pathways with no net production or
consumption of v, referred to as non-participating path-
ways, are stored in nonParticipatingPathways (line 6).
Candidate dependent pathways, including those con-
taining one or more irreversible reaction pair, are iden-
tified and discarded (line 8). Dependency checking is
described in detail in section 2.4.1. allPathways is up-
dated as the union of nonParticipatingPathways and
candPathways (line 9). The process repeats until all inter-
nal metabolites are processed. The remaining pathways
are all EFMs. In the algorithm, the superscript k refers
to the iteration number. Without loss of generality, we
assume that k is the index of the internal metabolite
selected at step k. The details of the algorithm can be
found in [29].

2.3 Correctness of the gEFM algorithm
In this section, definitions are introduced, and several
Lemmas are presented to prove the correctness of gEFM



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 5

Algorithm 1: gEFM Pseudocode

1 allPathways(0) ← All reactions in the network
2 for k = 1 to m do
3 v(k) ← Unbalanced internal metabolite at index k

4 inputs(k) ← All pathways in allPathways(k−1) for which
v(k) is a reactant

5 outputs(k) ← All pathways in allPathways(k−1) for which
v(k) is a product

6 nonParticipatingPathways(k) ←
allPathways(k−1) \ (inputs(k) ∪ outputs(k))

7 candPathways(k) ← inputs(k) × outputs(k)

8 Remove dependant pathways from candPathways(k)

9 allPathways(k) ←
nonParticipatingPathways(k) ∪ candPathways(k)

10 end
11 Compute reaction coefficients for each pathway in

allPathways(m)

in constructing pathways that meet the three conditions
in Definition 5.

Definition 6. A stoichiometric matrix S(k) is an k × n
submatrix of S that includes the first k rows (metabolites)
of S.

Metabolites that are not represented in S(k) are con-
sidered external with respect to S(k). The matrix S(0) is
a zero-row matrix representing the network without any
internal metabolites.

The gEFM algorithm constructs partially balanced
pathways with respect to S(k). That is, each metabolite
along a pathway p will have a zero metabolite coeffi-
cient. More formally,

Definition 7. A partially balanced pathway (or partial path-
way) p(k) is balanced with respect to the first k metabolites
in S.

We now present some Lemmas that argue the correct-
ness of gEFM with respect to the construction incremen-
tal in the number of metabolites.

Lemma 2. Partial pathways generated in every iteration of
gEFM satisfy condition C1 in Definition 5.

Proof. Initially, prior to the first iteration of the algo-
rithm, all reactions operate in their specified direction.
By construction, a partial pathway producing a metabo-
lite is combined with a partial pathway that consumes
the metabolite. The direction of all the reactions along
the new partial pathways are consistent with earlier
construction steps. Therefore, all partial pathways con-
structed at each step of the algorithm, and overall, satisfy
condition C1 in Definition 5.

Lemma 3. Partial pathways generated in iteration k of gEFM
satisfy condition C2 in Definition 5 for the network specified
by S(k).

Proof. For S(0), all the network reactions represent par-
tial pathways because no metabolite is considered in-
ternal and each reaction is stoichiometrically balanced.

In each iteration k of the algorithm, a new metabolite
v(k) is balanced resulting in a new partial pathway p(k).
This is accomplished by combining two balanced partial
pathways in S(k−1). During step k of the algorithm, the
metabolites balanced previously during the first k−1 it-
erations remain balanced as their coefficients are already
zero. The following thus holds:

S(k)p(k) = 0

Therefore, condition C2 of Definition 5 for S(k) is satis-
fied.

Lemma 4. The set of partial pathways generated after every
iteration of gEFM contains only independent partial pathways
that satisfy C3 in Definition 5 for the network specified by
S(k).

Proof. At the end of each iteration, allPathways(k)

is computed as the union of pathways in
nonParticipatingPathways(k) and pathways in
candPathways(k). To show that pathways in
allPathways(k) are independent partial pathways, we
show that each set of this union has only independent
pathways, and that pathways within one set are
independent of those in the other set.

Initially, allPathways(0) contains all reactions in the
network, which are independent of each other. By in-
duction, we can assume that allPathways(k−1) con-
tains only independent pathways. During each itera-
tion, each partial pathway that has a reaction produc-
ing or consuming v(k) is removed from allPathways(k),
and the remaining non-participating pathways are
stored in nonParticipatingPathways(k). Pathways in
nonParticipatingPathways(k) are independent from
each other as they are a subset of the pathways in
allPathways(k−1). Because each non-participating par-
tial pathway has no reactions producing or consuming
v(k), such pathways are independent of pathways in
inputs(k) and outputs(k), as per Lemma 1. Further, path-
ways in nonParticipatingPathways(k) are independent
of the pathways formed by combining each pathway in
inputs(k) and each pathway in outputs(k). That is, path-
ways in nonParticipatingPathways(k) are independent
of pathways in candPathways(k).

Because each pathway in candPathways(k)

is compared for dependency against all other
pathways in candPathways(k) and pathways in
nonParticipatingPathways(k), the resulting pathways
in candPathways(k) are independent from each other
and those in nonParticipatingPathways(k).

Lemma 5. gEFM produces all EFMs for the network defined
by S(k).

Proof. At each iteration of the gEFM algorithm, all pos-
sible input/output partial pathway combinations are
explored, ensuring that all possible ways of balancing a
metabolite v(k) are considered. Combined with Lemmas
2, 3, and 4, all EFMs for S(k) are generated.



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 6

Theorem 1. The gEFM algorithm generates all EFMs.

Proof. In every iteration of gEFM an internal metabolite
is balanced. When all the internal metabolites are bal-
anced, gEFM terminates and the following holds:

S ≡ S(m) (5)

All partial pathways generated after the last iteration
satisfy C1 and C2 based on Lemmas 2 and a 3, respec-
tively. Since the set of generated pathways contain all
the EFMs (lemma 5) and all the dependent pathways
are removed (Lemma 4), C3 is satisfied. Therefore, the
set allPathways(m) only contains EFMs.

2.4 Implementation Details
2.4.1 Dependency Checking
Dependency checking is a fundamental and compu-
tationally expensive operation when generating EFMs.
To ensure independence, all partial pathways gener-
ated by the algorithm must be tested for dependency
against each other and against non-participating path-
ways. However, the implementation can be made more
efficient by discarding any partial pathway with length
larger than rank S [32]. Another method of speeding
the implementation is to compare the newly generated
partial pathway against the generating input and out-
put partial pathways instead of other generated partial
pathways. The details of the comparison follow Lemma
7.

