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ABSTRACT 
Recent advances in cognitive neuroscience and brain imag-
ing technologies provide us with the unprecedented ability 
to interface directly with activity in the human brain. Be-
yond traditional neuroscience work, researchers have begun 
to explore brain imaging as a novel input mechanism. This 
work has largely been targeted at allowing users to bypass 
the need for motor movement and to directly control com-
puters by explicitly manipulating their brain signals. In our 
work, we use brain imaging to passively sense and model 
the user’s state as they perform their tasks. In this work-
shop, we will discuss how we are using brain imaging to 
explore human cognition in the real world, to evaluate inter-
face design, and to build interfaces that adapt based on user 
state. We will ground our discussions in user studies we 
have conducted to perform task classification while users 
perform various tasks. We will also provide lessons learned 
as well as a general methodology so that other HCI re-
searchers can utilize these technologies in their work.  

INTRODUCTION 
Human-computer interaction researchers continually work 
to increase the communication bandwidth and quality be-
tween humans and computers. We have explored visualiza-
tions and multimodal presentations so that computers may 
use as many sensory channels as possible to send informa-
tion to a human. Similarly, we have devised hardware and 
software innovations to increase the information a human 
can quickly input into the computer. Since we have tradi-
tionally interacted with the external world only through our 
physical bodies, these input mechanisms have all required 
performing some motor action, be it moving a mouse, hit-
ting buttons, or speaking.  

Recent advances in cognitive neuroscience and brain imag-
ing technologies provide us with the unprecedented ability 
to interface directly with activity in the brain. Driven by the 
growing societal recognition for the needs of people with 
physical disabilities, researchers have begun to use these 
technologies to build brain-computer interfaces, communi-
cation systems that do not depend on the brain’s normal 
output pathways of peripheral nerves and muscles [9]. In 
these systems, users explicitly manipulate their brain activ-
ity instead of using motor movements in order to produce 
signals that are measured and used to control computers.  

While removing the need for motor movements in computer 
interfaces is challenging and rewarding, we believe that the 
full potential of brain imaging as an input mechanism lies in 
the extremely rich information it provides about the user. In 
our work, we will use brain imaging to passively monitor 
users while they perform their tasks in order to acquire a 
more direct measure of their state. We will use this state 
either as feedback to the user, as awareness information for 
other users, or as supplementary input to the computer so 
that it can mediate its interactions accordingly. This com-
munication channel is unlike any we have had and has the 
potential not only to change the way we view ourselves 
acting within the environment and to augment traditional 
interaction processes, but also to transform the field of hu-
man-computer interaction. 

BACKGROUND 
The human brain is a dense network of about 100 billion 
nerves cells called neurons. Each neuron communicates 
with thousands of others in order to regulate physical proc-
esses and to produce thought. Neurons communicate either 
by sending electrical signals to other neurons through 
physical connections or by exchanging chemicals called 
neurotransmitters (for a more detailed discussion of brain 
function, see [1]). Advances in brain sensing technologies 
allow us to observe the electrical, chemical, and physical 
changes that occur as the brain processes information or 
responds to various stimuli.  

With our current understanding, brain imaging allows us 
only to sense general processes and not the full semantics of 
our thoughts. Brain imaging is not mind reading. For exam-
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Figure 1. EEG Electrode placements in our experimental setup.  



 

ple, although we can probably tell if a user is processing 
language, we cannot determine the semantics of the content. 
We hope that the resolution at which we are able to deci-
pher thoughts grows as we increase our understanding of 
the human brain and abstract thought, but none of our work 
is predicated on these improvements happening.  

Brain Imaging Technologies 
While there are a myriad of brain imaging technologies, 
which we will review briefly in the workshop, we believe 
that only two, Functional Near Infrared (fNIR) imaging and 
Electroencephalography (EEG), present opportunities for 
inexpensive, portable, and safe devices, properties that are 
important for brain-computer interface applications within 
HCI research.  

fNIR technology works by projecting near infrared light 
into the brain from the surface of the scalp and measuring 
optical scattering that represent localized blood volume and 
oxygenation changes (for a detailed discussion of fNIR, see 
[4]). These changes can be used to build detailed functional 
maps of brain activity. While we have begun exploring this 
technology, most of our current work has utilized EEG.  

