Assignment 4

This assignment is due back by Tuesday May 4. You can hand it in the main CS/ECE office in my mailbox.

Note: Make sure you write and justify all your statements in a precise, formal way.

Problem 1

Suppose the leaves of a 1-decision list are replaced by other 1-decision lists. Call such a structure a rank-2 1-decision list. Describe a polynomial time Occam algorithm for learning rank-2 1-decision lists with hypotheses in rank-2 1-decision lists and prove its correctness.

Problem 2

(i) Let \mathcal{C} be the class of conjunctions over n Boolean variables. Show that the size of any set shattered by \mathcal{C} is at most n.

(ii) Let \mathcal{D}_k be the class of k-term DNF expressions over n Boolean variables. Show that there is a set of size $k(n - \log k)$ which is shattered by \mathcal{D}_k.

Problem 3

An axis parallel rectangle (with two sides parallel to the x-axis and two sides parallel to the y-axis) represents a concept over the domain \mathbb{R}^2 where the positive examples are those points inside the rectangle (see Section 1.1 of the text by Kearns and Vazirani).

The class NDAPR$_k$ of nested difference of k axis parallel rectangles is composed of concepts expressible as $(A_1 \setminus (A_2 \setminus \ldots (A_{k-1} \setminus A_k)\ldots))$ where all A_i are axis parallel rectangles.

Show that the VC dimension of NDAPR$_k$ is exactly $4k$.

Hint: You may want to use induction; the base case appears in the text.

Problem 4

Describe a polynomial time PAC learning algorithm for NDAPR$_k$ and prove its correctness.

Hint: By Problem 4 it suffices to find a consistent hypothesis in NDAPR$_k$.
Problem 5

For \(x \in \{0, 1\}^n \) let \(t(x) = \bigwedge_{x_i=1} x_i \). For example for \(x = 101 \), \(t(x) = x_1x_3 \). For two assignments \(x, y \in \{0, 1\}^n \), \(x \land y \) denotes their bitwise AND. For example for \(x = 101 \) and \(y = 110 \), \(x \land y = 100 \). Show that the following algorithm efficiently learns the class of monotone DNF expressions and give bounds for the numbers of equivalence and membership queries.

1. Initialize \(S = \emptyset \) and \(h = 0 \).
2. While \(EQ(h) \) provides a (positive) counterexample \(x \)
 (a) For each element \(s \) in \(S \) do:
 • if \(MQ(s \land x) \) returns “positive” then replace \(s \) with \(s \land x \) and quit for loop.
 (b) if no element was replaced then add \(x \) to \(S \).
 (c) Let \(h = \bigvee_{s \in S} t(s) \)
3. Output \(h \)

Hint: Argue that two elements of \(S \) cannot satisfy the same term of the target. Then try to quantify how you make “progress” after every counter example.

Problem 6 (extra credit)

Define a notion of reducibility appropriate for learning from Equivalence and Membership Queries. Using this notion show that if \(C_1 \) reduces to \(C_2 \) and \(C_2 \) is efficiently learnable from Equivalence and Membership Queries then \(C_1 \) is efficiently learnable from Equivalence and Membership Queries. Note that you would want this notion of reducibility to be useful in the next problem.

Problem 7 (extra credit)

A read-3 DNF formula over \(\{0, 1\}^n \) is a DNF formula using literals in \(x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n \) in which every variable appears at most 3 times (whether negated or unnegated). For example \(x_1x_2\overline{x}_3x_5 \lor \overline{x}_2x_4x_5 \lor x_3x_4x_5 \lor \overline{x}_1 \overline{x}_2 \overline{x}_4 \) is read-3 but \(x_1x_2\overline{x}_3x_5 \lor \overline{x}_2x_4x_5 \lor x_3x_4x_5 \lor \overline{x}_1 \overline{x}_2 \overline{x}_5 \) is not (since \(x_5 \) appears 4 times). The class of read-3 DNF is composed of the union of such formulae for \(n \geq 1 \).

Let \(p() \) be any polynomial and let \(C \) be a sub-class of DNF formulae. We say that \(C \) is \(p() \)-bounded if every formula \(c \in C \) over \(\{0, 1\}^n \) has at most \(p(n) \) terms. Show that if \(C \) is \(p() \)-bounded then it reduces to read-3 DNF (using reducibility of the previous question).