Lemma 6. Pathway dependency is transitive. If p1 is depen-
dent on p2 and p2 is dependent on p3, then p1 is dependent
on p3.

Proof. Consider three pathways p1, p2 and p3 with bi-
nary representations b1, b2 and b3. Let p1 be dependent
on p2, and p2 is dependent on p3. Using Lemma 1,

b1 AND b2 = b2

b2 AND b3 = b3

Consider the dependency test of p1 and p3:

b1 AND b3 = b1 AND (b2 AND b3)
= (b1 AND b2) AND b3

= b2 AND b3

= b3

The above derivation shows that p1 is dependent on
pathway p3.

Lemma 7. If a pathway p is dependent on a pathway pcombo,
then pathway p is also dependent on the pathways pin and
pout generating pcombo.

Proof. A pathway pcombo generated by combining two
pathways pin and pout is naturally dependent on
pin and pout. Since pathway dependency is transitive
(lemma 6), a pathway p is dependent on a pathway
pcombo, the pathway p is also dependent on the pathway
pin and on the pathway pout.

Consider the set of pathways candPathways(k) is gen-
erated by combining the set of input pathways inputs(k)

and the set of output pathways outputs(k) in an it-
eration of gEFM. The dependency test is performed
for each pathway p ∈ candPathways(k), generated by
pin ∈ inputs(k) and pout ∈ outputs(k), and all path-
ways in candPathways(k) \ p. Using lemma 7, the same
dependency analysis results are obtained by comparing
pathway p with each pathway p′in ∈ inputs(k) \pin and
p′out ∈ outputs(k) \ pout. Within gEFM, we used the bit
pattern trees [33] data structure to implement pathway
dependency checking.

2.4.2 Reversible Reaction Trees

The splitting of reversible reactions into forward and
backward reactions results in additional cyclical EFMs,
each composed of an irreversible reaction pair. As each
reaction within the split pair is treated independently
during the algorithm execution, it is possible that gEFM
identifies pathways containing one or more irreversible
reaction pairs. Such pathways are dependent on the
respective two-futile cycles [15]. The algorithm runtime
benefits by rejecting such pathways as early as possible
during the dependency checking step (line 8 of the Algo-
rithm). We utilize an additional data structure, reversible
reaction trees, to facilitate the rejection of such paths.
Reversible reaction trees are similar to bit pattern trees
[33]. In this section, we first explain the structure and
construction of reversible trees, and then explain how
they can be used to avoid the generation of spurious
pathways.

A reversible tree is a binary tree representing a set of
pathways. The tree is constructed by recursively splitting
the set of pathways P based on a reaction r in F ,
the set of reactions stemming from splitting reversible
reactions. Reaction r is used to split the pathways into
two sets. All pathways for which the reaction is present
are stored in right subtree, while the rest of the pathways
are stored in the left subtree. Intermediate nodes in the
tree correspond to a reaction in F and leaf nodes contain
subsets of pathways in P . A balanced tree will have a
higher traversal efficiency compared to a non-balanced
tree.

P1 P2 P3 P4

R1b R1b

R1f

R1f ’ R1f

R1f ’ R1bR1f ’ R1b’ R1f R1bR1f R1b’

Fig. 3. Reversible tree for a network with a reversible
reaction R1.



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

in1
(00)

in2
(01)

in3
(10)

R1b
(00)

R1b
(10)

R1f
(00)

R1f ’ R1f

R1f ’ R1bR1f ’ R1b’ R1f R1b’

In Tree

out1
(00)

out2
(01)

out3
(10)

R1b
(00)

R1b
(10)

R1f
(00)

R1f ’ R1f

R1f ’ R1bR1f ’ R1b’ R1f R1b’

Out Tree List of all possible combinations of input and output pathways
Input (Label) Output (Label) Combination (Label) Valid

in1 (00) out1 (00) in1out1 (00) Yes

in1 (00) out2 (01) in1out2 (01) Yes

in1 (00) out3 (10) in1out3 (10) Yes

in2 (01) out1 (00) in2out1 (01) Yes

in2 (01) out2 (01) in2out2 (01) Yes

in2 (01) out3 (10) in2out3 (11) No

in3 (10) out1 (00) in3out1 (10) Yes

in3 (10) out2 (01) in3out2 (11) No

in3 (10) out3 (10) in3out3 (10) Yes

Fig. 4. Generation of pathways using reversible reaction trees for a network with one reversible reaction R1.

Consider an example network with one reversible
reaction R1 that is split into an irreversible reaction
pair R1f and R1b. Consider a set of pathways P in
the network for which a reversible reaction tree is to
be constructed. F contains R1f and R1b. To build the
tree, a reaction from F is selected to split the pathways.
Assume R1f is selected first. All pathways containing R1f
are stored in the right subtree, and all other pathways
are stored in the left subtree. R1f is removed from
F . The recursive construction process is repeated until
F is empty. Fig. 3 shows the reversible tree for the
network. Four subsets of pathways P1, P2, P3 and P4 are
generated. Pathways in the subset P4 can be discarded
because each pathway in P4 contains both R1f and R1b.

During each iteration of gEFM, a reversible tree in
is built for the set of input pathways and a reversible
tree out is built for the set of output pathways. New
pathways are generated by recursively combining a set
of pathways from the in tree, and a set of pathways
from the out tree. All such combinations are considered
except for the ones that result in pathways with one

Algorithm 2: Recursive generation of combinations
using reversible trees
1 void generateCombinations (RevTree in, RevTree out)
2 begin
3 comboLabel ← in.label OR out.label
4 if comboLabel is valid then
5 if (in is not leaf) and (out is not leaf) then
6 generateCombinations (in.left, out.left)
7 generateCombinations (in.left, out.right)
8 generateCombinations (in.right, out.left)
9 generateCombinations (in.right, out.right)

10 end
11 else if (in is not leaf) and (out is leaf) then
12 generateCombinations (in.left, out)
13 generateCombinations (in.right, out)
14 end
15 else if (in is leaf) and (out is not leaf) then
16 generateCombinations (in, out.left)
17 generateCombinations (in, out.right)
18 end
19 else
20 for each pathway i in in.pathways do
21 for each pathway o in out.pathways do
22 generate combination of i and o
23 end
24 end
25 end
26 end
27 end

or more reversible reaction pairs. Consider the example
in and out trees in Fig. 4. Each leaf node in in is
combined with all leaf nodes of out except for the cases
in which the resulting pathways will have R1f and R1b
present. Combinations of sets in2out3 and in3out2 are
not generated because both R1f and R1b will be present
in the resulting combinations.