EEG uses electrodes placed directly on the scalp to measure 
the weak (5-100 µV) electrical potentials generated by ac-
tivity in the brain (for a detailed discussion of EEG, see 
[10]). Because of the fluid, bone, and skin that separate the 
electrodes from the actual electrical activity, signals tend to 
be smoothed and rather noisy. Additionally, EEG is also 
susceptible to non-cognitive signals, or “noise”, which have 
been problematic in traditional EEG work. However, we 
show how we can actually exploit this noise for accurate 
task classification within HCI applications. 

USING BRAIN-SENSING SIGNALS 

User State as an Evaluation Metric 
One use of user state derived from brain imaging could be 
as an evaluation metric for either the user or for computer 
systems. Since we might be able to measure the intensity of 
cognitive activity as a user performs certain tasks, we could 
potentially use brain imaging to assess cognitive aptitude 
based on how hard someone has to work on specific tasks. 
With proper task and cognitive models, we could poten-
tially use these results to generalize performance predic-
tions in a much broader range of tasks and scenarios. 

Rather than evaluating the human, a large part of human-
computer interaction research is centered on the ability to 
evaluate computer hardware or software interfaces. This 
allows us not only to measure the effectiveness of these 
interfaces, but more importantly to understand how users 
and computers interact so that we can improve our comput-
ing systems. Thus far, we have been relatively successful in 
learning from performance metrics such as task completion 
times and error rates. We have also used behavioral and 
physiological measures to infer cognitive processes, such as 
mouse movement and eye gaze as measures of attention, or 

heart rate and galvanic skin response as measures of arousal 
and fatigue.  

However, there remain cognitive phenomena such as cogni-
tive workloads or particular cognitive strategies, which are 
hard to measure externally. For these, we typically resort to 
clever experimental design or subjective questionnaires 
which give us indirect metrics for specific cognitive phe-
nomena. In our work, we explore brain imaging as a meas-
ure that more directly quantifies the cognitive utility of our 
interfaces. This could potentially provide powerful meas-
ures that either corroborate external measures, or more in-
terestingly, shed light on the interactions that we would 
have never derived from external measures alone. 

Adaptive Interfaces based on User State 
If we take this idea to the limit and tighten the iteration be-
tween measurement, evaluation, and redesign, we could 
design interfaces that automatically adapt depending on the 
cognitive state of the user. Interfaces that adapt themselves 
to available resources in order to provide pleasant and op-
timal user experiences are not a new concept. In fact, we 
have put quite a bit of thought into dynamically adapting 
interfaces to best utilize such things as display space, avail-
able input mechanisms, device processing capabilities, and 
even user task or context.  

In our work, we assert that adapting to users’ limited cogni-
tive resources is at least as important as adapting to specific 
computing affordances. One simple way in which interfaces 
may adapt based on user state is to adjust information flow. 
For example, verbal and spatial tasks are processed by dif-
ferent areas of the brain, and cognitive psychologists have 
shown that processing capabilities in each of these areas is 
largely independent [1]. Hence, even though a person may 
be verbally overloaded and not able to attend to more verbal 
information, their spatial modules might be capable of 
processing more data. Sensory processes such as hearing 
and seeing, have similar loosely independent capabilities.  

Using brain imaging, the system could know approximately 
how the user’s attentional and cognitive resources are allo-
cated, and could tailor information presentation to attain the 
largest communication bandwidth possible. For example, if 
the user is verbally overloaded, additional information 
could be transformed and presented in a spatial modality, 
and vice versa. Alternatively, if the user is completely cog-
nitively overloaded while they work on a task or tasks, the 
system could present less information or choose not to in-
terrupt the user with irrelevant content until the user has 
free brain cycles to better deal with more information. This 
is true even if the user is staring blankly at the wall and 
there are no external cues that allow the system to easily 
differentiate between deep thought and no thought.  