The process of recursive combination can be further
improved by using a label at each intermediate node in
the reversible tree. The label consists of a bit vector with
each bit corresponding to a reaction in F . A bit value of
‘1’ corresponding to a reaction indicates all the pathways
in the subtrees will have that reaction. A bit value of ‘0’
corresponding to a reaction indicates that all pathways
may or may not have the reaction. In Fig. 4, the labels
corresponding to each node for the above example are
shown in parenthesis.

The recursive combination procedure is shown in
Algorithm 2. In each recursive call, the label for the
combination comboLabel is calculated by computing the
bit-wise logical OR of the labels of input and output
tree nodes. If comboLabel contains ‘1’ for both forward
and reverse reaction in a two-futile cycle, the recursion
is stopped. If neither in nor out trees are leaves, then
the procedure is called recursively on all possible input-
output combinations. If either in or out trees are leaves,
then the recursive procedure is called judiciously.

3 RESULTS

3.1 Test Cases

To assess the performance of gEFM and compare with
other tools, we selected several biochemical networks
with a varying number of reactions and metabolites.
The smaller test cases were culled directly from the
literature. The larger test cases were culled from com-
partments within published genome-scale models. To
ensure enumeration of all EFMs, the larger models were
further limited in complexity by removing the cofactors,
highly connected metabolites whose presence signifi-
cantly increases the number of EFMs. Additionally, one
of the models, Escherichia coli (E. coli), was modified
by restricting the directionality of the reactions to be
irreversible and by allowing the cell to only grow on
glucose to generate two additional test cases. These two
modifications allowed the examination of the impact
of reducing the effective number of reactions on the



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 8

TABLE 1
Statistics for the test case networks.

Test Case
Uncompressed

Compressed
EFMsAll Dead-end Coupled-zero Coupled-contradicting Unique-flows Coupled-combine

Mets Rxns(Rev) Mets Rxns(Rev) Mets Rxns(Rev) Mets Rxns(Rev) Mets Rxns(Rev) Mets Rxns(Rev) Mets Rxns(Rev)

Adipocyte 26 34 (0) 7 15 (0) 26 34 (0) 26 34 (0) 26 34 (0) 7 15 (0) 20 27 (0) 78

CHO 26 34 (10) 12 21 (9) 24 33 (10) 24 33 (10) 25 34 (10) 12 21 (9) 21 30 (9) 1,431

E. coli 52 70 (19) 26 44 (12) 52 70 (19) 52 70 (19) 52 70 (19) 26 44 (12) 32 50 (12) 429,276

E. coli (irrev) 52 70 (0) 12 26 (0) 50 66 (0) 51 68 (0) 51 67 (0) 12 26 (0) 30 47 (0) 840

E. coli (gluc) 47 60 (19) 26 39 (12) 47 60 (19) 47 60 (19) 47 60 (19) 26 39 (12) 31 44 (12) 33,220

H. pylori 287 413 (0) 23 140 (0) 162 275 (0) 203 323 (0) 287 413 (0) 23 140 (0) 287 413 (0) 753,664

S. cerevisiae 147 179 (19) 29 62 (19) 147 179 (19) 147 179 (19) 147 179 (19) 29 62 (19) 52 84 (19) 4,535,802

C. reinhardtii 39 121 (0) 28 110 (0) 38 120 (0) 38 120 (0) 39 121 (0) 28 110 (0) 32 114 (0) 4,152,658

number of EFMs and various performance metrics. Col-
lectively, the test cases provide comparison points of
gEFM against existing tools, and provide insights into
gEFM advantages and limitations.

The first network represents adipocyte central car-
bon metabolism, and was used for flux profiling and
modularity analysis [34]. The second network is a re-
duced model capturing central carbon metabolism [35]
of the Chinese Hamster Ovarian (CHO) cell [36]. The
next network is a model of E. coli that was utilized
when engineering a minimal E. coli cell for the efficient
production of ethanol from hexoses and pentoses [13].
In E. coli(irrev), all reactions in the network are made
irreversible by forcing reversible reactions to operate
only in the forward direction, as specified by the default
reaction listing. In E. coli(gluc), glucose is considered as
the only carbon source for the production of ethanol.
The next two cases were models of a human gastric
pathogen, Helicobacter pylori (H. pylori) [37], and of Sac-
charomyces cerevisiae (S. cerevisiae) iND750 [38]. For each
of these test cases, we considered only the cytosol com-
partment. Cofactors, including ATP, ADP, NAD, NADP,
NADH, NADPH, and AMP, were removed along with
non-organic compounds including O2, sodium, ammo-
nia, and nitrate. The last model represents primary
metabolism in Chlamydomonas reinhardtii (C. reinhardtii)
[39], a single celled green alga. Reactions in mitochondria
are considered with phosphate and water removed.

Several compression methods provided by EFMTool
[40] were utilized to minimize the size of the test cases.
The dead-end metabolite removal method eliminates
internal metabolites that are either only produced or
only consumed. Reactions associated with such metabo-
lites are also eliminated. The coupled-zero compression
method removes all reactions that always carry zero
flux at steady state. The coupled-contradicting compres-
sion method removes negatively coupled reactions. The
unique-flows compression method removes metabolites
that are produced by only one reaction and consumed by
only one other reaction by combining the producing and
consuming reactions. The coupled-combine compres-
sion method removes all flux-coupled reactions, ones
for which their relative flux is always constant, except
one representative reaction. Flux values for reactions
removed using these compression techniques are com-
puted based on flux values of the retained reactions.

Table 1 reports test case statistics for both uncom-
pressed and compressed models. The left most column
lists the test case name. The second column labeled
“Uncompressed” reports the number of metabolites and
number of reactions, with the number of reversible
reactions shown in parenthesis. The next six columns
report the network size for the compressed models in the
following order: when all compression techniques are
utilized, and when each of the following individual five
compression techniques are applied: dead-end, coupled-
zero, coupled-contradicting, unique-flow, and coupled-
combine. The techniques were applied in the order listed
in the table. Compression reduces the network size con-
siderably. The resulting number of reactions and metabo-
lites were identical when applying all compression tech-
niques and when applying the unique-flow reductions;
however, the resulting network topologies, and thus the
S matrices, were different. In the last column, the table
lists the number of EFMs for each test case. As there is
a one-to-one correspondence between pathways before
and after compression, the number of EFMs is the same
in the uncompressed and compressed networks.