Finally, if we can sense higher level cognitive events like 
confusion and frustration or satisfaction and realization (the 
“aha” moment), we could tailor interfaces that provide 
feedback or guidance on task focus and strategy usage in 



 

training scenarios. This could lead to interfaces that drasti-
cally increase information understanding and retention.  

INITIAL RESULTS 
For a BCI technology to be useful as a communication de-
vice, the system must be capable of discriminating at least 
two different states within the user. A computer can then 
translate the transitions between states or the persistence of 
a state into a form that is appropriate for a particular appli-
cation [6].  

Our initial (as yet unpublished) results represent out first 
steps in exploring how BCI technology can be applied to 
HCI research. The contributions of this work are twofold. 
First, we demonstrate that entry into the field does not nec-
essarily require expensive high-end equipment, as is com-
monly assumed. Results from a user study we conducted 
show that we were able to attain 84.0% accuracy classifying 
three different cognitive tasks using relatively low cost 
($1500) off-the-shelf EEG equipment (see Figure 1 for 
setup). Second, we present a novel approach to performing 
task classification utilizing both cognitive and non-
cognitive artifacts measured by our brain sensing device as 
features for our classification algorithms. We present a sec-
ond user study showing 92.4% accuracy classifying three 
tasks within a more ecologically valid setting, determining 
various user states while playing a computer game. 

User Study 1 
In our first study, we used machine learning approaches in 
an attempt to take only EEG data and classify which mental 
task a user was performing. We adopted the general ex-
perimental design presented by Keirn and Aunon [6] in an 
effort to extend their results using a low-cost EEG device. 

Based on pilot studies with our system, we chose three 
tasks to classify: 1) Rest, in which we instructed partici-
pants to relax and to try not to focus on anything in particu-
lar; 2) Mental Arithmetic, in which we instructed partici-
pants to perform a mental multiplication of a single digit 
number by a three digit number, such as “7 × 836”; 3) Men-
tal Rotation, in which we cued participants with a particular 
object, such as “peacock”, and instructed them to imagine 
the object in as much detail as possible while rotating it. 

For data collection, we used the Brainmaster AT W2.5, a 
PC-based 2-channel EEG system. This device retails for 
approximately USD$1500, comparable to the cost of a lap-
top computer. Eight (3 female) users, ranging from 29 to 58 
years of age, volunteered for this study. All were cogni-
tively and neurologically healthy, and all were right handed, 
except for one participant who had a slight nerve injury in 
his right hand and who had trained himself to depend more 
on his left hand.  

In order to classify the signals measured using our EEG 
device, we first performed some basic processing to trans-
form the signal into a time-independent data set. We then 
computed simple base features, which we mathematically 

combined to generate a much larger set of features. Next, 
we ran these features through a selection process, pruning 
the set and keeping only those that added the most useful 
information to the classification. This pruning step is im-
portant as it eliminates features not useful for classification 
and prevents a statistical phenomenon known as over-
fitting. Our feature generation and selection process is simi-
lar to that used by Fogarty et al. in their work on modeling 
task engagement to predict interruptability [8]. We then 
used the pruned set of features to construct Bayesian Net-
work models for task classification.  

The Bayesian Network classifiers for these three mental 
tasks yielded classification accuracies of between 59.3 and 
77.6% (µ=68.3, σ=5.5), depending on the user. The prior 
for these classifications, or the expected result of a random 
classifier, was 33.3%. It should be noted that we would 
expect a human observer to perform only as well as a ran-
dom classifier. The pair-wise classifiers had a prior of 50% 
and yielded accuracies of between 68.5 and 93.8% (µ=84.4, 
σ=6.0). Using various averaging schemes, we attained im-
provements of up to 21% (going from 67.9% to 88.9% for 
participant 1), with average improvements ranging between 
5.1% and 15.7% for the 3 task classifier. See Figure 2 for a 
summary of these results. 