While Table 1 shows the results of compressing the
test cases, Table 2 shows the inconsistencies present in
the uncompressed models. These results were obtained
using MC3 [41], a steady-state model and constraint con-
sistency checker that uses the stoichiometric matrix and
flux variability analysis to determine model inconsisten-
cies. MC3 identifies and lists all model inconsistencies in
the original model related to the number of single-ended
metabolites (SEM), dead-end metabolites (DEM), cou-
pled reactions (CR), inconsistent coupling (RCR), zero
flux reactions (ZFR), and unsatisfied reversible reactions
(UR). For example, per Table 2, MC3 identifies 6 single-
ended metabolites and 8 dead-end metabolites in H. Py-
lori in the uncompressed model. As reported in Table 1 in
the Dead-end column, compression reduces the number
of metabolites to 162 (from the original 287 metabolites),
and to 275 reactions (from the original 413 reactions).
When we examined all inconsistencies identified by MC3

in the uncompressed models, we found two unsatisfied
reversible reactions (UR), one for E. coli and one for E.
coli (gluc), that were not removed in the compressed
models. Overall, compression is effective in removing
inconsistencies from the uncompressed models.



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 9

3.2 Computing Platform

We have bench-marked gEFM against Metatool [24]
and EFMTool [25]. The MATLAB implementation of
MetaTool 5.1 is used with MATLAB 2013. The Java
implementation of EFMTool is used with Java runtime
environment 1.6. Because gEFM does not currently have
a multi-threaded implementation and to provide a fair
comparison, we disabled multi-threading for all tools.
We have performed all experiments on a 2.83 GHz Intel
Xeon E5440 CPU with 6 MB cache running Red Hat
Linux.

3.3 Runtime Analysis

The runtimes (in seconds) for the uncompressed and
compressed models are reported in Table 3. The first
column lists the model names. The next three columns
list the runtime in seconds for all three tools for the un-
compressed models, and the following three columns re-
port the runtimes for the compressed models. When run
times were less than 0.01 seconds, they were reported
as < 0.01. Several entries are labeled as TO (timeout),
where the computation did not complete within a given
time frame. We utilized a different number of seconds
for the timeouts depending on network size, consistently
allowing for a timeout window of at least 2× that of the
fastest running tool.

We make the following observations regarding the
results. Consistently, Metatool 5.1 computes the EFMs
for the smaller examples for both the compressed and
uncompressed models, but the larger examples do not
complete as Metatool 5.1 crashes without reporting any
errors. EFMTool and gEFM compute EFMs for all com-
pressed and uncompressed test cases. gEFM outperforms
EFMTool on the first six test cases except for E. coli
compressed model, while EFMTool outperforms gEFM
on the last two test cases. The network size of H. pylori
is larger than the last two test cases (S. cerevisiae and
C. reinhardtii), but H. pylori has a significantly smaller
number of EFMs.

The difference in runtimes between gEFM and EFM-
Tool is dependent on several factors. EFMTool is based
on the Null Space approach whereas gEFM is based on

the Canonical Basis approach. The number of algorith-
mic iterations in the Null Space approach is thus always
less than or equal to that in the Canonical basis approach,
as shown in Table 4. Because gEFM and EFMTool process
differing (in number and type) constraints, the number
of combinations generated and the number of compar-
isons performed during dependency checking vary for
each technique. Moreover, the order of constraint pro-
cessing impacts the number of resulting combinations
and comparisons. These differences are explored in more
detail in the following sections.

3.4 Comparisons Performed
To better understand how EFMtool and gEFM differ in
runtimes, we quantify the cumulative amount of work
performed by each tool. In Table 4, we list the number
of iterations, the cumulative number of combinations
generated, and the cumulative number of comparisons
performed by each tool for the compressed and uncom-
pressed models. The last three columns list the numbers
relative to gEFM. For gEFM, the number of iterations
corresponds to the number of internal metabolites, m,
that must be balanced. For EFMTool, the number of
iterations corresponds to the number of constraints on
the steady-state operation derived after computing the
null-space kernel, and is equal to n− k [15], where n is
the number of reactions, and k is the size of the null-
space kernel matrix (which is bounded by m).

Combinations correspond to pathways generated by
balancing an internal metabolite in gEFM whereas they
correspond to rays generated after processing a con-
straint in EFMTool. In each iteration of gEFM, combi-
nations are compared to the set of (input, output and
non-participating) pathways; therefore, the number of
comparison is equal to the product of the number of
combinations and the number of pathways. Similarly in
each iteration of EFMTool, the number of comparisons
performed in each iteration is equal to the product of
the number of combinations and the number of rays
(positive, negative, and zero rays). The number of itera-
tions and the number of combinations generated in each
iteration was recorded and the number of comparisons
was computed for each test case.

TABLE 2
Results of running MC3 on the test cases. MC3 reports the number of single-ended metabolites (SEM), dead-end

metabolites (DEM), coupled reactions (CR), inconsistent coupling (RCR), zero flux reactions (ZFR), and unsatisfied
reversible reactions (UR).

Test Case SEM DEM CR RCR ZFR UR
Adipocyte 0 0 10 0 0 0

CHO 2 2 3 1 2 0
E. coli 0 0 13 0 0 4

E. coli (irrev) 1 2 32 1 17 0
E. coli (gluc) 0 0 9 0 0 4

H. pylori 6 8 40 43 14 0
S. cerevisiae 0 0 34 0 0 0

C. reinhardtii 1 1 7 0 1 0



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 10

TABLE 3
Runtime comparison for Metatool, EFMTool, and gEFM for uncompressed and compressed models. Runtime is

reported in seconds. TO indicates timeout, where the computation did not complete in a time period of twice or more
the time of the fastest running tool.

Test Case
Uncompressed Compressed

Metatool 5.1 EFMTool gEFM Metatool 5.1 EFMTool gEFM
Adipocyte 0.11 0.07 < 0.01 0.09 0.05 < 0.01

CHO 3.50 0.50 0.04 3.17 0.38 0.04
E. coli TO 14,062.05 1,636.58 TO 54.68 1,154.36

E. coli(irrev) 0.81 0.57 < 0.01 0.73 0.19 < 0.01
E. coli(gluc) 982.05 39.63 2.70 660.60 2.23 1.82

H. pylori TO 5,138.54 1,717.17 TO 4,813.18 646.14
S. cerevisiae TO 27,029.99 534,375.00 TO 1,094.89 22,553.10

C. reinhardtii TO 153,132.05 471,316.00 TO 104,169.10 150,017.00

TABLE 4
The number of iterations, cumulative number of generated combinations, cumulative number of comparisons for

gEFM, EFMTool, for (a) uncompressed, and (b) compressed models.

(a) Uncompressed

Test Case
gEFM EFMTool EFMTool to gEFM ratios

Iterations Combinations Comparisons Iterations Combinations Comparisons Iterations Combinations Comparisons

Adipocyte 26 9.36 × 1002 4.88 × 1004 26 4.43 × 1002 1.84 × 1004 1.00 0.47 0.38

CHO 26 3.09 × 1005 4.14 × 1008 26 8.78 × 1004 6.21 × 1007 1.00 0.28 0.15

E. coli 52 3.41 × 1010 8.43 × 1015 47 4.06 × 1010 1.14 × 1015 0.90 1.19 1.35

E. coli(irrev) 52 2.31 × 1003 4.10 × 1005 47 2.29 × 1005 1.93 × 1008 0.90 99.17 470.57

E. coli(gluc) 52 2.58 × 1007 3.07 × 1011 42 5.40 × 1007 1.27 × 1012 0.81 2.10 4.14

H. pylori 287 4.76 × 1009 1.83 × 1015 281 4.29 × 1009 1.15 × 1015 0.98 0.90 0.63

S. cerevisiae 147 4.98 × 1011 9.08 × 1017 143 2.13 × 1010 4.37 × 1016 0.97 0.04 0.05

C. reinhardtii 39 8.58 × 1011 2.12 × 1018 38 1.62 × 1011 1.75 × 1017 0.97 0.19 0.08

(b) Compressed

Test Case
gEFM EFMTool EFMTool to gEFM ratios

Iterations Combinations Comparisons Iterations Combinations Comparisons Iterations Combinations Comparisons

Adipocyte 7 3.62 × 1002 1.55 × 1004 7 1.20 × 1002 4.60 × 1003 1.00 0.33 0.30

CHO 12 7.11 × 1004 9.14 × 1007 12 8.14 × 1003 9.92 × 1006 1.00 0.11 0.11

E. coli 26 3.41 × 1010 8.43 × 1015 21 3.82 × 1010 1.25 × 1016 0.81 1.12 1.48

E. coli(irrev) 12 1.86 × 1003 3.13 × 1005 9 4.21 × 1003 2.07 × 1006 0.75 2.26 6.60

E. coli(gluc) 26 1.72 × 1007 2.12 × 1011 21 1.43 × 1006 2.40 × 1010 0.81 0.08 0.11

H. pylori 23 3.04 × 1009 1.17 × 1015 21 9.98 × 1008 5.26 × 1014 0.91 0.33 0.45

S. cerevisiae 29 2.94 × 1010 3.15 × 1016 26 7.00 × 1008 1.16 × 1015 0.90 0.02 0.04

C. reinhardtii 28 7.76 × 1010 1.88 × 1017 27 8.84 × 1010 3.09 × 1017 0.96 1.14 1.64

For both compressed and uncompressed models,
gEFM has a higher or equal number of iterations than
EFMtool, as typically biochemical networks are under-
determined (fewer constraints than metabolites). For
the uncompressed models, gEFM provides significantly
fewer combinations and comparisons than EFMTool for
E. coli, E. coli(irrev), and E. coli(gluc), while EFMTool
provides significantly fewer combinations and compar-
isons for S. cerevisiae and C. reinhardtii. The runtimes for
gEFM are smaller than for EFMTool for examples with
similar number of iterations and slightly smaller number
of combinations and comparisons. For the compressed
models, EFMTool generates a substantially smaller num-
ber of combinations and comparisons, except for E. coli,
E. coli(irrev) and C. reinhardtii.

3.5 Impact of Compression

Comparing the number of comparisons and constraints
for the uncompressed and compressed models from
Table 4, it is clear that both EFMTool and gEFM benefit

from compression. The same number of EFMs is identi-
fied in each case. gEFM benefits from compression in two
ways. First, some compression methods reduce the num-
ber of reactions in the network, which may reduce the
size of the bit vectors used for storing the reactions and
in turn reduce the runtime associated with processing
the bit vectors. Each bit vector is a 32-bit integer array,
large enough to represent each reaction with a bit. The
reduction in the number of reactions will be beneficial
only if the number of integers needed to represent the
bit vectors is reduced. Second, compression reduces the
number of metabolites in the network, which reduces
the number of iterations within the gEFM algorithm.
All compression methods can reduce the number of
reactions in the network whereas only some compression
methods (i.e. dead-end metabolites, unique flows, and
coupled-combine methods) can reduce the number of
metabolites. Metabolites removed by compression have
a very small number of reactions associated with them,
and would have been balanced in the early iterations
of gEFM when applied to the uncompressed network.



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 11

TABLE 5
The best of and average runtimes of 10 runs where metabolites/constraints are randomly ordered. The runtimes are
normalized to their respective runtimes using the default heuristics. The “-” indicates that the runtimes were all less

than < 0.01 seconds.

gEFM EFMTool
Best of 10 random Average of 10 random Best of 10 random Average of 10 random

Adipocyte - - 0.76 0.91
CHO 1.50 1.53 0.78 0.91
E. coli 5.79 80.75 0.51 0.97

E. coli(irrev) - - 0.82 1.00
E. coli(gluc) 4.14 57.84 0.34 0.77

The reduction in the number of comparisons for these
metabolites is therefore small. For the E. coli(gluc) net-
work, compression reduces the number of comparisons
by 23 percent whereas for the C. reinhardtii network, the
reduction in the number of comparisons is 91 percent.
EFMTool benefits from compression techniques due to
the decreased number of reactions, which in turn re-
duces the number of constraints, resulting in substantial
runtime savings. EFMtool does not directly benefit from
reducing the number of metabolites.

3.6 Impact of Metabolite/Constraint Ordering

gEFM uses a simple heuristic, originally proposed by
Mavrovouniotis et al. [26], to select a metabolite to
process during each iteration of the algorithm. For each
unprocessed metabolite, the potential number of new
candidate pathways is calculated as the product of the
number of input and output partial pathways. The
metabolite with the smallest number of combinations is
selected. In EFMTool, several heuristics are utilized in-
cluding selecting a row with the largest number of zeros,
thus generating the smallest number of combinations.

The impact of metabolite/constraint ordering on run-
time performance of gEFM and EFMTool was investi-
gated by comparing the runtimes using each algorithm’s
heuristic ordering against the best of 10 random order-
ings. For gEFM, the metabolite to be balanced was cho-
sen at random. For EFMTool, the rows of the null-space
kernel matrix were randomly ordered before applying
the double-description method. For each compressed test
case, Table 5 lists the best and average runtimes for the
10 runs normalized to the runtimes reported in Table
3. For gEFM, the fastest runtime among the 10 runs
is always larger than the original runtime of gEFM.
On average, random metabolite ordering significantly
(> 10×) increases the runtime as showing for E. coli
and E. coli(gluc). For EFMTool, the best runtime among
the 10 random runs always decreases the runtime by 18
percent to 66 percent. The average of the 10 random runs
is at most 1.65× the runtime of the original heuristic.
Both tools are thus sensitive to metabolite/constraint
ordering. However, the ordering heuristic for gEFM
provides the smallest runtime among the 10 random
constraint ordering experiments, whereas the EFMTool
ordering heuristic did not.