We will present this entire methodology in more detail at 
the workshop as well as discuss how averaging may be used 
to enhance the classification accuracies, leading us to our 
final results. Interestingly, this methodology can be general-
ized for use with time sequence data coming from other 
sources, such as physiological or environmental sensors. 

User Study 2 
The classification accuracies we achieve in the first study 
suggest that we can indeed reliably measure and classify 
performance of our three mental tasks. However, we cannot 
be certain that the phenomena providing the classification 
power is entirely generated by neuronal firings in the brain. 
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Figure 2. Plot of overall classification accuracies for three mental 
tasks in study 1 under various averaging scenarios. Error bars rep-

resent standard deviation. 



 

We believe that various mental tasks are involuntarily cou-
pled with physiological responses [7] and that it is difficult, 
if not impossible, to isolate cognitive activity using EEG in 
neurologically healthy individuals. This is problematic for 
researchers ultimately aiming to apply the technology to 
disabled individuals, as they have to guarantee that the fea-
tures of interest are generated solely by the brain. For this 
reason, many researchers have conducted extensive work to 
remove the ‘confounds’ introduced by physical artifacts 
before classification [e.g. 5] or have limited their data col-
lection to include only participants who suffer from the 
same disabilities as those as their target users. 

However, since we are aiming to apply this to a generally 
healthy population, we only need to determine the reliabil-
ity of the features in predicting the task. This concept was 
briefly explored by Chen and Vertegaal for modeling men-
tal load in their physiologically attentive user interfaces [3]. 
In fact, if non-cognitive artifacts are highly correlated with 
different types of tasks or engagement, we should fully ex-
ploit those artifacts to improve our classification power, 
even though the neuroscience community has spent large 
efforts to reduce and remove them in their recordings.  

We conducted a second user study to explore using both 
cognitive and non-cognitive artifacts to classify tasks in a 
more realistic setting. The tasks we chose involved playing 
a PC-based video game. This experiment serves as a dem-
onstration of a general approach that could be applied to a 
much broader range of potential applications.  

The game we selected for this experiment was Halo, a PC-
based first person shooter game produced by Microsoft 
Game Studios. The tasks we tested within the game were: 
1) Rest, in which participants were instructed to relax and 
fixate their eyes on the crosshairs located at the center of 
the screen; 2) Solo, in which participants navigated the en-
vironment, shooting static objects or collecting ammunition 
scattered throughout the scene; 3) Play, in which partici-
pants navigated the environment and engaged an enemy 
controlled by an expert Halo player.  

Using the same processing methodology as before, the 
baseline classification accuracies were between 65.2 and 
92.7% (µ=78.2, σ=8.4) for the 3-task classifiers and 68.9 
and 100% (µ=90.2, σ=8.5) for the pair-wise classifiers. 
After averaging, we were able to achieve 83.3 to 100% ac-
curacies (µ=92.4, σ=6.4) for 3-task and 83.3 to 100% 
(µ=97.6, σ=5.1) for pair-wise comparisons. While shifted 
slightly higher, the graph of the results looks similar to that 
of user study 1. 

While it would have been possible to achieve reasonable 
classification accuracy by hooking into the game state, or 
even by monitoring the keyboard and mouse, our goal in 
running this experiment was not to show the most ideal way 
of discriminating these tasks but to demonstrate the impact 
of non-cognitive artifacts on EEG-based task classification 
in a realistic computing scenario. We assert that EEG shows 
interesting potential as a general physiological input sensor 

for distinguishing between tasks in a wide variety of com-
puting applications. 

CONCLUSION  
The idea of using brain imaging in HCI work has been pre-
viously proposed [11] and we believe that the technology is 
now ripe for us to re-articulate this unexplored area of in-
quiry as well as the challenges that have to be addressed in 
order for this research project to be a success. We believe 
that our initial methodology and results will quickly get 
other researchers caught up with the topic and look forward 
to inspiring discussion that follows. 
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