4 DISCUSSION

We adopt in this paper the algorithm originally proposed
in 1990 by Mavrovouniotis et al. [26] for pathway synthe-
sis to compute the Elementary Flux Modes. While earlier
work [17] adapted this algorithm for EFM computation
by identifying a test to remove dependent pathways, it
was suggested that a matrix-based implementation is a
more appropriate realization of the algorithm than graph
traversal. In the present study, the proposed algorithm,
gEFM, utilizes graph traversal in constructing the EFMs.
We show that graph traversal provides a viable ap-
proach for computing EFMs. The gEFM implementation
is shown to be competitive with state-of-the-art EFM
computational techniques for several test cases, but less
so for networks with a larger number of EFMs.

EFMs correspond to the extreme rays of a pointed
polyhedral cone. gEFM is rooted in the double-
description method, which establishes two equivalent
characterization of a pointed convex cone: one based on
the constraints that describe the hyperplanes forming the
convex cone, and another based on the rays spanning the
cone. gEFM implements the double-description method
(see [20], [21], [22], [23] for a description of this method).
In each iteration of gEFM, a constraint on balancing an
internal metabolite is processed, and new extreme rays
are identified. The gEFM algorithm combines the input
and output pathways of the metabolite to generate inter-
mediate pathways that lie on the hyperplane associated
with the constraint. Removal of dependent pathways in
gEFM (as well as in prior implementations) identifies
the extreme rays. The large number of intermediate
pathways and dependency checking is currently the
major implementation bottleneck in gEFM and in other
approaches.

All methods based on the double-description have
been reported sensitive to the ordering of the constraints,
and that dynamic ordering methods are not necessarily
superior [23]. Urbanczik and Wagner observe that it is
difficult to remove such dependency [19]. Our results
demonstrate this sensitivity for both gEFM and EFM-
Tool. Importantly, we show that there is a clear profitable
ordering for gEFM. We have explored several metabolite
selection heuristics including selecting a metabolite at
random, or with a maximum or minimum number of
candidate pathways. Consistently, the best results were



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 12

based on the smallest number of combinations, which
is the metabolite selection scheme originally suggested
in the Mavrovouniotis pathway synthesis approach [26].
Knowledge of the network structure allows for a better
ordering heuristic, leading to reduced runtimes. In con-
trast, network topology information is lost when com-
puting the null space for techniques such as EFMTool
and Metatool.

The runtime of gEFM directly correlates first and
foremost with the overall number of generated rays
(combinations) and comparisons needed for dependency
checking. Specifically, the runtimes in Table 3 correlate
with the number of cumulative comparisons in Table
4. For the same number of comparisons, gEFM ben-
efits when employing a smaller number of iterations.
For example, the number of comparisons is comparable
for the compressed and uncompressed models for H.
pylori while the number of iterations is smaller for the
compressed model, and the runtime for H. pylori is
significantly reduced for the compressed model. The
compression techniques we utilized were specifically
developed for EFMTool, and they enabled some runtime
savings, with an average runtime savings of 55 percent
for EFMTool and 17 percent for gEFM for our set of test
cases.

Enumerating elementary modes is a computationally
intractable problem. Even when enumerating EFMs with
a given reaction in their support, it was proved that
there is no polynomial time algorithm in the number of
reactions unless P = NP [42]. Analysis of larger biochem-
ical networks will thus require alternate pathway anal-
ysis methods. One option is constraining the solution
space based on biological information (e.g., a specified
flux distribution [43], thermodynamic feasibility [44],
regulatory mechanisms [45], and branching properties
[46]) or structural significance (e.g., K-shortest EFMs
[47]). Other options include restricting EFM analysis to
a subnetwork [48], identifying EFMs that contain only
particular reactions [49], and enumerating the EFMs in
a lower-dimensional space [50]. Another option involves
sampling the EFM solution space [51]. One other option
is to consider searching for pathways with particular
desirable properties that may not necessarily be EFMs
[52], [53].

5 CONCLUSION

We presented in this paper an algorithm, gEFM, for
computing the Elementary Flux Modes within a bio-
chemical network. The algorithm is iterative, process-
ing one metabolite-balancing constraint at a time to
generate partial pathways that are vetted for indepen-
dence against all prior generated such pathways. The
algorithm implements the canonical approach, which in
turn is a variant of the double-description method. The
paper demonstrates that graph-based approaches are
viable for computing EFMs, and by natural extension,
for computing the extreme rays of a convex cone. The

main advantage of gEFM is utilizing the underlying
structural information to derive a constraint ordering
that leads to improved performance. When applied to
several test cases, gEFM is found to be competitive
for several test cases when compared to other EFM
computational methods. Computing EFMs, however, re-
mains a computationally intractable problem. Inexact
or partial decomposition methods or alternate pathway
analysis methods might be the best option when ana-
lyzing pathways within large biochemical networks. The
C++ implementation of the gEFM algorithm is available
via GitHub at https://github.com/eullah01/gEFM. Ad-
ditionally, supplementary text file Appendix A outlines
the classes and methods used for the implementation.

APPENDIX A
Classes and methods used for the implementation.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation under Grant no. 0829899. We wish to thank the
anonymous reviewers for their valuable feedback on the
submitted manuscript.

REFERENCES

[1] Y.-S. Jang, J. M. Park, S. Choi, Y. J. Choi, D. Y. Seung, J. H. Cho, and
S. Y. Lee, “Engineering of microorganisms for the production of
biofuels and perspectives based on systems metabolic engineering
approaches.” Biotechnology advances, 2011.

[2] W. C. Ruder, T. Lu, and J. J. Collins, “Synthetic biology moving
into the clinic,” Science, vol. 333, pp. 1248–1252, 2011.

[3] D. Densmore and S. Hassoun, “Design automation for synthetic
biological systems,” IEEE Design and Test of Computers, vol. 29,
no. 3, pp. 7–20, 2012.

[4] S. Schuster and C. Hilgetag, “On elementary flux modes in
biochemical reaction systems at steady state.” J. Biol. Syst, vol. 2,
pp. 165–182, 1994.

[5] V. Acuña, F. Chierichetti, V. Lacroix, A. Marchetti-Spaccamela, M.-
F. Sagot, and L. Stougie, “Modes and cuts in metabolic networks:
complexity and algorithms.” Bio Systems, vol. 95, pp. 51–60, 2009.

[6] J. Stelling, S. Klamt, K. Bettenbrock, S. Schuster, and E. D. Gilles,
“Metabolic network structure determines key aspects of function-
ality and regulation,” Nature, vol. 420, no. 6912, pp. 190–3, 2002.

[7] N. Vijayasankaran, R. Carlson, and F. Srienc, “Metabolic pathway
structures for recombinant protein synthesis in escherichia coli,”
Appl Microbiol Biotechnol, vol. 68, no. 6, pp. 737–46, 2005.

[8] F. Llaneras and J. Pic, “An interval approach for dealing with flux
distributions and elementary modes activity patterns,” Journal of
theoretical biology, vol. 246, pp. 290–308, 2007.

[9] S. Klamt and E. D. Gilles, “Minimal cut sets in biochemical
reaction networks,” Bioinformatics, vol. 20, no. 2, pp. 226–34, 2004.

[10] A. P. Burgard, E. V. Nikolaev, C. H. Schilling, and C. D. Maranas,
“Flux coupling analysis of genome-scale metabolic network re-
constructions,” Genome Res, vol. 14, no. 2, pp. 301–12, 2004.

[11] R. P. Carlson, “Decomposition of complex microbial behaviors
into resource-based stress responses.” Bioinformatics (Oxford, Eng-
land), vol. 25, pp. 90–7, 2009.

[12] R. Carlson and F. Srienc, “Fundamental escherichia coli biochem-
ical pathways for biomass and energy production: creation of
overall flux states,” Biotechnol Bioeng, vol. 86, no. 2, pp. 149–62,
2004.

[13] C. T. Trinh, P. Unrean, and F. Srienc, “Minimal Escherichia coli
cell for the most efficient production of ethanol from hexoses and
pentoses,” Appl Environ Microbiol, vol. 74, no. 12, pp. 3634–43,
2008.



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 13

[14] J. Schwender, F. Goffman, J. B. Ohlrogge, and Y. Shachar-Hill,
“Rubisco without the calvin cycle improves the carbon efficiency
of developing green seeds,” Nature, vol. 432, no. 7018, pp. 779–82,
2004.

[15] J. Gagneur and S. Klamt, “Computation of elementary modes:
a unifying framework and the new binary approach.” BMC
bioinformatics, vol. 5, p. 175, 2004.

[16] F. Noiłka, J. Guddat, H. Hollatz, and B. Bank, Theorie der linearen
parametrischen Optimierung. 312 S., Berlin 1974. Akademie-Verlag.
Preis 52,- M, L. Collatz, Ed. WILEY-VCH Verlag, 1976, vol. 56.

[17] S. Schuster, C. Hilgetag, J. Woods, and D. Fell, “Elementary
modes of functioning in biochemical reaction networks. aspects
of interpretation and application,,” Computation in Cellular and
Molecular Biological Systems (Cuthbertson, R, Holcombe, M and Paton,
R, Eds.), World Scientific: Singapore, pp. 151–165, 1996.

[18] C. Wagner, “Nullspace approach to determine the elementary
modes of chemical reaction systems,” Journal of Physical Chemistry
B, vol. 108, no. 7, pp. 2425–2431, 2004.

[19] R. Urbanczik and C. Wagner, “An improved algorithm for sto-
ichiometric network analysis: theory and applications,” Bioinfor-
matics, vol. 21, no. 7, pp. 1203–10, 2005.

[20] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall, “The
double description method,” 1953.

[21] N. V. Chernikova, “Algorithm for finding a general formula for
the non-negative solutions of a system of linear inequalities,” Zh.
Vychisl. Mat. Mat. Fiz., vol. 5, no. 2, pp. 334–337, 1965.

[22] H. Edelsbrunner, Algorithms in Combinatorial Geometry. Springer-
Verlag, 1987.

[23] K. Fukuda and A. Prodon, “Double description method revis-
ited,” Combinatorics and Computer Science, vol. 1, pp. 91–111, 1996.

[24] A. von Kamp and S. Schuster, “Metatool 5.0: fast and flexible
elementary modes analysis,” Bioinformatics, vol. 22, no. 15, pp.
1930–1, 2006.

[25] M. Terzer and J. Stelling, “Elementary flux modes state-of-the-art
implementation and scope of application,” BMC Systems Biology,
vol. 1, p. P2, 2007.

[26] M. Mavrovouniotis, G. Stephanopoulos, and S. G., “Computer-
aided synthesis of biochemical pathways,” Biotechn. Bioeng,
vol. 36, pp. 1119–1132, 1990.

[27] M. Mavrovouniotis, “Synthesis of reaction mechanisms consisting
of reversible and irre- versible steps. 1. a synthesis approach in
the context of simple examples,” Ind. Eng. Chem, vol. 31, pp. 1625–
1637, 1992.

[28] ——, “Synthesis of reaction mechanisms consisting of reversible
and irre- versible steps. 2. formalization and analysis of the
synthesis algorithm,” Ind. Eng. Chem, vol. 31, pp. 1637–1653, 1992.

[29] E. Ullah, C. Hopkins, S. Aeron, and S. Hassoun, “Decomposing
biochemical networks into elementary flux modes using graph
traversal,” in ACM International Conference on Bioinformatics,
Computational Biology and Biomedical Informatics, 2013, pp. 211–218.
[Online]. Available: http://doi.acm.org/10.1145/2506583.2506620

[30] S. Schuster, D. A. Fell, and T. Dandekar, “A general definition
of metabolic pathways useful for systematic organization and
analysis of complex metabolic networks,” Nat Biotechnol, vol. 18,
no. 3, pp. 326–32, 2000.

[31] S. Schuster, C. Hilgetag, J. Woods, and D. Fell, “Reaction routes
in biochemical reaction systems: algebraic properties, validated
calculation procedure and example from nucleotide metabolism,”
Journal of mathematical biology, vol. 45, pp. 153–181, 2002.

[32] M. Terzer, “Large scale methods to enumerate extreme rays and
elementary modes,” Ph.D. dissertation, Swiss Federal Institute of
Technology, Zurich, 2009.

[33] M. Terzer and J. Stelling, “Accelerating the computation of ele-
mentary modes using pattern trees,” Algorithms in Bioinformatics,
vol. 4175, pp. 333–343, 2006.

[34] Y. Si, S. Palani, A. Jayaraman, and K. Lee, “Effects of forced
uncoupling protein 1 expression in 3t3-l1 cells on mitochondrial
function and lipid metabolism,” J Lipid Res, vol. 48, no. 4, pp.
826–36, 2007.

[35] R. Nolan and K. Lee, “Dynamic model of cho cell metabolism,”
Metab Eng, vol. 13, no. 1, pp. 108–24, Jan. 2011.

[36] L. Quek, S. Dietmair, J. Kromer, and L. Nielsen, “Metabolic flux
analysis in mammalian cell culture,” Metab Eng, vol. 12, no. 2, pp.
161–71, 2010.

[37] I. Thiele, T. D. Vo, N. D. Price, and B. Palsson, “Expanded
metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR):

an in silico genome-scale characterization of single- and double-
deletion mutants,” Journal of Bacteriology, vol. 187, no. 16, pp.
5818–5830, 2005.

[38] N. C. Duarte, M. J. Herrgard, and B. . Palsson, “Reconstruc-
tion and validation of saccharomyces cerevisiae ind750, a fully
compartmentalized genome-scale metabolic model,” Genome Res.,
vol. 14, no. 7, pp. 1298–1309, 2004.

[39] N. R. Boyle and J. A. Morgan, “Flux balance analysis of primary
metabolism in chlamydomonas reinhardtii,” BMC Syst Biol., vol. 3,
no. 4, 2009.

[40] M. Terzer and J. Stelling, “Elementary flux
mode tool (efmtool),” Dec. 2009. [Online]. Available:
http://www.csb.ethz.ch/tools/efmtool

[41] M. Yousofshahi, E. Ullah, R. Stern, and S. Hassoun, “MC3: a
steady-state model and constraint consistency checker for bio-
chemical networks,” BMC Systems Biology, vol. 7, pp. 129–136,
2013.

[42] V. Acuña, A. Marchetti-Spaccamela, M.-F. Sagot, and L. Stougie,
“A note on the complexity of finding and enumerating elementary
modes.” Bio Systems, vol. 99, no. 3, pp. 210–4, 2010.

[43] K. Ip, C. Colijn, and D. S. Lun, “Analysis of complex metabolic
behavior through pathway decomposition,” BMC systems biology,
vol. 5, no. 1, p. 91, 2011.

[44] S. J. Jol, A. Kümmel, M. Terzer, J. Stelling, and M. Heinemann,
“System-level insights into yeast metabolism by thermodynamic
analysis of elementary flux modes,” PLoS computational biology,
vol. 8, no. 3, p. e1002415, 2012.

[45] C. Jungreuthmayer, D. E. Ruckerbauer, and J. Zanghellini,
“regEfmtool: Speeding up elementary flux mode calculation using
transcriptional regulatory rules in the form of three-state logic,”
Biosystems, vol. 113, no. 1, pp. 37–39, 2013.

[46] S. H. J. Chan, C. Solem, P. R. Jensen, and P. Ji, “Estimating biolog-
ical elementary flux modes that decompose a flux distribution by
the minimal branching property,” Bioinformatics, p. btu529, 2014.

[47] L. F. de Figueiredo, S. Schuster, C. Kaleta, and D. A. Fell, “Can
sugars be produced from fatty acids? a test case for pathway
analysis tools,” Bioinformatics, vol. 25, no. 1, pp. 152–158, 2009.

[48] C. Kaleta, L. F. de Figueiredo, and S. Schuster, “Can the whole
be less than the sum of its parts? pathway analysis in genome-
scale metabolic networks using elementary flux patterns,” Genome
Research, vol. 19, no. 10, pp. 1872–1883, 2009.

[49] L. David and A. Bockmayr, “Computing elementary flux modes
involving a set of target reactions,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 11, no. 6, pp. 1099–
1107, Nov 2014.

[50] S.-A. Marashi, L. David, and A. Bockmayr, “Analysis of metabolic
subnetworks by flux cone projection.” Algorithms for Molecular
Biology, vol. 7, p. 17, 2012.

[51] D. Machado, Z. Soons, K. R. Patil, E. C. Ferreira, and I. Rocha,
“Random sampling of elementary flux modes in large-scale
metabolic networks,” Bioinformatics, vol. 28, no. 18, pp. i515–i521,
2012.

[52] E. Ullah, K. Lee, and S. Hassoun, “An algorithm for identifying
dominant-edge metabolic pathways,” in IEEE/ACM International
Conference onComputer-Aided Design, 2009, pp. 144–150.

[53] E. Ullah, M. Walker, K. Lee, and S. Hassoun, “PreProPath: An
uncertainty-aware algorithm for identifying predictable profitable
pathways in biochemical networks,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, To appear, 2015.

Ehsan Ullah received the masters degree in
electrical engineering from the University of En-
gineering and Technology, Lahore, Pakistan, and
the PhD degree in computer science from Tufts
University. His research interests computational
tools and algorithms for systems biology. He is
a member of the ACM, IET, IEEE, and IEEE
Computer Society.



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2015.2430344, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 14

Boston University in 2006 and a Schlumberger-Doll Research grant in
2007. His current research interests include statistical signal process-
ing, machine learning and pattern recognition, and geophysical signal
processing.

Soha Hassoun received the PhD degree from
the Department of Computer Science and Engi-
neering, University of Washington, Seattle, and
the masters degree from the Department of
Electrical Engineering and Computer Science,
Massachusetts Institute of Technology. She is a
professor and chair of the Department of Com-
puter Science at Tufts University. Her research
interests are electronic design automation and
computational tools for Systems Biology. She is
an NSF CAREER award recipient. She received

ACM/SIGDA Distinguished Service Awards for creating the Ph.D. forum
at the Design Automation Conference (DAC), and the CADAthlon at
ICCAD. She serves and has served on a number of technical and
executive committees for several conferences and workshops including
serving as the technical program chair for the Design Automation
Conference (DAC) in 2012 and 2011, and the International Conference
on Computer-Aided Design (ICCAD) in 2005. She is a Tau Beta Pi fellow.
She is a member of the ACM, AiChE, and a senior member of the IEEE.

Shuchin Aeron is currently an assistant profes-
sor in the department of ECE at Tufts University.
He received his PhD in ECE from Boston Uni-
versity in 2009. From 2009 to 2011, he was a
post-doctoral research fellow at Schlumberger-
Doll Research (SDR), Cambridge, Mass., where
he worked on signal processing answer products
for borehole acoustics. He has several patents
and the proposed workflows are currently imple-
mented in logging while drilling tools. He is the
recipient of the best thesis award from both the

College of Engineering and the Department of ECE in 2009. He received
the Center of Information and Systems Engineering (CISE) award from


